CN105980333A - 镁橄榄石微粒的制造方法 - Google Patents

镁橄榄石微粒的制造方法 Download PDF

Info

Publication number
CN105980333A
CN105980333A CN201580008458.4A CN201580008458A CN105980333A CN 105980333 A CN105980333 A CN 105980333A CN 201580008458 A CN201580008458 A CN 201580008458A CN 105980333 A CN105980333 A CN 105980333A
Authority
CN
China
Prior art keywords
magnesium
forsterite
microgranule
gained
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580008458.4A
Other languages
English (en)
Other versions
CN105980333B (zh
Inventor
伊左治忠之
荻原隆
小寺乔之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Publication of CN105980333A publication Critical patent/CN105980333A/zh
Application granted granted Critical
Publication of CN105980333B publication Critical patent/CN105980333B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/22Magnesium silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/20Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in magnesium oxide, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/02Compounds of alkaline earth metals or magnesium
    • C09C1/028Compounds containing only magnesium as metal
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明为通过电子显微镜观察所得的一次粒径为1~200nm的范围的镁橄榄石微粒的制造方法,其特征在于,将以镁原子与硅原子的摩尔比(Mg/Si)为2的比例含有水溶性镁盐和胶体二氧化硅的溶液以50℃以上且小于300℃的温度进行喷雾干燥,然后在大气中以800~1000℃的温度进行烧成。

Description

镁橄榄石微粒的制造方法
技术领域
本发明涉及对各种陶瓷器、透光性装饰材料、电子部件等有用的镁橄榄石微粒的制造方法。
背景技术
作为集成电路的密封材料,将绝缘性陶瓷(例如二氧化硅)微粒填充到环氧树脂等耐热性树脂中而得的复合绝缘材料已经被实用化。然而,随着近年来集成电路的高集成化、高容量化,为了减小集成电路内的信号损失,要求特别是在高频区域中介电损耗低的绝缘材料。
以镁橄榄石(Mg2SiO4)、顽辉石(MgSiO3)为代表的含有镁和硅的氧化物作为在高频区域中的介电损耗小,显示高绝缘性的材料而为人所知,作为在微波区域使用的电介质陶瓷的材料而被使用。
在将含有镁和硅的氧化物用作透光性复合绝缘材料的情况下,为了抑制光的散射,需要尽量减小粒径。
专利文献1中公开了:将Mg(OH)2粉末或MgO粉末与平均一次粒径为10μm以下的SiO2粉末在水中进行混合粉碎,利用喷雾干燥机进行喷雾干燥,然后在1100℃烧成,然后进而进行湿式粉碎、喷雾干燥,从而制造平均一次粒径为0.05~0.15μm的MgO-SiO2系氧化物粉末的方法。然而,如果在该方法中省略烧成后的湿式粉碎,就会制成1μm以上的粒子。因此,制造工序中需要两次湿式粉碎,变为非常复杂的制法。
专利文献2中公开了:将硝酸镁水溶液和硅酸乙酯溶液进行混合,使镁量与硅量以摩尔比计为2:1,将由此获得的混合液利用喷雾热分解法在900℃进行热分解,从而制造镁橄榄石粉末的方法。然而,所得的粉末的平均粒径大到0.78μm,在作为透光性复合绝缘材料的填料使用时,不能充分地提高透光性。
专利文献3中公开了:将微小中空体无机材料或其前体物质溶解在液状介质中而得的溶液、或分散在液状介质中而得的分散液进行微小液滴化,将该无机材料提供到进行烧结或熔融的高温气氛,从而制造结晶质微小中空体的方法。然而,由该方法获得的镁橄榄石中空体的粒径大到2.4μm,在作为透光性复合绝缘材料的填料使用时,不能充分地提高透光性。
现有技术文献
专利文献
专利文献1:日本特开2003-327470号公报
专利文献2:日本特开2003-2640号公报
专利文献3:日本特开平7-96165号公报
发明内容
发明所要解决的课题
本发明是鉴于上述情况而提出的,其课题在于,提供一种微小粒径的镁橄榄石微粒的制造方法,所述微小粒径的镁橄榄石微粒对各种陶瓷器、透光性装饰材料、电子部件等有用,特别是在电子部件用途中能够作为高频区域中的介电损耗低的绝缘材料使用,且能够提高粒子的透光性。
用于解决课题的方法
本发明者们为了解决上述课题而进行了深入研究,结果发现,将含有水溶性镁盐和胶体二氧化硅的溶液进行喷雾干燥,然后在大气中以800~1000℃的温度进行烧成,从而能够不经过粉碎处理工序而制造出通过电子显微镜观察所得的一次粒径为1~200nm的范围的镁橄榄石微粒。
即,本发明涉及以下第1观点~第4观点的任一观点所记载的镁橄榄石微粒的制造方法。
第1观点:一种镁橄榄石微粒的制造方法,其特征在于,将以镁原子与硅原子的摩尔比(Mg/Si)为2的比例含有水溶性镁盐和胶体二氧化硅的溶液在50℃以上且小于300℃的温度气氛中进行喷雾、干燥,然后在大气中以800~1000℃的温度气氛进行烧成,从而获得通过电子显微镜观察所得的一次粒径为1~200nm的范围的镁橄榄石微粒,
第2观点:根据第1观点所述的镁橄榄石微粒的制造方法,前述胶体二氧化硅的通过电子显微镜观察所得的一次粒径为2~100nm,
第3观点:根据第1观点或第2观点所述的镁橄榄石微粒的制造方法,水溶性镁盐是镁的有机酸盐,
第4观点:根据第3观点所述的镁橄榄石微粒的制造方法,前述镁的有机酸盐是选自柠檬酸镁、乙醇酸镁、苹果酸镁、酒石酸镁、乳酸镁、丙二酸镁、琥珀酸镁和乙酸镁中的至少1种。
发明效果
通过本发明的制造方法,能够容易地制造通过电子显微镜观察所得的一次粒径为1~200nm的范围的镁橄榄石微粒。
由本发明制造的镁橄榄石微粒不仅在作为复合绝缘材料的填料使用时能够提高粒子的透光性,还能够作为高折射率涂布剂、防反射剂、金属、塑料、陶瓷等复合材料用的微填料使用。此外,在作为微波区域中使用的电介质陶瓷烧结体使用时,能够降低它的烧结温度。
附图说明
图1是实施例1和比较例1的X射线衍射图。
图2是实施例1的TEM照片。
具体实施方式
本发明涉及镁橄榄石微粒的制造方法。对本发明中含有水溶性镁盐和胶体二氧化硅的溶液的调制法不特别限定,只要利用任意的方法使水溶性镁盐和胶体二氧化硅在水中适当混合即可。
在含有水溶性镁盐和胶体二氧化硅的溶液中,镁原子与硅原子的比例Mg/Si以摩尔比计为2。
此外,在调制含有水溶性镁盐和胶体二氧化硅的溶液时,关于水溶性镁盐,可以使用它的粉末,但优选预先制成水溶液来使用。该水溶液的以MgO换算的固体成分浓度可以任选,但优选为1~20质量%。关于胶体二氧化硅,优选使用它的水分散液,此外,其以SiO2换算的固体成分浓度可以任选,但优选为1~40质量%。
含有水溶性镁盐和胶体二氧化硅的溶液的固体成分浓度可以任选,但以Mg2SiO4换算计优选为1~10质量%,更优选为2~5质量%。
所谓在本发明中使用的水溶性镁盐,是在25℃的水中能够溶解1质量%以上的镁盐,可举出氯化镁、硝酸镁、硫酸镁等镁的无机酸盐,柠檬酸镁、乙醇酸镁、苹果酸镁、酒石酸镁、乳酸镁、丙二酸镁、琥珀酸镁、乙酸镁等镁的有机酸盐。
此外,作为水溶性镁盐,也可以使用将氢氧化镁、碳酸镁等水难溶性的镁盐用盐酸、硝酸、硫酸、柠檬酸、乙醇酸、苹果酸、酒石酸、乳酸、丙二酸、琥珀酸、乙酸等酸溶解而得的液体。
前述的水溶性镁盐可以单独使用,此外,也可以混合2种以上来使用。
从干燥时、烧成时产生的气体的腐蚀性的观点出发,特别优选使用镁的有机酸盐。
作为本发明中使用的胶体二氧化硅,不特别限制,通常它的通过电子显微镜观察所得的一次粒径为1~1000nm,但优选该一次粒径为2~100nm。胶体二氧化硅的制造方法无特别限制,可以使用通过以水玻璃为原料使胶体粒子生长的方法、在将烷氧基硅水解后使粒子生长的方法等制造的市售的胶体二氧化硅。
关于胶体二氧化硅,其水分散体通常以水性二氧化硅溶胶的形式被市售(例如,スノーテックス(注册商标)OXS、スノーテックスO、スノーテックス30等)。此外,其有机溶剂分散体以有机二氧化硅溶胶的形式被市售。有机二氧化硅溶胶的分散介质已知有甲醇、异丙醇、乙二醇、甲基乙基甲酮、甲基异丁基甲酮、乙酸乙酯等。
在将以镁原子与硅原子的摩尔比(Mg/Si)为2的比例含有所得的水溶性镁盐和胶体二氧化硅的溶液进行干燥时,优选以水溶性镁盐和胶体二氧化硅均匀地混合了的状态干燥,可以利用喷雾干燥机、鼓式干燥器、真空干燥机、冷冻干燥机等进行干燥。特别是喷雾干燥机能够维持溶液中均匀的混合状态而进行干燥,因此优选使用。
干燥时的温度气氛为50℃以上且小于300℃,优选为所使用的水溶性镁盐和胶体二氧化硅的分解温度以下。
所得的干燥粉末的烧成在大气中的温度气氛为800~1000℃的范围。此外,烧成时间为0.5~50小时,优选进行1~20小时。在烧成时的温度气氛超过1000℃的情况下,所得的镁橄榄石微粒的一次粒径比200nm大,因此在作为复合绝缘材料的填料使用时等,难以提高粒子的透光性,因此不优选。此外,在烧成时的温度气氛小于800℃的情况下,水溶性镁盐和胶体二氧化硅之间反应进行不充分,不能获得镁橄榄石微粒,因此不优选。
在本发明中,所谓通过电子显微镜观察所得的一次粒径,是指使用透射型电子显微镜观察的各个微粒的粒径。
实施例
以下举出实施例和比较例来更具体地说明本发明,但本发明不受下述的实施例限定。
[制造例1]柠檬酸镁水溶液的制造
在纯水2058.8g中溶解柠檬酸一水合物(关东化学(株)制,特级,99.5质量%)253.5g,获得了10.0质量%的柠檬酸水溶液。一边搅拌所得的柠檬酸水溶液一边添加氢氧化镁(关东化学(株)制,1级,95.0%)105.7g,在室温下进行1小时搅拌,从而获得了柠檬酸镁水溶液。所得的柠檬酸镁水溶液的固体成分浓度(换算为MgO)为2.9质量%。
[制造例2]乙醇酸镁水溶液的制造
在纯水113.4g中溶解乙醇酸(东京化成工业(株)制,98.0质量%)15.2g,获得了11.6质量%的乙醇酸水溶液。一边搅拌所得的乙醇酸水溶液一边添加氢氧化镁(关东化学(株)制,1级,95.0质量%)5.8g,在室温下进行1小时搅拌,从而获得了乙醇酸镁水溶液。所得的乙醇酸镁水溶液的固体成分浓度(换算为MgO)为3.0质量%。
[实施例1]
在胶体二氧化硅(スノーテックス(注册商标)OXS,日产化学工业(株)制,二氧化硅浓度为10.6质量%,通过电子显微镜观察所得的一次粒径为5nm)283.4g中混合纯水1196.1g,然后添加由制造例1获得的柠檬酸镁水溶液1334.8g,在室温下进行30分钟搅拌。所得的混合液的比重为1.04,粘度为1.8mPa·s,pH值为5.2。使用喷雾干燥机(パルビス小型喷雾器GA-22型,ヤマト科学(株)制)将所得的混合液2500g在入口温度180℃、雾化空气压力1.35kgf/cm2、吸气器流量0.30m3/分钟、混合液的送液速度5g/分钟的条件下进行干燥。此时的出口温度为80±2℃,获得了99.6g的白色干燥粉末。将所得的干燥粉末43.1g放入坩埚中,使用电炉在大气中以500℃的温度进行2小时烧成,接着,在大气中以800℃的温度进行2小时烧成,从而获得了白色粉末12.4g。将所得的白色粉末通过X射线衍射分析进行鉴定,结果生成相基本是镁橄榄石单一相,由氮气吸附法测得的比表面积为18.4m2/g。将X射线衍射图示于图1。此外,利用透射型电子显微镜进行观察而得的一次粒径为30~50nm。将透射型电子显微镜照片示于图2。
[实施例2]
在胶体二氧化硅(スノーテックス(注册商标)OXS,日产化学工业(株)制,二氧化硅浓度为10.6质量%,通过电子显微镜观察所得的一次粒径为5nm)28.3g中混合纯水337.3g,然后添加由制造例2获得的乙醇酸镁水溶液134.4g,在室温下进行30分钟搅拌。所得的混合液的比重为1.02,粘度为1.8mPa·s,pH值为5.3。使用喷雾干燥机(パルビス小型喷雾器GA-22型,ヤマト科学(株)制)将所得的混合液500g在入口温度180℃、雾化空气压力1.35kgf/cm2、吸气器流量0.30m3/分钟、混合液的送液速度5g/分钟的条件下进行干燥。此时的出口温度为80±2℃,获得了11.1g的白色干燥粉末。将所得的干燥粉末2.0g放入坩埚中,使用电炉在大气中以500℃的温度进行2小时烧成,接着,在大气中以800℃的温度进行2小时烧成,从而获得了白色粉末0.5g。将所得的白色粉末通过X射线衍射分析进行鉴定,结果生成相基本是镁橄榄石单一相,由氮气吸附法测得的比表面积为18.1m2/g。此外,利用透射型电子显微镜进行观察而得的一次粒径为30~50nm。
[比较例1]
在胶体二氧化硅(スノーテックス(注册商标)OXS,日产化学工业(株)制,二氧化硅为10.6质量%,通过电子显微镜观察所得的一次粒径为5nm)28.3g中混合纯水119.6g,然后添加由制造例1获得的柠檬酸镁水溶液133.5g,在室温下进行30分钟搅拌。所得的混合液的比重为1.04,粘度为1.8mPa·s,pH值为5.2。将所得的混合液281.4g移至培养皿,使用热风干燥机,以80℃的温度进行12小时干燥,获得了22.4g的白色干燥粉末。将所得的干燥粉末5.0g放入坩埚中,使用电炉在大气中以500℃的温度进行2小时烧成,接着,在大气中以800℃的温度历时2小时进行烧成,获得了白色粉末0.5g。将所得的粉末通过X射线衍射分析进行鉴定,结果生成相是镁橄榄石、氧化镁和顽辉石的混合相。
[比较例2]
在胶体二氧化硅(スノーテックス(注册商标)OXS,日产化学工业(株)制,二氧化硅浓度为10.6质量%,通过电子显微镜观察所得的一次粒径为5nm)28.3g中混合纯水247.1g,然后添加氢氧化镁(关东化学(株)制,1级,95.0质量%)5.8g,在室温下进行30分钟搅拌。氢氧化镁的20℃的水溶解度为0.001质量%。所得的混合液的比重为1.04,粘度为1.9mPa·s,pH值为9.5。使用喷雾干燥机(パルビス小型喷雾器GA-22型,ヤマト科学(株)制)将所得的混合液在入口温度180℃、雾化空气压力1.35kgf/cm2、吸气器流量0.30m3/分钟、混合液的送液速度5g/分钟的条件下进行干燥。此时的出口温度为80±2℃,获得了4.8g的白色干燥粉末。将所得的干燥粉末1.0g放入坩埚中,使用电炉在大气中以500℃的温度进行2小时烧成,接着,在大气中以800℃的温度进行2小时烧成,从而获得了白色粉末0.7g。将所得的粉末通过X射线衍射分析进行鉴定,结果生成相是氧化镁和非晶质的混合相。
<全光线透射率测定>
[试验例1]
将与实施例1同样地操作而调制的镁橄榄石微粒1g和异丙醇9g收入玻璃瓶(容量20mL)中,进行10分钟超声波处理,从而获得了镁橄榄石微粒浆料。使用25μm的涂布器将所得的镁橄榄石微粒浆料涂布在玻璃板上,然后在100℃进行10分钟干燥,从而形成了镁橄榄石微粒的被膜。利用光谱雾度计(NDH 5000,日本电色工业(株))测定所得的被膜的全光线透射率Tt值,结果Tt值为95%。
[试验例2]
作为镁橄榄石微粒,使用丸ス釉药合资会社制的HFF-SO(由氮气吸附法测得的比表面积为8.7m2/g),除此以外,与试验例1同样地操作,获得了镁橄榄石微粒浆料。使用25μm的涂布器将所得的镁橄榄石微粒浆料涂布在玻璃板上,然后在100℃进行10分钟干燥,从而形成了镁橄榄石微粒的被膜。利用雾度计(NDH5000,日本电色工业(株))测定所得的被膜的全光线透射率Tt值,结果Tt值为86%。

Claims (4)

1.一种镁橄榄石微粒的制造方法,其特征在于,将以镁原子与硅原子的摩尔比Mg/Si为2的比例含有水溶性镁盐和胶体二氧化硅的溶液在50℃以上且小于300℃的温度气氛中进行喷雾、干燥,然后在大气中、800~1000℃的温度气氛下进行烧成,从而获得通过电子显微镜观察所得的一次粒径为1~200nm的范围的镁橄榄石微粒。
2.根据权利要求1所述的镁橄榄石微粒的制造方法,所述胶体二氧化硅的通过电子显微镜观察所得的一次粒径为2~100nm。
3.根据权利要求1或2所述的镁橄榄石微粒的制造方法,水溶性镁盐是镁的有机酸盐。
4.根据权利要求3所述的镁橄榄石微粒的制造方法,所述镁的有机酸盐是选自柠檬酸镁、乙醇酸镁、苹果酸镁、酒石酸镁、乳酸镁、丙二酸镁、琥珀酸镁和乙酸镁中的至少1种。
CN201580008458.4A 2014-03-25 2015-03-24 镁橄榄石微粒的制造方法 Active CN105980333B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014062408A JP2015182934A (ja) 2014-03-25 2014-03-25 フォルステライト微粒子の製造方法
JP2014-062408 2014-03-25
PCT/JP2015/058863 WO2015146961A1 (ja) 2014-03-25 2015-03-24 フォルステライト微粒子の製造方法

Publications (2)

Publication Number Publication Date
CN105980333A true CN105980333A (zh) 2016-09-28
CN105980333B CN105980333B (zh) 2019-07-05

Family

ID=54195474

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580008458.4A Active CN105980333B (zh) 2014-03-25 2015-03-24 镁橄榄石微粒的制造方法

Country Status (7)

Country Link
US (2) US9988278B2 (zh)
EP (1) EP3124457B1 (zh)
JP (1) JP2015182934A (zh)
KR (1) KR102403099B1 (zh)
CN (1) CN105980333B (zh)
TW (1) TWI647179B (zh)
WO (1) WO2015146961A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113165888A (zh) * 2018-11-29 2021-07-23 日产化学株式会社 球状镁橄榄石粒子、其制造方法及包含球状镁橄榄石粒子的树脂组合物

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6277387B2 (ja) * 2015-06-02 2018-02-14 日産化学工業株式会社 フォルステライト微粒子の製造方法
WO2019017435A1 (ja) * 2017-07-20 2019-01-24 日産化学株式会社 珪酸塩化合物微粒子及びその製造方法
CN115124047B (zh) * 2022-04-22 2023-11-03 上海市农业科学院 一种硅酸镁凝胶其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003002640A (ja) * 2001-06-18 2003-01-08 Ube Material Industries Ltd マグネシウム含有酸化物粉末、及びその製造方法
JP2003327470A (ja) * 2002-05-09 2003-11-19 Titan Kogyo Kk MgO−SiO2系酸化物粉末及びそれを原料とした磁器焼結体
US20070190443A1 (en) * 2006-02-14 2007-08-16 Masayuki Hagi Toner, and image forming method and apparatus and process cartridge using the toner

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4608215A (en) 1983-12-23 1986-08-26 Allied Corporation Preparation of ceramics
JPH0796165A (ja) 1992-12-11 1995-04-11 Asahi Glass Co Ltd 結晶質微小中空体の製造方法および結晶質微小中空体
WO2007074606A1 (ja) 2005-12-27 2007-07-05 Murata Manufacturing Co., Ltd. フォルステライト粉末の製造方法、フォルステライト粉末、フォルステライト焼結体、絶縁体セラミック組成物、および積層セラミック電子部品
JP4856985B2 (ja) 2006-03-08 2012-01-18 キヤノン株式会社 トナー
JP5983265B2 (ja) * 2011-12-12 2016-08-31 Tdk株式会社 誘電体磁器組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003002640A (ja) * 2001-06-18 2003-01-08 Ube Material Industries Ltd マグネシウム含有酸化物粉末、及びその製造方法
JP2003327470A (ja) * 2002-05-09 2003-11-19 Titan Kogyo Kk MgO−SiO2系酸化物粉末及びそれを原料とした磁器焼結体
US20070190443A1 (en) * 2006-02-14 2007-08-16 Masayuki Hagi Toner, and image forming method and apparatus and process cartridge using the toner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113165888A (zh) * 2018-11-29 2021-07-23 日产化学株式会社 球状镁橄榄石粒子、其制造方法及包含球状镁橄榄石粒子的树脂组合物

Also Published As

Publication number Publication date
US11279624B2 (en) 2022-03-22
US20160332887A1 (en) 2016-11-17
US20180244530A1 (en) 2018-08-30
WO2015146961A1 (ja) 2015-10-01
EP3124457A4 (en) 2017-11-29
US9988278B2 (en) 2018-06-05
CN105980333B (zh) 2019-07-05
JP2015182934A (ja) 2015-10-22
KR20160137530A (ko) 2016-11-30
KR102403099B1 (ko) 2022-05-26
EP3124457A1 (en) 2017-02-01
TWI647179B (zh) 2019-01-11
TW201540666A (zh) 2015-11-01
EP3124457B1 (en) 2019-01-30

Similar Documents

Publication Publication Date Title
CN107151029B (zh) 一种四方相钛酸钡粉体的溶胶-水热法制备工艺
CN105980333A (zh) 镁橄榄石微粒的制造方法
CN102241516B (zh) 一种水基溶胶-凝胶法制备Li4SiO4陶瓷粉体的方法
CN103214235B (zh) 一种微波介质陶瓷材料的制备方法
JP2021523089A (ja) アルミニウムと酸素の燃焼合成と水アトマイズ法によるアルミナベース固溶体セラミック粉末の製造方法
CN110550952A (zh) 一种氧化锆陶瓷粉体及其制备方法
JP6277387B2 (ja) フォルステライト微粒子の製造方法
KR101157460B1 (ko) 분무열분해법에 의한 알루미늄산화물이 도핑된 산화아연 분말의 제조
CN103626223A (zh) 一种钛酸钡生产工艺
CN103570347B (zh) 一种纳米钛酸钡的四方相转变方法
CN103074061A (zh) 一种稀土纳米核壳球状颗粒发光材料的合成方法
CN103224393B (zh) 一种微波介质陶瓷材料的制备方法
CN106495194A (zh) 一种低温制备α型氧化铝超细粉体的方法
CN111233022A (zh) 一种制备钇铝石榴石纳米颗粒的方法
TW201542465A (zh) 金屬氧化物奈米顆粒材料
RU2567305C1 (ru) Способ получения сложного алюмината кальция-магния
TW201908241A (zh) 矽酸鹽化合物微粒子及其製造方法
WO2024135596A1 (ja) ケイリン酸リチウム粉末組成物の製造方法
CN107736346B (zh) 一种硅酸锆载银抗菌粉体的制备方法
KR101388189B1 (ko) 염화실리케이트계 형광체 및 그 제조 방법
CN108558388B (zh) 一种用于制备yag陶瓷粉体的喷雾干燥工艺
CN117361601A (zh) 一种固相研磨制备纳米氧化钇粉体的方法
JP2006213573A (ja) 混合液体及びセラミックス微粒子の製造方法
TW202222688A (zh) 含硼之二氧化矽分散體及其製造方法
TW201307205A (zh) 製造奈米氧化鋁顆粒的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant