CN106011777A - 钨膜的成膜方法 - Google Patents

钨膜的成膜方法 Download PDF

Info

Publication number
CN106011777A
CN106011777A CN201610176793.1A CN201610176793A CN106011777A CN 106011777 A CN106011777 A CN 106011777A CN 201610176793 A CN201610176793 A CN 201610176793A CN 106011777 A CN106011777 A CN 106011777A
Authority
CN
China
Prior art keywords
film
gas
tungsten
tungsten film
wcl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610176793.1A
Other languages
English (en)
Other versions
CN106011777B (zh
Inventor
铃木健二
前川浩治
堀田隼史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Publication of CN106011777A publication Critical patent/CN106011777A/zh
Application granted granted Critical
Publication of CN106011777B publication Critical patent/CN106011777B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • H01L21/28562Selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • C23C16/14Deposition of only one other metal element
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28568Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising transition metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/76879Filling of holes, grooves or trenches, e.g. vias, with conductive material by selective deposition of conductive material in the vias, e.g. selective C.V.D. on semiconductor material, plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/76883Post-treatment or after-treatment of the conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明涉及钨膜的成膜方法。[课题]即使进行器件的微细化、复杂化,通过使用氯化钨气体作为原料气体的ALD法,也能够以良好的嵌入性形成具有良好的密合性的钨膜。[解决手段]具备如下工序:主钨膜成膜工序:以间隔腔室内的吹扫的方式依次向腔室内供给氯化钨气体和还原气体来形成主钨膜;以及、初始钨膜成膜工序:先于主钨膜成膜工序,使氯化钨气体的供给量少于主钨膜成膜工序,以间隔吹扫气体的供给的方式依次向腔室内供给氯化钨气体和还原气体,或者同时向腔室内供给氯化钨气体和还原气体,从而在基底膜上形成初始钨膜。

Description

钨膜的成膜方法
技术领域
本发明涉及钨膜的成膜方法。
背景技术
制造LSI时,MOSFET栅电极、与源电极/漏电极的接点、存储器的字线等中广泛使用了钨。多层布线工序中,主要使用铜布线,但铜缺乏耐热性,而且容易扩散,因此要求耐热性的部分、担心铜的扩散而导致电特性劣化的部分等中使用了钨。
作为钨的成膜处理,以前使用了物理气相沉积(PVD)法,但在要求高的覆盖率(阶梯覆盖率(step coverage))的部分中难以通过PVD法应对,因此,通过阶梯覆盖率良好的化学气相沉积(CVD)法来进行成膜。
作为这样的利用CVD法的钨膜(CVD-钨膜)的成膜方法,一般使用如下方法:作为原料气体使用例如六氟化钨(WF6)和还原气体即H2气,在作为被处理基板的半导体晶圆上产生WF6+3H2→W+6HF的反应(例如专利文献1、2)。
然而,使用WF6气通过CVD形成钨膜时,非常担心对于半导体器件中的特别是栅电极、存储器的字线等中WF6所含的氟将栅极绝缘膜还原而使电特性劣化。
作为不含有氟的CVD-W成膜时的原料气体,已知有六氯化钨(WCl6)(例如专利文献3、非专利文献1)。氯也与氟同样地具有还原性但反应性比氟弱,从而可以期待对电特性的不良影响少。
另外,近期,半导体器件的微细化日益推进,甚至据说能够得到良好的阶梯覆盖率的CVD也变得难以嵌入至复杂形状图案,从得到更高的阶梯覆盖率的观点出发,以间隔吹扫的方式依次供给原料气体和还原气体的原子层沉积(ALD)法受到关注。
现有技术文献
专利文献
专利文献1:日本特开2003-193233号公报
专利文献2:日本特开2004-273764号公报
专利文献3:日本特开2006-28572号公报
非专利文献
非专利文献1:J.A.M.Ammerlaan et al.,“Chemical vapor deposition oftungsten by H2reduction of WCl6”,Applied Surface Science 53(1991),pp.24-29
发明内容
发明要解决的问题
然而,通过CVD、ALD形成钨膜时,对于层间绝缘膜等氧化膜的密合力差且孵育时间也变长,因而难以成膜。因此,使用TiN膜那样的Ti系材料膜作为基底膜。由此,实现密合性和嵌入性良好的钨膜。
然而,伴随着近期的器件的微细化、复杂化,即使使用TiN膜等基底膜也无法充分确保钨膜的密合性和嵌入性。
因此,本发明的课题在于,提供钨膜的成膜方法,即使器件微细化、复杂化也可以通过使用氯化钨气体作为原料气体的ALD法,以良好的嵌入性形成具有良好的密合性的钨膜。
用于解决问题的方案
本发明人等对即使设置基底膜也会由于器件的微细化和复杂化而使钨膜的密合性和嵌入性降低的原因进行了调查。其结果,得到了其原因为以下方面的结论。即,氯化钨气体具有蚀刻构成TiN膜等基底膜的材料的性质,伴随着器件的复杂化而钨原料气体的所需量增加时,TiN膜等基底膜的蚀刻量有增加的倾向,而且伴随着器件的微细化,从布线的低电阻化的观点出发,对基底膜进行薄膜化。因此,伴随着器件的微细化或复杂化,残留的基底膜的膜厚变得比用于确保钨膜的密合性和嵌入性所需的膜厚还薄。
因此,进一步进行了研究的结果发现:通过先于利用ALD法的主钨膜的成膜,在使具有蚀刻作用的WCl6气的供给量少于主钨膜成膜时的状态下,利用CVD或ALD形成初始钨膜,从而可以缓解对基底膜的蚀刻作用而确保基底膜所需的厚度,从而完成了本发明。
即,本发明提供钨膜的成膜方法,其特征在于,其为使用作为钨原料气体的氯化钨气体和还原氯化钨气体的还原气体对被处理基板形成钨膜的成膜方法,所述被处理基板配置于保持在减压气氛下的腔室内且表面形成有基底膜,所述成膜方法具备如下工序:主钨膜成膜工序:以间隔前述腔室内的吹扫的方式依次向前述腔室内供给前述氯化钨气体和前述还原气体来形成主钨膜;以及、初始钨膜成膜工序:先于前述主钨膜成膜工序,使前述氯化钨气体的供给量少于前述主钨膜成膜工序,以间隔吹扫气体的供给的方式依次向前述腔室内供给前述氯化钨气体和前述还原气体,或者同时向前述腔室内供给前述氯化钨气体和前述还原气体,从而在前述基底膜上形成初始钨膜。
优选以形成前述初始钨膜时的前述腔室内的前述氯化钨气体的分压成为1Torr以下的方式供给前述氯化钨气体,更优选以形成前述初始钨膜时的前述腔室内的前述氯化钨气体的分压变为0.1Torr以下的方式供给前述氯化钨气体。
形成前述初始钨膜时,优选使前述氯化钨气体的供给量斜线上升(rampup)直至设定值。
将前述初始钨膜的膜厚设为1nm以上。该情况下,优选根据形成前述主钨膜时的氯化钨气体的供给量而改变前述初始钨膜的膜厚。
前述初始钨膜可以为使氯化钨气体的供给量不同而形成的2阶段以上的膜。
前述初始钨膜和前述主钨膜的成膜处理时,优选的是,前述被处理基板的温度为300℃以上,前述腔室内的压力为5Torr以上。
另外,作为前述氯化钨,可以使用WCl6、WCl5、WCl4中的任一者。作为还原气体,可以优选使用H2气、SiH4气、B2H6气、NH3气中的至少1种。
作为前述基底膜,可以使用具有钛系材料膜或钨化合物膜的基底膜。
另外,本发明提供一种存储介质,其特征在于,其为存储有在计算机上运转且用于控制成膜装置的程序的存储介质,前述程序在执行时使计算机控制前述成膜装置以进行上述钨膜的成膜方法。
发明的效果
根据本发明,在形成有基底膜的被处理基板上形成钨膜时,先于以间隔腔室内的吹扫的方式依次向腔室供给氯化钨气体和还原气体来形成主钨膜,使氯化钨气体的供给量少于前述主钨膜成膜工序,从而形成初始钨膜。形成初始钨膜时的氯化钨气体的供给量少,因此对初始钨膜本身的基底膜进行蚀刻的量少且形成氯化钨气体的供给量多的主钨膜时,初始钨膜对于基底膜起到作为氯化钨气体的阻隔的作用。因此,能够通过初始钨膜抑制基底膜的蚀刻。因此,即使在由于因器件的微细化导致布线低电阻化而基底膜被薄膜化的情况下、应对器件的复杂化而增加氯化钨气体的供给量的情况下,也可以残留所需量的基底膜,以良好的嵌入性形成具有良好的密合性的钨膜。
附图说明
图1为示出用于实施本发明的钨膜的成膜方法的成膜装置的一例的截面图。
图2为本发明的实施方式的钨膜成膜方法的流程图。
图3为示意性示出本发明的本实施方式的钨膜成膜方法的工序的工序截面图。
图4为示出在钨膜的成膜初期作为基底膜的TiN膜产生蚀刻反应的区域的图。
图5为示出WCl6气的供给时间与TiN膜的每1个循环的蚀刻量的关系的图。
图6为示出载气(carrier gas)N2流量与TiN膜的每1个循环的蚀刻量的关系的图。
图7为示出形成初始钨膜时的循环数与在其上形成主钨膜时的TiN膜的蚀刻量的关系的图。
图8为示出初始钨膜的膜厚与TiN膜的蚀刻量的关系的图,为示出初始钨膜+主钨膜中WCl6气的供给量为通常的情况、初始钨膜+主钨膜中WCl6气的供给量多的情况、仅初始钨膜的情况的图。
图9为示出形成初始钨膜和主钨膜时的气体供给顺序的一例的图。
图10为示出形成初始钨膜和主钨膜时的气体供给顺序的其他例子的图。
图11为示出初始钨膜的成膜中使WCl6气斜线上升时的设置于WCl6气供给配管的压力计的压力值的图。
附图标记说明
1:腔室
2:基座
3:喷头
4:排气部
5:气体供给机构
6:控制部
51:WCl6气供给机构
52:第一H2气供给源
53:第二H2气供给源
54:第一N2气供给源
55:第二N2气供给源
61:WCl6气供给管线
62:第一H2气供给管线
63:第二H2气供给管线
66:第一连续N2气供给管线
67:第一闪蒸吹扫管线
68:第二连续N2气供给管线
69:第二闪蒸吹扫管线
73、74、75、76、77、78、79、102、103:开闭阀
91:成膜原料罐
100:成膜装置
101:真空配管
W:半导体晶圆
具体实施方式
以下,参照附图对本发明的实施方式进行具体说明。
<成膜装置的例子>
图1为示出本发明的钨膜的成膜方法的实施中使用的成膜装置的一例的截面图。该成膜装置构成为能够进行ALD成膜和CVD成膜这两者的成膜模式的装置。
成膜装置100具有:腔室1;基座2:其用于在腔室1内水平地支撑作为被处理基板的半导体晶圆(以下简单记作晶圆)W;喷头3:其用于向腔室1内以喷淋状供给处理气体;排气部4:其对腔室1的内部进行排气;处理气体供给机构5:其对喷头3供给处理气体;和控制部6。
腔室1由铝等金属构成且具有大致圆筒状。在腔室1的侧壁形成有用于输入输出晶圆W的输入输出口11,输入输出口11为能够由闸阀12开闭。在腔室1的主体上设置有截面呈矩形状的圆环状的排气管道13。排气管道13沿着内周面形成有狭缝13a。另外,在排气管道13的外壁形成有排气口13b。在排气管道13的上表面以堵塞腔室1的上部开口的方式设置有顶壁14。顶壁14与排气管道13之间被密封环15气密地密封。
基座2呈与晶圆W对应的大小的圆板状,由支撑构件23支撑。该基座2由氮化铝(AlN)等陶瓷材料、铝、镍基合金等金属材料构成,在内部埋入用于加热晶圆W的加热器21。加热器21由加热器电源(未作图示)供电而发热。而且,通过利用设置于基座2的上表面的晶圆载置面附近的热电偶(未作图示)的温度信号控制加热器21的功率,从而将晶圆W控制成规定的温度。
在基座2以覆盖晶圆载置面的外周区域和基座2的侧面的方式设置有由氧化铝等陶瓷形成的盖构件22。
支撑基座2的支撑构件23从基座2的底面中央贯通被形成于腔室1的底壁的孔部而向腔室1的下方延伸,其下端与升降机构24连接,通过升降机构24,基座2借助支撑构件23可以在图1所示的处理位置和其下方的用单点虚线所示的能够输送晶圆的输送位置之间升降。另外,在支撑构件23的腔室1的下方位置安装有凸缘部25,在腔室1的底面与凸缘部25之间,设置有将腔室1内的气氛与外界气体区分且伴随着基座2的升降运转而伸缩的波纹管26。
在腔室1的底面附近,以从升降板27a向上方突出的方式设置有3根(仅图示出2根)的晶圆支撑销27。晶圆支撑销27能够通过设置于腔室1的下方的升降机构28借助升降板27a而升降,能够插入被设置于位于输送位置的基座2的贯通孔2a而相对于基座2的上表面突出或退回。如此,通过使晶圆支撑销27升降,在晶圆输送机构(未作图示)与基座2之间进行晶圆W的交接。
喷头3为金属制,以与基座2相对的方式设置,具有与基座2大致相同的直径。喷头3具有:固定于腔室1的顶壁14的主体部31、和与主体部31下方连接的喷淋板32。在主体部31与喷淋板32之间形成有气体扩散空间33,以贯通主体部31和腔室1的顶壁14的中央的方式设置的气体导入孔36与该气体扩散空间33连接。在喷淋板32的周缘部形成有向下方突出的环状突起部34,在喷淋板32的环状突起部34的内侧的平坦面形成有气体喷出孔35。
在基座2存在于处理位置的状态下,在喷淋板32与基座2之间形成处理空间37,环状突起部34与基座2的盖构件22的上表面接近而形成有环状间隙38。
排气部4具备:与排气管道13的排气口13b连接的排气配管41;和与排气配管41连接的具有真空泵、压力控制阀等的排气机构42。在进行处理时,腔室1内的气体通过狭缝13a而达到排气管道13,从排气管道13利用排气部4的排气机构42通过排气配管41进行排气。
处理气体供给机构5具有:供给作为钨原料气体即氯化钨的WCl6气的WCl6气供给机构51;供给作为主要还原气体的H2气的第一H2气供给源52;供给作为添加还原气体的H2气的第二H2气供给源53;供给作为吹扫气体的N2气的第一N2气供给源54和第二N2气供给源55,进而具有:从WCl6气供给源51延伸的WCl6气供给管线61;从第一H2气供给源52延伸的第一H2气供给管线62;从第二H2气供给源53延伸的第二H2气供给管线63;从第一N2气供给源54延伸且向WCl6气供给管线61侧供给N2气的第一N2气供给管线64;和从第二N2气供给源55延伸且向第一H2气供给管线62侧供给N2气的第二N2气供给管线65。
第一N2气供给管线64分支为利用ALD法的成膜中时常供给N2气的第一连续N2气供给管线66、和仅吹扫工序时供给N2气的第一闪蒸吹扫管线67。另外,第二N2气供给管线65分支为利用ALD法的成膜中时常供给N2气的第二连续N2气供给管线68、和仅吹扫工序时供给N2气的第二闪蒸吹扫管线69。第一连续N2气供给管线66以及第一闪蒸吹扫管线67与第一连接管线70连接;第一连接管线70与WCl6气供给管线61连接。另外,第二H2气供给管线63、第二连续N2气供给管线68以及第二闪蒸吹扫管线69与第二连接管线71连接,第二连接管线71与第一H2气供给管线62连接。WCl6气供给管线61与第一H2气供给管线62合流至合流配管72,合流配管72与上述气体导入孔36连接。
在WCl6气供给管线61、第一H2气供给管线62、第二H2气供给管线63、第一连续N2气供给管线66、第一闪蒸吹扫管线67、第二连续N2气供给管线68和第二闪蒸吹扫管线69的最下游侧分别设置有ALD时用于切换气体的开闭阀73、74、75、76、77、78、79。另外,在第一H2气供给管线62、第二H2气供给管线63、第一连续N2气供给管线66、第一闪蒸吹扫管线67、第二连续N2气供给管线68和第二闪蒸吹扫管线69的开闭阀的上游侧分别设置有作为流量控制器的质量流量控制器82、83、84、85、86、87。进而,在WCl6气供给管线61和第一H2气供给管线62以能够在短时间内供给所需的气体的方式分别设置有缓冲罐80、81。
WCl6气供给机构51具有收纳WCl6的成膜原料罐91。WCl6在常温下为固体,在成膜原料罐91内收纳有固体状的WCl6。在成膜原料罐91的周围设置有加热器91a,将罐91内的成膜原料加热至适当的温度,使WCl6升华。上述WCl6气供给管线61从上方插入到罐91内。
另外,WCl6气供给机构51具有:从上方插入到成膜原料罐91内的载气配管92;用于向载气配管92供给作为载气的N2气的载气N2气供给源93;与载气配管92连接的作为流量控制器的质量流量控制器94;以及质量流量控制器94的下游侧的开闭阀95a和95b;设置于WCl6气供给管线61的成膜原料罐91的附近的开闭阀96a和96b;以及流量计97。在载气配管92中,开闭阀95a设置于质量流量控制器94的正下方位置,开闭阀95b设置于载气配管92的插入端侧。另外,开闭阀96a和96b以及流量计97从WCl6气供给管线61的插入端起以开闭阀96a、开闭阀96b、流量计97的顺序配置。
以将载气配管92的开闭阀95a与开闭阀95b之间的位置、与WCl6气供给管线61的开闭阀96a与开闭阀96b之间的位置连接的方式设置有旁通配管98,旁通配管98中安装有开闭阀99。而且,通过关闭开闭阀95b和96a、打开开闭阀99、95a和96b,可以将来自载气N2气供给源93的N2气经过载气配管92、旁通配管98供给至WCl6气供给管线61,从而吹扫WCl6气供给管线61。
真空配管101的一端与WCl6气供给管线61中的流量计97的下游位置连接,真空配管101的另一端与排气配管41连接。在真空配管101的WCl6气供给管线61附近位置和排气配管41附近位置分别设置有开闭阀102和103。另外,在WCl6气供给管线61中的真空配管101连接位置的下游侧设置有开闭阀104。而且,通过在关闭开闭阀104、99、95a、95b的状态下打开开闭阀102、103、96a、96b,可以将成膜原料罐91内通过排气机构42进行真空排气。
控制部6具有:具备控制各构成部、具体而言为阀、电源、加热器、泵等的微处理器(计算机)的过程控制器;用户界面;和存储部。成膜装置100的各构成部为与过程控制器电连接而被控制的构成。用户界面与过程控制器连接,由操作员为了管理成膜装置100的各构成部而进行指令的输入操作等的键盘、使成膜装置的各构成部的运行情况可视化而进行显示的显示器等形成。存储部也与过程控制器连接,存储部中存储有:用于利用过程控制器的控制实现成膜装置100中执行的各种处理的控制程序、用于根据处理条件而使成膜装置100的各构成部执行规定的处理的控制程序即处理制程、各种数据库等。处理制程存储于存储部中的存储介质(未作图示)。存储介质可以为硬盘等固定地设置的介质,也可以为CDROM、DVD、半导体存储器等可移动的介质。另外,也可以从其他装置借助例如专用电路适当传输制程。根据需要,由来自用户界面的指示等将规定的处理制程从存储部呼出而在过程控制器中执行,从而在过程控制器的控制下进行成膜装置100中所期望的处理。
<成膜方法>
接着,对使用以上那样构成的成膜装置100进行的钨膜的成膜方法的实施方式进行说明。
(成膜方法的概要)
最初,对成膜方法的概要进行说明。
本实施方式的成膜方法应用于对在具有微细的凹部的绝缘膜的表面形成有TiN膜等基底膜的晶圆形成钨膜的情况。
图2为本实施方式的钨膜成膜方法的流程图,图3为示意性示出本实施方式的钨膜成膜方法的工序的工序截面图。
最初,如图3的(a)所示,准备在SiO2膜等绝缘膜201上形成有基底膜202的晶圆W(工序1)。此处,简便起见,以平面状描绘绝缘膜201和基底膜202,但实际上在绝缘膜201形成有微细且复杂形状的凹部,沿着这样的凹部形成基底膜202。
作为基底膜202,可以举出:TiN膜、TiSiN膜、Ti硅化物膜、Ti膜、TiON膜、TiAlN膜等钛系材料膜。另外,作为基底膜202,还可以举出:WN膜、WSix膜、WSiN膜等钨系化合物膜。另外,通过将这些基底膜202设置于绝缘膜201上,可以以良好的密合性形成钨膜。
使用TiN膜作为基底膜202、在其上通过ALD法形成钨膜时,以间隔腔室1内的吹扫的方式依次向腔室1内供给作为氯化钨气体的WCl6气和作为还原气体的H2。上述情况下,如图4所示那样,成膜初期在基本未形成钨膜的区域中或成膜量微小的区域中,WCl6气直接供给至TiN膜,在TiN膜和WCl6气之间产生以下(1)式所示的蚀刻反应。
TiN(s)+WCl6(g)→TiCl4(g)+WClx(g)···(1)
使用其他钛系材料膜和钨化合物膜作为基底膜202的情况也同样地利用WCl6气作为氯化钨气体进行蚀刻。
图5为示出WCl6气的供给时间与TiN膜的每1个循环的蚀刻量的关系的图;图6为示出载气N2流量与TiN膜的每1个循环的蚀刻量的关系的图。由此可知,随着WCl6的供给时间和载气N2流量增加,TiN膜的蚀刻量变多。即可知,作为钨原料的氯化钨的供给量越增加,作为基底膜的TiN膜的蚀刻量越增加。
因此,由于器件的凹部复杂化而钨原料气体的所需量增加,因此有基底膜202的蚀刻量增加的倾向。另外,伴随着器件的微细化的布线的低电阻化的观点出发,基底膜202的膜厚薄膜化成为5nm以下例如3nm左右。因此,伴随着器件的微细化和复杂化,在基底膜202上直接形成通常的钨膜时,由于基底膜202被蚀刻,因此残留的基底膜202的厚度变得比为了确保钨膜的密合性和嵌入性所需的膜厚(例如1nm)还薄。因此,无法密合性良好地形成钨膜,嵌入性也变差。
因此,本实施方式中,如图3的(b)所示那样,在基底膜202上,在减少WCl6气的供给量的状态下形成初始钨膜203(工序2),然后,如图3的(c)所示那样,在使WCl6气的供给量上升至所需量的状态下在初始钨膜203上形成主钨膜204(工序3)。
即,初始钨膜203以使蚀刻基底膜202的WCl6气的供给量少于形成主钨膜204时的供给量的方式进行成膜。
如此,形成初始钨膜203时的WCl6气的供给量少,因此,初始钨膜203本身蚀刻基底膜202的量少并且在形成WCl6气的供给量多的主钨膜204时,初始钨膜203对基底膜202起到作为WCl6气的阻隔的作用。因此,能够通过初始钨膜203抑制基底膜202的蚀刻。
参照图7说明该情况。图7示出形成初始钨膜时的循环数与在其上形成主钨膜时的TiN膜的蚀刻量的关系。初始钨膜成膜时的WCl6气的供给量为3sccm(分压:0.02Torr),主钨膜成膜时的WCl6气的供给量为30sccm(分压:1Torr)。另外,TiN膜的膜厚为3nm。如图7所示那样,在形成初始钨膜的状态下,TiN膜的蚀刻量为0.6nm,没有初始钨膜时,TiN膜的蚀刻量也变为2.35nm。与此相对,可以确认,随着初始钨膜的循环数(即,膜厚)增加,TiN膜的蚀刻量减少,循环数为120次(膜厚3nm左右)以上时可以使TiN膜的蚀刻量为1nm以下。
对于主钨膜204,为了得到良好的嵌入性而必须使阶梯覆盖率良好。因此,必须以间隔腔室1内的吹扫的方式依次供给WCl6气和H2气,通过ALD法或基于其的顺序进行成膜。
另一方面,对于初始钨膜203,仅通过使WCl6气供给量少于形成主钨膜204时,也能够同样地以间隔腔室1内的吹扫的方式依次供给WCl6气和H2气,通过ALD法或基于其的顺序进行成膜。然而,初始钨膜203是为了抑制由WCl6气导致的基底膜202的蚀刻而形成的,不要求主钨膜204那样的嵌入性,因此,也可以同时向腔室1内供给WCl6气和H2气而通过CVD法成膜。
形成初始钨膜203时的WCl6气的供给量优选为能够充分抑制TiN膜等基底膜202的蚀刻的量。WCl6气的供给量本身的适合范围根据腔室1的大小等而变化,因此作为WCl6气的供给量的指标,优选使用腔室1内的WCl6气的分压;从充分抑制基底膜202的蚀刻的观点出发,WCl6气的分压优选为1Torr(133.3Pa)以下,更优选为0.1Torr(13.33Pa)以下。进而,形成初始钨膜203时,在其成膜初始,优选将WCl6气的供给量从最少的量增大至规定量。由此,可以进一步减少由WCl6气导致蚀刻基底膜202的蚀刻量。为了使WCl6气的供给量斜线上升,也可以使成膜原料罐或配管的压力斜线上升。
初始钨膜203的厚度也取决于形成主钨膜204时的WCl6气的供给量(分压),优选为1nm以上。形成主钨膜204时的WCl6气的供给量(分压)变多时,WCl6气对于基底膜202的作用变大,因此随着供给量增加而必须加厚初始钨膜203的厚度。
参照图8说明该情况。图8示出初始钨膜的膜厚与TiN膜的蚀刻量的关系,示出初始钨膜+主钨膜中WCl6气的供给量为通常的情况、初始钨膜+主钨膜中WCl6气的供给量多的情况、仅初始钨膜的情况。初始钨膜成膜时的WCl6气的供给量为3sccm(分压:0.02Torr),主钨膜成膜时的WCl6气的供给量在“供给量通常”下为30sccm(分压:1Torr)。另外,在高供给量下为50sccm(分压:2Torr)。另外,TiN膜的膜厚为3nm。如图8所示那样,确认到为了使TiN膜的蚀刻量为1nm以下而所需的初始钨膜的厚度,在WCl6气的供给量为通常的情况下为3nm,而WCl6气在高供给量下为5nm,由于形成主钨膜时的WCl6气的供给量增加而必须加厚初始钨膜。
但是,从金属布线嵌入性的观点出发,初始钨膜203的厚度优选为10nm以下。
初始钨膜203可以以使WCl6气的供给量变化的多阶段的膜的形式构成。减少WCl6气的供给量时,阶梯覆盖率低,因此在复杂形状的凹部产生无法充分形成膜的部分。对于该部分,为了极力抑制主钨膜204成膜时的WCl6气的进攻,作为初始钨膜203,可以使用:最大限度减少WCl6气的供给量的第一阶段后、进行使WCl6气供给量增加的第二阶段而得到的初始钨膜;或进行进一步增大WCl6气的供给量的第3阶段以后而得到的初始钨膜。
需要说明的是,作为初始钨膜203和主钨膜204的成膜中使用的氯化钨,优选WCl6,除此之外还可以使用WCl5、WCl4。它们也显示出与WCl6基本相同的行为。另外,与WCl6同样地为蚀刻TiN膜等基底膜202的气体,初始钨膜203有效地发挥作用。另外,使用WCl5、WCl4作为氯化钨气体时,初始钨膜203优选的厚度和优选的分压也与使用WCl6的情况同样。
另外,作为还原气体,不限定于H2气,只要为包含氢的还原性的气体即可,除了H2气之外,还可以使用SiH4气、B2H6气、NH3气等。也可以供给H2气、SiH4气、B2H6气和NH3气中的2种以上。另外,也可以使用这些以外的其他还原气体例如PH3气、SiH2Cl2气。从进一步降低膜中的杂质而得到低电阻值的观点出发,优选使用H2气。
作为吹扫气体、载气,可以使用N2气、Ar气等非活性气体。
形成初始钨膜203和主钨膜204时的晶圆温度优选为300℃以上。另外,腔室内压力优选为20~100Torr(2666~13330Pa)。
<使用图1的成膜装置的具体的顺序>
接着,对使用了图1的成膜装置的情况下具体的顺序进行说明。
首先,在使基座2下降至输送位置的状态下打开闸阀12,通过输送装置(未作图示),如图3的(a)所示那样,将在绝缘膜201上形成有TiN膜那样的基底膜202的晶圆W借助输入/输出口11输入至腔室1内,载置于通过加热器21加热至规定温度的基座2上,使基座2上升至处理位置,将腔室1内抽真空直至规定的真空度,并且关闭开闭阀104、95a、95b、99,打开开闭阀102、103、96a,96b,借助真空配管101对成膜原料罐91内也同样地进行抽真空,然后打开开闭阀76和开闭阀78,关闭开闭阀73、74、75、77、79,从第一N2气供给源54和第二N2气供给源55经过第一连续N2气供给管线66和第二连续N2气供给管线68向腔室1内供给N2气使压力上升,使基座2上的晶圆W的温度稳定。
然后,腔室1内达到规定压力,然后关闭开闭阀102、103,打开开闭阀104、95a、95b,提高成膜原料罐91内的压力,使作为钨原料的WCl6气为能够供给的状态。
在该状态下,按以下所述那样的有顺序的方式供给作为成膜原料气体的WCl6气、作为还原气体的H2气、作为吹扫气体的N2气,如上述那样,使WCl6气的供给量(分压)变化,从而连续地进行初始钨膜203的成膜和主钨膜204的成膜。
图9为示出形成初始钨膜203和主钨膜204时的气体供给顺序的一例的图。
最初,在打开开闭阀76和开闭阀78的状态下,从第一N2气供给源54和第二N2气供给源55经过第一连续N2气供给管线66和第二连续N2气供给管线68持续供给N2气,进而打开开闭阀73和开闭阀75,从而从WCl6气供给机构51经过WCl6气供给管线61向腔室1内的处理空间37供给WCl6气,并且经过从第二H2气供给源53延伸的第二H2气供给管线63,向腔室1内供给作为添加还原气体的H2气(添加H2气)(步骤S1)。此时,WCl6气在缓冲罐80中暂时储存后向腔室1内供给。
通过该步骤S1,使WCl6吸附于晶圆W表面。此时,由于同时添加的H2的存在而将WCl6活化。
接着,在借助第一连续N2气供给管线66和第二连续N2气供给管线68继续供给N2气的状态下,关闭开闭阀73、75而停止WCl6气和H2气,并且打开开闭阀77、79,从第一闪蒸吹扫管线67和第二闪蒸吹扫管线69也供给N2气(闪蒸吹扫N2气),通过大流量的N2气对处理空间37的剩余的WCl6气等进行吹扫(步骤S2)。
接着,关闭开闭阀77、79而停止来自第一闪蒸吹扫管线67和第二闪蒸吹扫管线69的N2气,在继续借助第一连续N2气供给管线66和第二连续N2气供给管线68的N2气的供给不变的状态下,打开开闭阀74,从第一H2气供给源52经过第一H2气供给管线62向处理空间37供给作为主要还原气体的H2气(主要H2气)(步骤S3)。此时,H2气在缓冲罐81中暂时储存后向腔室1内供给。
通过该步骤S3,吸附于晶圆W上的WCl6被还原。此时的主要H2气的流量设为充分产生还原反应的量,以比步骤S1的添加H2气的流量多的流量进行供给。
接着,在借助第一连续N2气供给管线66和第二连续N2气供给管线68继续供给N2气的状态下,关闭开闭阀74而停止来自第一H2气供给管线62的H2气的供给,并且打开开闭阀77、79,从第一闪蒸吹扫管线67和第二闪蒸吹扫管线69也供给N2气(闪蒸吹扫N2气),与步骤S2同样地,通过大流量的N2气,对处理空间37的剩余的H2气进行吹扫(步骤S4)。
对于以上的步骤S1~S4,在短时间内进行1个循环,从而形成薄的钨单位膜,重复多个循环的这些步骤的循环,从而形成所期望的膜厚的初始钨膜203和主钨膜204。此时的初始钨膜203和主钨膜204的膜厚可以根据上述循环的重复数来控制。
步骤S1时,与WCl6气同时地从第二H2气供给管线63供给添加还原气体使WCl6气活化,从而容易产生后续的步骤S3时的成膜反应,可以维持高的阶梯覆盖率且加厚每1个循环的沉积膜厚而增大成膜速度。此时的H2气的供给量必须为能够抑制CVD反应且维持ALD反应的程度,优选为100~500sccm(mL/分钟)。需要说明的是,如图10所示那样,也可以在步骤S2~S4的期间时常供给来自第二H2气供给管线63的添加H2气。由此,供给WCl6气时,供给作为添加还原气体的添加H2气,可以使WCl6气活化。从抑制CVD反应且维持ALD反应的观点出发,此时的H2气的供给量优选为10~500sccm(mL/分钟)。但是,即使不存在添加H2气也能够良好地产生成膜反应的情况下,也可以不供给添加H2气。
以上的顺序中,在步骤S1~S4之间,从第一连续N2气供给管线66、第二连续N2气供给管线68至WCl6气供给管线61和第一H2气供给管线62时常流通作为吹扫气体的N2气,且在步骤S1和步骤S3中,间歇地供给WCl6气和H2气,因此可以使处理空间37的气体的置换效率良好。另外,步骤S2和步骤S4中的处理空间37的吹扫时,也附加来自第一闪蒸吹扫管线67和第二闪蒸吹扫管线69的N2气,因此可以使处理空间37中的气体的置换效率更良好。由此,可以使钨单位膜的膜厚控制性良好。
图1的成膜装置中,在WCl6气供给管线61和第一H2气供给管线62中分别设有缓冲罐80和81,因此容易在短时间内供给WCl6气和H2气,即便在1个循环短的情况下,也可以容易在步骤S1和S3中供给所需量的WCl6气和H2气。
形成初始钨膜203时,从进一步减少由WCl6气导致蚀刻基底膜202的蚀刻量的观点出发,如上述那样,在该成膜初期,优选将步骤S1中的WCl6气的供给量从最少的量斜线上升至规定量,此时,缓慢增加向成膜原料罐91供给的载气即N2气的量,从而使成膜原料罐91和WCl6气供给配管61的压力斜线上升。图11为设置于WCl6气供给配管61的压力计97的压力值,如该图所示那样,在初始钨膜203的成膜初期,使压力计97的值缓慢上升,在100秒左右时作为设定值。
需要说明的是,如上述那样,初始钨膜203不要求主钨膜204那样的嵌入性,因此可以通过CVD法进行成膜。该情况下,可以同时进行来自WCl6气供给配管61的WCl6气的供给和来自第一H2气供给管线62的H2气的供给。
·成膜条件
以下,示出初始钨膜203和主钨膜204的优选成膜条件。
(1)初始钨膜203
i)ALD
压力:20~100Torr(2666~13330Pa)
温度:300℃以上(更优选450~600℃)
WCl6气流量:0.1~10sccm(mL/分钟)
(载气流量:1~1000sccm(mL/分钟))
WCl6气分压(已述):1Torr(133.3Pa)以下(更优选0.1Torr(13.33Pa)以下)
主要H2气流量:10~5000sccm(mL/分钟)
连续供给N2气流量:10~10000sccm(mL/分钟)
(第一和第二连续N2气供给管线66、68)
闪蒸吹扫N2气流量:100~100000sccm(mL/分钟)
(第一和第二闪蒸吹扫管线67、69)
步骤S1的时间(每1次):0.01~5秒
步骤S3的时间(每1次):0.1~5秒
步骤S2、S4的时间(吹扫)(每1次):0.1~5秒
步骤S1的添加H2气供给时间(每1次):0.01~0.3秒
成膜原料罐的加温温度:130~190℃
ii)CVD
压力:20~100Torr(2666~13330Pa)
温度:300℃以上(优选450~600℃)
WCl6气流量:0.1~10sccm(mL/分钟)
(载气流量:1~1000sccm(mL/分钟))
WCl6气分压(已述):1Torr(133.3Pa)以下(优选0.1Torr(13.33Pa)以下)
主要H2气流量:10~5000sccm(mL/分钟)
N2气流量:10~10000sccm(mL/分钟)
(2)主钨膜204
压力:5~50Torr(666.5~6665Pa)
温度:300℃以上(优选450~600℃)
WCl6气流量:3~60sccm(mL/分钟)
(载气流量:100~2000sccm(mL/分钟))
WCl6气分压:0.5~10Torr(66.7~1333Pa)
主要H2气流量:2000~8000sccm(mL/分钟)
添加H2气流量(已述):100~500sccm(mL/分钟)
连续供给N2气流量:100~500sccm(mL/分钟)
(第一和第二连续N2气供给管线66、68)
闪蒸吹扫N2气流量:500~3000sccm(mL/分钟)
(第一和第二闪蒸吹扫管线67、69)
步骤S1的时间(每1次):0.01~5秒
步骤S3的时间(每1次):0.1~5秒
步骤S2、S4的时间(吹扫)(每1次):0.1~5秒
步骤S1的添加H2气供给时间(每1次):0.01~0.3秒
成膜原料罐的加温温度:130~170℃
<实施方式的效果>
根据本实施方式,在形成有基底膜202的晶圆W上形成钨膜时,先于使用以WCl6气为代表的氯化钨气体和以H2气为代表的还原气体通过ALD法或基于其的方法形成主钨膜204,使氯化钨气体的供给量低于主钨膜成膜工序,通过ALD法或CVD法形成初始钨膜203。形成初始钨膜203时的氯化钨气体的供给量少,因此,初始钨膜203本身对基底膜202进行蚀刻的量少、并且在形成氯化钨气体的供给量多的主钨膜204时,初始钨膜203对基底膜202起到作为氯化钨气体的阻隔的作用。因此,通过初始钨膜203能够抑制基底膜202的蚀刻。因此,即使在由于因器件的微细化导致布线低电阻化而基底膜202被薄膜化的情况下、应对器件的复杂化而增加氯化钨气体的供给量的情况下,也可以残留所需量的基底膜202,以良好的嵌入性形成具有良好的密合性的钨膜。
<其他应用>
以上,对本发明的实施方式进行了说明,但本发明不限定于上述实施方式,可以进行各种变形。例如,上述实施方式中,作为被处理基板以半导体晶圆为例进行了说明,半导体晶圆可以为硅,也可以为GaAs、SiC、GaN等化合物半导体,进而,不限定于半导体晶圆,也可以将本发明应用于液晶显示装置等FPD(平板显示器)中使用的玻璃基板、陶瓷基板等。

Claims (12)

1.一种钨膜的成膜方法,其特征在于,其为使用作为钨原料气体的氯化钨气体和还原氯化钨气体的还原气体对被处理基板形成钨膜的成膜方法,所述被处理基板配置于保持在减压气氛下的腔室内且表面形成有基底膜,
所述成膜方法具备如下工序:
主钨膜成膜工序:以间隔所述腔室内的吹扫的方式,依次向所述腔室内供给所述氯化钨气体和所述还原气体来形成主钨膜;以及
初始钨膜成膜工序:先于所述主钨膜成膜工序,使所述氯化钨气体的供给量少于所述主钨膜成膜工序,以间隔吹扫气体的供给的方式依次向所述腔室内供给所述氯化钨气体和所述还原气体,或者同时向所述腔室内供给所述氯化钨气体和所述还原气体,从而在所述基底膜上形成初始钨膜。
2.根据权利要求1所述的钨膜的成膜方法,其特征在于,以形成所述初始钨膜时的所述腔室内的所述氯化钨气体的分压成为1Torr以下的方式供给所述氯化钨气体。
3.根据权利要求2所述的钨膜的成膜方法,其特征在于,所述氯化钨气体的分压为0.1Torr以下。
4.根据权利要求1~权利要求3中任一项所述的钨膜的成膜方法,其特征在于,形成所述初始钨膜时,使所述氯化钨气体的供给量斜线上升直至设定值。
5.根据权利要求1~权利要求4中任一项所述的钨膜的成膜方法,其特征在于,将所述初始钨膜的膜厚设为1nm以上。
6.根据权利要求5所述的钨膜的成膜方法,其特征在于,根据形成所述主钨膜时的氯化钨气体的供给量而改变所述初始钨膜的膜厚。
7.根据权利要求1~权利要求6中任一项所述的钨膜的成膜方法,其特征在于,所述初始钨膜为使氯化钨气体的供给量不同而形成的2阶段以上的膜。
8.根据权利要求1~权利要求7中任一项所述的钨膜的成膜方法,其特征在于,所述初始钨膜和所述主钨膜的成膜处理时,所述被处理基板的温度为300℃以上,所述腔室内的压力为5Torr以上。
9.根据权利要求1~权利要求8中任一项所述的钨膜的成膜方法,其特征在于,所述氯化钨为WCl6、WCl5、WCl4中的任一者。
10.根据权利要求1~权利要求9中任一项所述的钨膜的成膜方法,其特征在于,所述还原气体为H2气、SiH4气、B2H6气、NH3气中的至少1种。
11.根据权利要求1~权利要求10中任一项所述的钨膜的成膜方法,其特征在于,所述基底膜的膜厚为5nm以下。
12.根据权利要求1~权利要求11中任一项所述的钨膜的成膜方法,其特征在于,所述基底膜具有钛系材料膜或钨化合物膜。
CN201610176793.1A 2015-03-27 2016-03-25 钨膜的成膜方法 Active CN106011777B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015065662A JP6416679B2 (ja) 2015-03-27 2015-03-27 タングステン膜の成膜方法
JP2015-065662 2015-03-27

Publications (2)

Publication Number Publication Date
CN106011777A true CN106011777A (zh) 2016-10-12
CN106011777B CN106011777B (zh) 2019-04-12

Family

ID=56976215

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610176793.1A Active CN106011777B (zh) 2015-03-27 2016-03-25 钨膜的成膜方法

Country Status (5)

Country Link
US (1) US9640404B2 (zh)
JP (1) JP6416679B2 (zh)
KR (1) KR101850201B1 (zh)
CN (1) CN106011777B (zh)
TW (1) TWI717341B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108531889A (zh) * 2017-03-02 2018-09-14 东京毅力科创株式会社 气体供给装置、气体供给方法和成膜方法
CN108531888A (zh) * 2017-03-02 2018-09-14 东京毅力科创株式会社 气体供给装置、气体供给方法和成膜方法
CN110176399A (zh) * 2018-02-21 2019-08-27 东京毅力科创株式会社 钨膜的成膜方法、成膜系统以及存储介质
CN112292476A (zh) * 2018-06-28 2021-01-29 东京毅力科创株式会社 成膜方法、成膜系统以及成膜装置
CN114958036A (zh) * 2022-06-30 2022-08-30 厦门韫茂科技有限公司 一种珠光颜料及其制备方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3187548B1 (en) * 2014-08-27 2020-08-12 Sekisui Chemical Co., Ltd. Resin composition
US10991586B2 (en) 2015-12-19 2021-04-27 Applied Materials, Inc. In-situ tungsten deposition without barrier layer
US10468263B2 (en) 2015-12-19 2019-11-05 Applied Materials, Inc. Tungsten deposition without barrier layer
JP6710089B2 (ja) * 2016-04-04 2020-06-17 東京エレクトロン株式会社 タングステン膜の成膜方法
US10214807B2 (en) 2016-06-02 2019-02-26 Lam Research Corporation Atomic layer deposition of tungsten for enhanced fill and reduced substrate attack
JP6751631B2 (ja) 2016-09-13 2020-09-09 東京エレクトロン株式会社 基板の凹部をタングステンで充填する方法
JP6865602B2 (ja) * 2017-02-22 2021-04-28 東京エレクトロン株式会社 成膜方法
JP6937604B2 (ja) 2017-04-26 2021-09-22 東京エレクトロン株式会社 タングステン膜を形成する方法
US10460987B2 (en) * 2017-05-09 2019-10-29 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor package device with integrated antenna and manufacturing method thereof
KR102404056B1 (ko) 2017-11-16 2022-05-31 삼성전자주식회사 반도체 장치의 제조 방법
JP7018748B2 (ja) 2017-11-28 2022-02-14 東京エレクトロン株式会社 成膜方法及び成膜条件の算出方法
JP7129798B2 (ja) 2018-03-16 2022-09-02 東京エレクトロン株式会社 流量制御方法及び成膜装置
JP2021522411A (ja) * 2018-04-24 2021-08-30 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated バリア層なしのタングステン堆積物
JP7233188B2 (ja) * 2018-09-20 2023-03-06 東京エレクトロン株式会社 成膜方法及び成膜装置
JP7296790B2 (ja) * 2018-09-20 2023-06-23 東京エレクトロン株式会社 成膜方法及び基板処理システム
JP7149788B2 (ja) * 2018-09-21 2022-10-07 東京エレクトロン株式会社 成膜方法及び成膜装置
US10930493B2 (en) 2018-10-29 2021-02-23 Applied Materials, Inc. Linerless continuous amorphous metal films
KR20210077797A (ko) * 2018-12-19 2021-06-25 엔테그리스, 아이엔씨. 환원성 공-반응물의 존재 하에 텅스텐 또는 몰리브데넘 층을 증착시키는 방법
CN113316840A (zh) * 2019-03-28 2021-08-27 东京毅力科创株式会社 半导体装置的制造方法
JP7487538B2 (ja) 2020-04-15 2024-05-21 東京エレクトロン株式会社 タングステン膜を形成する方法及び装置、並びにタングステン膜を形成する前の中間膜の形成を行う装置
WO2022236040A1 (en) 2021-05-07 2022-11-10 Entegris, Inc. Deposition process for molybdenum or tungsten materials

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103132046A (zh) * 2011-11-25 2013-06-05 东京毅力科创株式会社 钨膜的成膜方法
US20140120723A1 (en) * 2012-10-26 2014-05-01 Xinyu Fu Methods for depositing fluorine/carbon-free conformal tungsten

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100330163B1 (ko) * 2000-01-06 2002-03-28 윤종용 반도체 장치의 텅스텐 콘택 플러그 형성 방법
US7262125B2 (en) * 2001-05-22 2007-08-28 Novellus Systems, Inc. Method of forming low-resistivity tungsten interconnects
KR100688652B1 (ko) * 2001-08-14 2007-03-02 동경 엘렉트론 주식회사 텅스텐막의 형성 방법
JP4032872B2 (ja) 2001-08-14 2008-01-16 東京エレクトロン株式会社 タングステン膜の形成方法
JP3956049B2 (ja) 2003-03-07 2007-08-08 東京エレクトロン株式会社 タングステン膜の形成方法
JP4674061B2 (ja) 2004-07-14 2011-04-20 株式会社アルバック 薄膜形成方法
JP4945937B2 (ja) * 2005-07-01 2012-06-06 東京エレクトロン株式会社 タングステン膜の形成方法、成膜装置及び記憶媒体
JP2007046134A (ja) * 2005-08-11 2007-02-22 Tokyo Electron Ltd 金属系膜形成方法及びプログラムを記録した記録媒体
TWI493058B (zh) * 2007-05-15 2015-07-21 Applied Materials Inc 鎢材料的原子層沈積法
US7772114B2 (en) * 2007-12-05 2010-08-10 Novellus Systems, Inc. Method for improving uniformity and adhesion of low resistivity tungsten film
US8053365B2 (en) * 2007-12-21 2011-11-08 Novellus Systems, Inc. Methods for forming all tungsten contacts and lines
US8058170B2 (en) * 2008-06-12 2011-11-15 Novellus Systems, Inc. Method for depositing thin tungsten film with low resistivity and robust micro-adhesion characteristics
US8551885B2 (en) * 2008-08-29 2013-10-08 Novellus Systems, Inc. Method for reducing tungsten roughness and improving reflectivity
US8975184B2 (en) * 2012-07-27 2015-03-10 Novellus Systems, Inc. Methods of improving tungsten contact resistance in small critical dimension features
JP6437324B2 (ja) * 2014-03-25 2018-12-12 東京エレクトロン株式会社 タングステン膜の成膜方法および半導体装置の製造方法
US9595470B2 (en) * 2014-05-09 2017-03-14 Lam Research Corporation Methods of preparing tungsten and tungsten nitride thin films using tungsten chloride precursor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103132046A (zh) * 2011-11-25 2013-06-05 东京毅力科创株式会社 钨膜的成膜方法
US20140120723A1 (en) * 2012-10-26 2014-05-01 Xinyu Fu Methods for depositing fluorine/carbon-free conformal tungsten

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108531889A (zh) * 2017-03-02 2018-09-14 东京毅力科创株式会社 气体供给装置、气体供给方法和成膜方法
CN108531888A (zh) * 2017-03-02 2018-09-14 东京毅力科创株式会社 气体供给装置、气体供给方法和成膜方法
US10870919B2 (en) 2017-03-02 2020-12-22 Tokyo Electron Limited Gas supply method and film forming method
US11155923B2 (en) 2017-03-02 2021-10-26 Tokyo Electron Limited Gas supply device, gas supply method and film forming method
CN110176399A (zh) * 2018-02-21 2019-08-27 东京毅力科创株式会社 钨膜的成膜方法、成膜系统以及存储介质
CN110176399B (zh) * 2018-02-21 2023-05-05 东京毅力科创株式会社 钨膜的成膜方法、成膜系统以及存储介质
CN112292476A (zh) * 2018-06-28 2021-01-29 东京毅力科创株式会社 成膜方法、成膜系统以及成膜装置
CN114958036A (zh) * 2022-06-30 2022-08-30 厦门韫茂科技有限公司 一种珠光颜料及其制备方法
CN114958036B (zh) * 2022-06-30 2023-12-01 丰田自动车株式会社 一种珠光颜料及其制备方法

Also Published As

Publication number Publication date
TWI717341B (zh) 2021-02-01
JP6416679B2 (ja) 2018-10-31
US20160284553A1 (en) 2016-09-29
TW201701336A (zh) 2017-01-01
US9640404B2 (en) 2017-05-02
KR20160115781A (ko) 2016-10-06
CN106011777B (zh) 2019-04-12
KR101850201B1 (ko) 2018-04-18
JP2016186094A (ja) 2016-10-27

Similar Documents

Publication Publication Date Title
CN106011777A (zh) 钨膜的成膜方法
TWI713523B (zh) 金屬膜之成膜方法
TWI703620B (zh) 鎢膜之成膜方法及成膜裝置
KR101912995B1 (ko) 금속막의 스트레스 저감 방법 및 금속막의 성막 방법
KR101977460B1 (ko) 텅스텐막의 성막 방법 및 기억 매체
JP6554418B2 (ja) タングステン膜の成膜方法および成膜装置
TWI683022B (zh) 成膜方法、鎢膜之成膜方法及記憶媒體
CN105839068B (zh) 钨膜的成膜方法
JP6865602B2 (ja) 成膜方法
JP6608026B2 (ja) タングステン膜の成膜方法および成膜装置
KR20200041785A (ko) 성막 방법 및 기판 처리 시스템
JP2021008642A (ja) 基板処理方法及び基板処理装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant