CN106006581A - 一种溶剂热制备荧光氮化碳量子点的方法 - Google Patents

一种溶剂热制备荧光氮化碳量子点的方法 Download PDF

Info

Publication number
CN106006581A
CN106006581A CN201610336140.5A CN201610336140A CN106006581A CN 106006581 A CN106006581 A CN 106006581A CN 201610336140 A CN201610336140 A CN 201610336140A CN 106006581 A CN106006581 A CN 106006581A
Authority
CN
China
Prior art keywords
carbon nitride
quantum dot
carbonitride
phase carbon
graphite phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610336140.5A
Other languages
English (en)
Other versions
CN106006581B (zh
Inventor
胡超凡
战岩
刘青青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201610336140.5A priority Critical patent/CN106006581B/zh
Publication of CN106006581A publication Critical patent/CN106006581A/zh
Application granted granted Critical
Publication of CN106006581B publication Critical patent/CN106006581B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0605Binary compounds of nitrogen with carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Luminescent Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开一种以三聚氰胺为原料,通过溶剂热法制备具有荧光性能的氮化碳量子点的方法,属于纳米材料技术领域。具体包括如下步骤:a)利用马弗炉在高温条件下煅烧三聚氰胺,并将产物研磨成黄色石墨相氮化碳粉末;b)将石墨相氮化碳粉末分散在醇类溶剂中,并加入一定量的碱液,超声溶解后,放入反应釜中密封,在高温条件下反应一段时间;c)待冷却至室温,真空抽滤后收集滤液,将滤液在一定截留分子量的透析袋中透析至中性,得到荧光氮化碳量子点。本发明提供的制备方法工艺简单,易于操作,成本低且环保,得到的氮化碳量子点纯度和产量较高,具有良好的分散性和稳定性且荧光强度高。在生物成像、太阳能电池等领域有着潜在的应用前景。

Description

一种溶剂热制备荧光氮化碳量子点的方法
技术领域
本发明涉及一种溶剂热制备荧光氮化碳量子点的方法,属于纳米材料技术领域。
背景技术
随着石墨烯材料的发现,层状的二维纳米材料已经被广泛地研究。由于其独特的机械性能、光学性能和电学性能,在物理、光电器件、传感器和生物成像等方面有潜在应用价值。
氮化碳和石墨烯有相似的结构,是石墨烯同类物的典型代表。材料的性能很大程度上取决于内部原子排列。单层氮化碳只有原子级别的厚度,是由碳原子和氮原子通过sp2共价键形成的有规律的平面六边形结构,层与层之间依靠微弱的范德华力。正是由于氮原子取代了碳原子的位置而未改变其他结构,因此氮化碳和石墨烯有相类似的性能。由于石墨相氮化碳粉末在醇类溶剂里面的分散性较好,使用醇类溶剂可以显著提高石墨相氮化碳粉末的分散性,使其能够在插层试剂的作用下实现充分剥离,获得分散性优良的纳米片层和量子点。与氮化碳纳米片相比,氮化碳量子点由于量子限制效应和边缘效应而产生的独特光学性质使其在生物成像和生物治疗等领域有着巨大的应用前景。
目前,根据已报道的制作石墨相氮化碳量子点方法,大致有如下分类:Zhou等人(“Chemical cleavage of layered carbon nitride with enhanced photoluminescentperformance and photoconduction”ACS Nano. 2015, 9, 12480-12487)采用自上而下的化学剥离法,在浓硫酸和二甲基甲酰中合成了具有荧光特性的石墨相氮化碳量子点。Wang等人(“g-C3N4 quantum dots : direct synthesis, upconversion properties andphotocatalytic application”Chem.Comun. 2014, 50, 10148)以尿素为原材料,通过浓硫酸和浓硝酸的热氧化法,得到了具有光催化性能的氮化碳量子点。Zhang等人(“Enhancedphoto responsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging”J.Am.Chem.Soc. 2013, 135,18-21)采用三聚氰胺为先驱体,首次利用大功率的超声法制备了具有荧光特性的石墨相氮化碳纳米片层。Cao等人(“A facile microwave-assistedfabrication of fluorescent carbon nitride quantum dots and their applicationin the detection of mercury ions” j.saa. 2015, 07, 034)以尿素和柠檬酸为原料,通过微波处理的方法得到了氮化碳量子点,并探索了在水银离子检测方面的应用。Fan等人(“A green solid-phase method for preparation of carbon nitride quantum dotsand their applications in chemiluminescent dopamine sensing”RSC Adv. 2015, 5,55158-55164)在低温条件下,以一种绿色的固相法合成了具有高强度荧光性的氮化碳量子点。通过以上方法可以成功制备出具有荧光性能的石墨相氮化碳量子点,但是依然存在反应时间长、实验过程繁琐和反应条件苛刻的缺点。此外,反应过程中大量使用了有机溶剂和强氧化剂,对人体和环境造成较大的危害;现有方法制备石墨相氮化碳量子点的产率和荧光效率仍然较低,也极大地限制了其工业化生产和应用。因此,开发出一种简单、环保且能够应用于大规模生产氮化碳量子点的方法仍然是一个挑战。
发明内容
本发明的目的是克服上述方法的不足之处,提供一种简单快捷、环保安全、高产率的氮化碳量子点的制作方法。
本发明是采用以下技术方案实现的:一种溶剂热制备荧光氮化碳量子点的方法,利用溶剂热的方法制备量子点,包括以下步骤:
(1)石墨相氮化碳粉末的制备:
将装有三聚氰胺的氧化铝瓷舟在温度为500~600℃的马弗炉中保持2~3 h,待冷却至室温,将其产物研磨成淡黄色的粉末,得到石墨相氮化碳;
(2)氮化碳量子点的制备:
A. 将步骤(1)得到的石墨相氮化碳粉末分散在醇类溶剂中,制得分散液,所配置得到的分散液中石墨相氮化碳的浓度为0.3~10 mg/l;再向该分散液中加入饱和碱液,超声混匀制得混合液,所述饱和碱液的体积与分散液的体积比为0.005~0.5。
B. 将步骤A得到的混合液通过量筒均匀地转移到反应釜中,密封;放置在温度为100~220℃的烘箱内反应6~24 h,待冷却至室温,真空抽滤后收集得到淡黄色的滤液;
C. 步骤B得到的滤液在截留分子量为8000~14000 Da的透析袋中透析至中性,除去多余的碱离子,得到氮化碳量子点分散液,干燥后得到固态氮化碳量子点。
本发明步骤(1)中升温和降温速率均为3 ℃/min;研磨所用的工具为玛瑙研钵,目的是不会损坏其结构。
本发明步骤(2)的A中所述醇类溶剂可以为无水乙醇或甲醇或乙二醇或丙三醇,能更好地分散石墨相氮化碳粉末;所述的饱和碱液为氢氧化钠或氢氧化钾或氢氧化锂的饱和水溶液,其离子尺寸小于氮化碳层间间距,能够有效地进行插层和剥离。
本发明步骤(2)的B中所述的反应釜为聚四氟乙烯内衬反应釜;所述真空抽滤所用的滤膜为有机滤膜,孔径为0.22 um,能够除去未反应完全的残留物。
本发明步骤(2)的C中透析时间为3~4天,直至中性,有效地除去多余的碱离子。
本发明步骤(2)的C中所述的干燥方法是在温度为-40~-90 ℃,气压为8~20 Pa的条件下冷冻干燥,得到固态的氮化碳量子点粉末。
综上所述,相对于现有的技术,本发明的有益效果为:本发明采用溶剂热法制备石墨相氮化碳量子点,所需醇类分散液和碱液皆为市场上方便易得的原料,并且能够有效地分散和剥离石墨相氮化碳粉末,所获得的氮化碳量子点纯度和产率(22.3%)都比较高,且具有良好的分散性、水溶解性和稳定的荧光性能。本发明制作方法绿色环保,所需实验设备操作简便,生产成本低且周期短,在锂离子电池、微型超级电容器、生物成像和太阳能电池等领域有着潜在的应用前景,可以展望实现工业化大批量生产。
附图说明
图1为实例1制备的石墨相氮化碳粉末的扫描电子显微镜图片。
图2为实例1制备的石墨相氮化碳粉末的X射线能谱分析图片。
图3为实例1制备的氮化碳量子点的高分辨率透射电子显微镜图片。
图4为实例1制备的氮化碳量子点的不同激发波长下荧光光谱图。
图5为实例1制备的氮化碳量子点的激发和发射荧光光谱图。
图6为实例1制备的氮化碳量子点的紫外可见吸收光谱图。
具体实施方式
下面结合具体实施例,对本发明所述技术方案作进一步阐明。值得一提的是下面实施例中所涉及到的石墨相氮化碳粉末的制备皆为实例1中石墨相氮化碳粉末的制备。
实施例1:
(1)石墨相氮化碳粉末的制备
在氧化铝瓷舟中装入18 g三聚氰胺,放入马弗炉中。以3 ℃/min的速率上升至600 ℃,保持2个小时,然后以3 ℃/min的速率冷却至室温。放入玛瑙研钵中研磨,得到5.84 g石墨相氮化碳粉末。
(2)氮化碳量子点制备
将(1)中的石墨相氮化碳粉末30 mg分散到30 ml无水乙醇溶液中,加入0.45 ml氢氧化钾,超声混合5 min。将混匀溶液转移到反应釜中,密封,放入烘箱内,升温至180 ℃,维持16h,自然冷却至室温。将处理后的分散液通过真空抽虑收集得到淡黄色滤液。将滤液装入10000 Da的透析袋中透析,直至中性。将得到的透析液冷冻,之后在温度为-90 ℃,气压为15 Pa的条件下冷冻干燥得到固态氮化碳量子点。
图1为实例 1得到的石墨相氮化碳粉末的扫描电镜图片,图中可以清楚地看到煅烧后形成的石墨相氮化碳粉末有明显的弯曲片层结构。图2为实例1得到的石墨相氮化碳粉末的X射线能谱分析图片,分析出碳原子和氮原子的比例接近3:4。图3为实例1得到的氮化碳量子点的高分辨率透射电镜图片,从图中可以看出得到的量子点尺寸主要分布在2~4nm,晶面间距为0.21 nm。图4和图5为实例1得到的氮化碳量子点的荧光光谱图,可以看出随着激发波长的变化,氮化碳量子点的发射波长也在变化,说明氮化碳量子点的荧光发射光谱具有波长依赖性。由图可知,最大激发波长为320 nm,相对应的最大荧光发射波长为410nm。图6为实例1得到的氮化碳量子点的紫外可见吸收光谱图,图中可以看出吸收峰值为360nm。
实施例2
将40 mg实例(1)得到的石墨相氮化碳粉末分散到30 ml丙三醇溶液中,加入0.30 ml氢氧化钠,超声混合5 min。将混匀的溶液(混合液)转移至反应釜中,密封,放入烘箱内,升温至200 ℃,维持12 h,自然冷却至室温。将处理后的混合液通过真空抽滤收集得到淡黄色滤液。将滤液装入10000 Da透析袋中透析,直至中性。将得到的透析液冷冻,之后在温度为-45℃,气压为20 Pa的条件下冷冻干燥得到固态氮化碳量子点。
实施例3
将50 mg实例(1)得到的石墨相氮化碳粉末分散于40 ml甲醇溶液中,加入0.35 ml氢氧化锂,超声混合5 min。将混匀的混合液转移至反应釜中,密封,放入烘箱内,升温至120 ℃,维持10 h,自然冷却至室温。将处理后的混合液通过真空抽滤收集得到淡黄色滤液。将滤液装入8000 Da透析袋中,直至中性。将得到的透析液冷冻,之后在温度为-40 ℃,气压为10Pa的条件下冷冻干燥得到固态氮化碳量子点。
实施例4
将60mg实例(1)得到的石墨相氮化碳粉末分散于45ml乙二醇溶液中,加入0.40ml氢氧化钾,超声混合5 min。将混匀的溶液转移至反应釜中,密封,放入烘箱内,升温至140 ℃,维持20 h,自然冷却至室温。将处理后的混合液通过真空抽滤收集得到淡黄色滤液。将滤液装入10000 Da透析袋中透析,直至中性。将得到的透析液冷冻,之后在温度为-90 ℃,气压为15 Pa的条件下冷冻干燥得到固态氮化碳量子点。
实施例5
将20 mg实例(1)得到的石墨相氮化碳粉末分散于30 ml无水乙醇溶液中,加入0.60 ml氢氧化钾,超声混合5 min。将混匀的溶液转移至反应釜中,密封,放入烘箱内,升温至180℃,维持16 h,自然冷却至室温。将处理后的混合液通过真空抽滤收集得到淡黄色滤液。将滤液装入10000 Da透析袋中透析,直至中性。将得到的透析液冷冻,之后在温度为-90 ℃,气压为15 Pa的条件下冷冻干燥得到固态氮化碳量子点。
实施例6
将30 mg实例(1)得到的石墨相氮化碳粉末分散于45 ml甲醇溶液中,加入0.80 ml氢氧化锂,超声混合5 min。将混匀的溶液转移至反应釜中,密封,放入烘箱内,升温至140 ℃,维持12 h,自然冷却至室温。将处理后的混合液通过真空抽滤收集得到淡黄色滤液。将滤液装入8000 Da透析袋中透析,直至中性。将得到的透析液冷冻,之后在温度为-50 ℃,气压为10Pa的条件下冷冻干燥得到固态氮化碳量子点。
实施例7
将60 mg实例(1)得到的石墨相氮化碳粉末分散于100 ml乙二醇溶液中,加入2 ml氢氧化钠,超声混合5 min。将混匀的溶液转移至反应釜中,密封,放入烘箱内,升温至160 ℃,维持10 h,自然冷却至室温。将处理后的混合液通过真空抽滤收集得到淡黄色滤液。将滤液装入10000 Da透析袋中透析,直至中性。将得到的透析液冷冻,之后在温度为-45 ℃,气压为20 Pa的条件下冷冻干燥得到固态氮化碳量子点。
实施例8
将50 mg实例(1)得到的石墨相氮化碳粉末分散于75 ml丙三醇溶液中,加入1 ml氢氧化钠,超声混合5 min。将混匀的溶液转移至反应釜中,密封,放入烘箱内,升温至180 ℃,维持18 h,自然冷却至室温。将处理后的混合液通过真空抽滤收集得到淡黄色液体。将滤液装入8000 Da透析袋中透析,直至中性。将得到的透析液冷冻,之后在温度为-90 ℃,气压为10Pa的条件下冷冻干燥得到固态氮化碳量子点。
以上所述实例仅仅说明了本发明的几种方式,进一步对该技术方案做了详细的阐述,并非对专利范围作任何限制,应当指出的是,本领域的技术人员,在不脱离本发明构思的前提下,做出的非本质的改进和调整均属于本发明专利的保护范围。

Claims (6)

1.一种溶剂热制备荧光氮化碳量子点的方法,其特征在于利用溶剂热的方法制备量子点,包括以下步骤:
(1)石墨相氮化碳粉末的制备:
将装有三聚氰胺的氧化铝瓷舟在温度为500~600℃的马弗炉中保持2~3h,待冷却至室温,将其产物研磨成淡黄色的粉末,得到石墨相氮化碳;
(2)氮化碳量子点的制备:
A. 将步骤(1)得到的石墨相氮化碳粉末分散在醇类溶剂中,制得分散液,所配置得到的分散液中石墨相氮化碳的浓度为0.3~10 mg/l;再向该分散液中加入饱和碱液,超声混匀制得混合液,所述饱和碱液的体积与分散液的体积比为0.005~0.5。
B. 将步骤A得到的混合液通过量筒均匀地转移到反应釜中,密封;放置在温度为100~220 ℃的烘箱内反应6~24 h,待冷却至室温,真空抽滤后收集得到淡黄色的滤液;
C. 步骤B得到的滤液在截留分子量为8000~14000 Da的透析袋中透析至中性,除去多余的碱离子,得到氮化碳量子点分散液,干燥后得到固态氮化碳量子点。
2.根据权利要求1所述的一种溶剂热制备荧光氮化碳量子点的方法,其特征在于:步骤(1)中升温和降温速率均为3℃/min;研磨所用的工具为玛瑙研钵,目的是不会损坏其结构。
3.根据权利要求1或2所述的一种溶剂热制备荧光氮化碳量子点的方法,其特征在于:步骤(2)的A中所述醇类溶剂可以为无水乙醇或甲醇或乙二醇或丙三醇,能更好地分散石墨相氮化碳粉末;所述的饱和碱液为氢氧化钠或氢氧化钾或氢氧化锂的饱和水溶液,其离子尺寸小于氮化碳层间间距,能够有效地进行插层和剥离。
4.根据权利要求1或2所述的一种溶剂热制备荧光氮化碳量子点的方法,其特征在于:步骤(2)的B中所述的反应釜为聚四氟乙烯内衬反应釜;所述真空抽滤所用的滤膜为有机滤膜,孔径为0.22 um,能够除去未反应完全的残留物。
5.根据权利要求1或2所述的一种溶剂热制备荧光氮化碳量子点的方法,其特征在于:步骤(2)的C中透析时间为3~4天,直至中性,有效地除去多余的碱离子。
6.根据权利要求1或2所述的一种溶剂热制备荧光氮化碳量子点的方法,其特征在于:步骤(2)的C中所述的干燥方法是在温度为-40~-90 ℃,气压为8~20 Pa的条件下冷冻干燥,得到固态的氮化碳量子点粉末。
CN201610336140.5A 2016-05-20 2016-05-20 一种溶剂热制备荧光氮化碳量子点的方法 Expired - Fee Related CN106006581B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610336140.5A CN106006581B (zh) 2016-05-20 2016-05-20 一种溶剂热制备荧光氮化碳量子点的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610336140.5A CN106006581B (zh) 2016-05-20 2016-05-20 一种溶剂热制备荧光氮化碳量子点的方法

Publications (2)

Publication Number Publication Date
CN106006581A true CN106006581A (zh) 2016-10-12
CN106006581B CN106006581B (zh) 2018-07-31

Family

ID=57095518

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610336140.5A Expired - Fee Related CN106006581B (zh) 2016-05-20 2016-05-20 一种溶剂热制备荧光氮化碳量子点的方法

Country Status (1)

Country Link
CN (1) CN106006581B (zh)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107473207A (zh) * 2017-09-28 2017-12-15 中国科学技术大学 一种石墨烯量子点的制备方法
CN108101010A (zh) * 2017-12-15 2018-06-01 南京理工大学 石墨相氮化碳量子点的制备方法
CN108324949A (zh) * 2018-03-21 2018-07-27 华北理工大学 一种羟基磷灰石-氮化碳复合粒子及其原位复合工艺
CN108479833A (zh) * 2018-03-14 2018-09-04 清华大学 一种氧掺杂氮化碳气凝胶光催化剂的制备方法及其应用
CN108693150A (zh) * 2017-04-11 2018-10-23 南京理工大学 多孔片层氮化碳的应用
CN108910845A (zh) * 2018-06-14 2018-11-30 云南大学 一种微波辅助制备强荧光氮化碳材料的方法
CN109294571A (zh) * 2018-12-12 2019-02-01 临沂大学 一种碳氮粉体黄色荧光材料及制备方法
CN109384204A (zh) * 2017-08-03 2019-02-26 Tcl集团股份有限公司 一种氮化碳粉末的制备方法、氮化碳量子点及其制备方法
CN109734060A (zh) * 2019-02-18 2019-05-10 东南大学 氮化碳纳米材料及其制备方法和应用
CN111474146A (zh) * 2020-03-19 2020-07-31 中国石油大学(北京) 氮硫掺杂碳量子点及其制法和在检测银纳米颗粒中的应用
CN111659271A (zh) * 2020-03-18 2020-09-15 闽南师范大学 一种用于溶解石墨相氮化碳的溶解体系及溶解方法
CN111777048A (zh) * 2020-07-17 2020-10-16 福州大学 一种非掺杂手段制备绿色荧光氮化碳粉末的方法及其在白光led中的应用
CN112014365A (zh) * 2020-08-07 2020-12-01 南京师范大学 一种基于功能纳米材料的荧光传感器及其制备方法和应用
CN112744797A (zh) * 2020-12-18 2021-05-04 中国计量大学上虞高等研究院有限公司 一种氮硼掺杂石墨相氮化碳量子点及其制备方法与应用
CN112794297A (zh) * 2021-01-08 2021-05-14 上海理工大学 一种制备具有蓝色荧光特征氮化碳量子点的合成方法
CN113432746A (zh) * 2021-07-01 2021-09-24 广东工业大学 一种基于有机半导体材料的光学测温方法
CN113816347A (zh) * 2021-10-25 2021-12-21 广西师范大学 一种宏量制备氮化碳量子点的方法
CN115368948A (zh) * 2022-08-29 2022-11-22 攀枝花学院 多层型氮化碳纳米片水基润滑添加剂及其制备方法
CN115650185A (zh) * 2022-09-26 2023-01-31 蚌埠医学院 一种石墨相氮化碳纳米荧光剂胶体及其制备方法、用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104292236A (zh) * 2014-09-15 2015-01-21 浙江大学 三维多孔g-C3N4材料的制备方法
CN104310321A (zh) * 2014-09-15 2015-01-28 浙江大学 多孔g-C3N4半导体材料的制备方法
CN105271411A (zh) * 2015-11-04 2016-01-27 太原理工大学 一种二硫化钼量子点的制备方法
WO2016027042A1 (en) * 2014-08-21 2016-02-25 The University Of Liverpool Two-dimensional carbon nitride material and method of preparation
CN105417507A (zh) * 2015-12-10 2016-03-23 济南大学 一种氮化碳纳米颗粒的制备方法及所得产品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027042A1 (en) * 2014-08-21 2016-02-25 The University Of Liverpool Two-dimensional carbon nitride material and method of preparation
CN104292236A (zh) * 2014-09-15 2015-01-21 浙江大学 三维多孔g-C3N4材料的制备方法
CN104310321A (zh) * 2014-09-15 2015-01-28 浙江大学 多孔g-C3N4半导体材料的制备方法
CN105271411A (zh) * 2015-11-04 2016-01-27 太原理工大学 一种二硫化钼量子点的制备方法
CN105417507A (zh) * 2015-12-10 2016-03-23 济南大学 一种氮化碳纳米颗粒的制备方法及所得产品

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHENZHEN LIN ET AL.: "Thermal nitridation of triazine motifs to heptazine‐based carbon nitride frameworks for use in visible light photocatalysis", 《CHINESE JOURNAL OF CATALUSTS》 *
王涛等: "层状石墨相g-C3N4氮化碳的简易制备和表征", 《材料导报》 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108693150A (zh) * 2017-04-11 2018-10-23 南京理工大学 多孔片层氮化碳的应用
CN109384204A (zh) * 2017-08-03 2019-02-26 Tcl集团股份有限公司 一种氮化碳粉末的制备方法、氮化碳量子点及其制备方法
CN107473207A (zh) * 2017-09-28 2017-12-15 中国科学技术大学 一种石墨烯量子点的制备方法
CN107473207B (zh) * 2017-09-28 2020-05-05 中国科学技术大学 一种石墨烯量子点的制备方法
CN108101010A (zh) * 2017-12-15 2018-06-01 南京理工大学 石墨相氮化碳量子点的制备方法
CN108479833A (zh) * 2018-03-14 2018-09-04 清华大学 一种氧掺杂氮化碳气凝胶光催化剂的制备方法及其应用
CN108479833B (zh) * 2018-03-14 2020-06-16 清华大学 一种氧掺杂氮化碳气凝胶光催化剂的制备方法及其应用
CN108324949A (zh) * 2018-03-21 2018-07-27 华北理工大学 一种羟基磷灰石-氮化碳复合粒子及其原位复合工艺
CN108910845A (zh) * 2018-06-14 2018-11-30 云南大学 一种微波辅助制备强荧光氮化碳材料的方法
CN109294571A (zh) * 2018-12-12 2019-02-01 临沂大学 一种碳氮粉体黄色荧光材料及制备方法
CN109294571B (zh) * 2018-12-12 2021-04-30 临沂大学 一种碳氮粉体黄色荧光材料及制备方法
CN109734060A (zh) * 2019-02-18 2019-05-10 东南大学 氮化碳纳米材料及其制备方法和应用
CN109734060B (zh) * 2019-02-18 2020-12-25 东南大学 氮化碳纳米材料及其制备方法和应用
CN111659271A (zh) * 2020-03-18 2020-09-15 闽南师范大学 一种用于溶解石墨相氮化碳的溶解体系及溶解方法
CN111659271B (zh) * 2020-03-18 2022-06-14 闽南师范大学 一种用于溶解石墨相氮化碳的溶解体系及溶解方法
CN111474146A (zh) * 2020-03-19 2020-07-31 中国石油大学(北京) 氮硫掺杂碳量子点及其制法和在检测银纳米颗粒中的应用
CN111474146B (zh) * 2020-03-19 2021-11-19 中国石油大学(北京) 氮硫掺杂碳量子点及其制法和在检测银纳米颗粒中的应用
CN111777048A (zh) * 2020-07-17 2020-10-16 福州大学 一种非掺杂手段制备绿色荧光氮化碳粉末的方法及其在白光led中的应用
CN111777048B (zh) * 2020-07-17 2022-03-08 福州大学 一种非掺杂手段制备绿色荧光氮化碳粉末的方法及其在白光led中的应用
CN112014365A (zh) * 2020-08-07 2020-12-01 南京师范大学 一种基于功能纳米材料的荧光传感器及其制备方法和应用
CN112014365B (zh) * 2020-08-07 2022-06-28 南京师范大学 一种基于功能纳米材料的荧光传感器及其制备方法和应用
CN112744797A (zh) * 2020-12-18 2021-05-04 中国计量大学上虞高等研究院有限公司 一种氮硼掺杂石墨相氮化碳量子点及其制备方法与应用
CN112744797B (zh) * 2020-12-18 2023-09-08 中国计量大学上虞高等研究院有限公司 一种氮硼掺杂石墨相氮化碳量子点及其制备方法与应用
CN112794297A (zh) * 2021-01-08 2021-05-14 上海理工大学 一种制备具有蓝色荧光特征氮化碳量子点的合成方法
CN113432746A (zh) * 2021-07-01 2021-09-24 广东工业大学 一种基于有机半导体材料的光学测温方法
CN113816347A (zh) * 2021-10-25 2021-12-21 广西师范大学 一种宏量制备氮化碳量子点的方法
CN115368948A (zh) * 2022-08-29 2022-11-22 攀枝花学院 多层型氮化碳纳米片水基润滑添加剂及其制备方法
CN115368948B (zh) * 2022-08-29 2023-11-10 攀枝花学院 多层型氮化碳纳米片水基润滑添加剂及其制备方法
CN115650185A (zh) * 2022-09-26 2023-01-31 蚌埠医学院 一种石墨相氮化碳纳米荧光剂胶体及其制备方法、用途
CN115650185B (zh) * 2022-09-26 2024-04-26 蚌埠医学院 一种石墨相氮化碳纳米荧光剂胶体及其制备方法、用途

Also Published As

Publication number Publication date
CN106006581B (zh) 2018-07-31

Similar Documents

Publication Publication Date Title
CN106006581A (zh) 一种溶剂热制备荧光氮化碳量子点的方法
Zhou et al. Amphibious fluorescent carbon dots: one-step green synthesis and application for light-emitting polymer nanocomposites
CN102807209B (zh) 一种石墨烯量子点的制备方法
Shen et al. One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light
CN103265020B (zh) 一种宏量制备石墨烯量子点粉体的方法
Su et al. Facile synthesis and photoelectric properties of carbon dots with upconversion fluorescence using arc-synthesized carbon by-products
Meybodi et al. Synthesis of wide band gap nanocrystalline NiO powder via a sonochemical method
Bazargan et al. Electrospinning preparation and characterization of cadmium oxide nanofibers
Sharbirin et al. Light-emitting MXene quantum dots
CN105271411B (zh) 一种二硫化钼量子点的制备方法
Huang et al. Strategy to enhance the luminescence of lanthanide ions doped MgWO4 nanosheets through incorporation of carbon dots
Xu et al. General and facile method to fabricate uniform Y 2 O 3: Ln 3+(Ln 3+= Eu 3+, Tb 3+) hollow microspheres using polystyrene spheres as templates
CN102965105B (zh) 一种石墨烯-CuInS2量子点复合物及其制备方法
CN104150473A (zh) 一种氮掺杂石墨烯量子点的化学制备方法
Zeng et al. Synthesis and stabilization of black phosphorus and phosphorene: Recent progress and perspectives
CN103738941A (zh) 一种石墨烯量子点的制备方法
CN107117600B (zh) 一种以3d石墨烯为原料制备石墨烯量子点的方法
CN106145097B (zh) 一种亲疏水性可控的还原氧化石墨烯的制备方法
Yin et al. Facile in situ fabrication of graphene–upconversion hybrid materials with amplified electrogenerated chemiluminescence
CN108439383A (zh) 一种超声超临界二氧化碳-剪切耦合剥离膨胀石墨制备寡层石墨纳米片的方法
Liu et al. Hydrothermal synthesis of CdTe quantum dots–TiO2–graphene hybrid
Zhang et al. Uniform hollow TiO2: Sm3+ spheres: Solvothermal synthesis and luminescence properties
Xu et al. From VO2 (B) to VO2 (A) nanorods: hydrothermal synthesis, evolution and optical properties in V2O5H2C2O4H2O system
Shen et al. Nitrogen-doped graphene quantum dots synthesized by femtosecond laser ablation in liquid from laser induced graphene
Hussain et al. Low-temperature synthesis of graphite flakes and carbon-based nanomaterials from banana peels using hydrothermal process for photoelectrochemical water-splitting

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180731