CN105899527A - 重组润滑素的制备 - Google Patents

重组润滑素的制备 Download PDF

Info

Publication number
CN105899527A
CN105899527A CN201480065482.7A CN201480065482A CN105899527A CN 105899527 A CN105899527 A CN 105899527A CN 201480065482 A CN201480065482 A CN 201480065482A CN 105899527 A CN105899527 A CN 105899527A
Authority
CN
China
Prior art keywords
lubrication
glycoprotein
lubrication element
compositions
cartilage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201480065482.7A
Other languages
English (en)
Inventor
T·施密特
G·D·杰伊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Singularis Inc
Lubris LLC
Original Assignee
Singularis Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Singularis Inc filed Critical Singularis Inc
Publication of CN105899527A publication Critical patent/CN105899527A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/726Glycosaminoglycans, i.e. mucopolysaccharides
    • A61K31/728Hyaluronic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0014Skin, i.e. galenical aspects of topical compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0048Eye, e.g. artificial tears
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • A61K9/008Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy comprising drug dissolved or suspended in liquid propellant for inhalation via a pressurized metered dose inhaler [MDI]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4725Proteoglycans, e.g. aggreccan
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/005Glycopeptides, glycoproteins

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Dermatology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Toxicology (AREA)
  • Biotechnology (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Inorganic Chemistry (AREA)
  • Otolaryngology (AREA)
  • Pulmonology (AREA)
  • Rheumatology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

公开了类人润滑素或PRG4糖蛋白的具有出色润滑性质和新糖基化模式的新型重组同种型,以及使其能够商业化生产的高水平制备方法。

Description

重组润滑素的制备
相关申请的交叉引用
本申请要求2013年10月22日提交的美国临时专利申请号61/894,366的优先权和利益,其以整体援引加入本文。
发明领域
本文所公开的发明涉及使用经转染的细胞生产商业量的物质组合物的方法,所述物质组合物包含重组类人润滑素(lubricin)。更具体地,本发明涉及在商业规模生产新形式的润滑素,其具有优越的润滑性质并且其可以配制并用于预防性地或治疗性地治疗各种疾病,例如从关节疼痛到干眼病。
发明背景
蛋白聚糖4(PRG4)基因编码高度糖基化的表面润滑蛋白叫做润滑素、巨核细胞刺激因子(MSF)、或浅表层蛋白(SZP)。(参见Jay,Curr.Opin.Orthop.15,355(2004);美国专利号6,743,774;美国专利号6,960,562)。润滑素是从PRG4基因(SEQ ID NO:2)表达的,全长跨12个外显子,但是也有报道过多种天然发生的截短的版本。940个氨基酸的大的“类粘液素”中央结构域(由外显子6编码)包含一些70+类KEPAPTT序列并且是重度糖基化的。所述糖蛋白包含2型核心糖基化残基和多样性的1型核心聚糖(O-连接β(1-3)Gal-GalNAc寡糖),其中至少后者已经显示出介导其主要的生理学功能,界面润滑(Jay等,Glycoconj J 18,807(2001))。PRG4已被显示出存在于软骨、滑膜、腱、和半月板的表面,在泪液膜中以及在其它的解剖部位。PRG4已被显示出有助于对接的关节软骨表面的界面润滑。PRG4已被显示出不仅仅作为单体存在还可作为二聚体和多聚体(multimer)(通过N-末端和C-末端处保守的富半胱氨酸结构域的二硫键)(Schmidt等,Biochim Biophys Acta.1790(5):375-84(2009);Kooyman等,Paper No.255,56th Ann.Meet of Orthop.Res.Soc.,2010)。
在滑膜关节的软骨交界面,有至少两种润滑的物理化学模式在起作用。这些被分类为“流体薄膜”和“界面(boundary)”。运作的润滑模式取决于关节连接组织上的正向力和切向力,取决于这些表面之间切向运动的相对速率,以及取决于载荷和运动随着时间的变化。摩擦系数μ(无量纲单位,相对运动中的两个表面之间所测量的摩擦力与所应用的正向力的比率),提供了润滑的定量量度。
一种类型的流体介导的润滑或者“流体薄膜”模式是流体静力的。在载荷开始时以及通常延长的时间段里,软骨内的组织液会变得增压,由于此组织的双相性(biphasicnature),液体也可以通过渗流机制(weeping mechanism)而被挤压至关节表面之间的微凸体(asperities)。增压的组织液和捕集的润滑剂池(包含透明质酸)因而可以显著有助于正常载荷的承受(具有很少的对剪力的抵抗),促进了很低的摩擦系数。另外,在载荷和/或运动开始时,可以发生挤压膜、流体动力和流体弹性动力类型的流体薄膜润滑,且有增压、运动、和变形作用来从相对运动中的两个表面之间的缺口推动各种润滑剂和/或推动各种润滑剂穿过相对运动中的两个表面之间的缺口。
在界面润滑(boundary lubrication)中,载荷得到了表面-与-表面的接触的支持,并且相关联的摩擦性质由润滑剂表面分子(也即润滑素种类)所确定。此模式很重要,因为相对接的软骨层通过互锁、扁平微凸体而在总面积的+/-10%实现接触,并且这很可能是大部分的摩擦发生的地方。界面润滑本质上减缓“粘滑(stick-slip)”(Meyer等,Nanoscience:Friction and Rheology on the Nanometer Scale,World ScientificPublishing Co.Pte.Ltd,River Edge,N.J.,(2002),pp.373),也即,承载重量的交界软骨表面彼此滑动时同时发生的猝动(jerking motion),并因而表现为对稳定运动和起始运动的降低的抵抗。软骨表面典型的磨损模式表明,关节软骨的界面润滑对于关节表面结构的保护和保持是关键的。例如,润滑素空白小鼠显示出磨损但是新生小鼠(其不承载重量)却未显示(Jay等,Arthritis and Rheumatism,56:3662-3669(2007)。
随着载荷时间的增加以及流体静压的消失,相对于增压的流体,润滑剂涂敷的表面承载越来越高的载荷,结果,μ越来越受到润滑的界面模式的支配。润滑的界面模式由稳定滑动期间的摩擦系数所表示,其中影响流体薄膜形成的因素不变,如相对滑动速度和轴向载荷。对于关节软骨,已经得到的结论是界面润滑必然会发生,但是要辅之以流体增压和其它机制。眨眼期间眼角膜和眼睑交界面处的润滑机制并不涉及显著的载荷,因而减轻了有效润滑的物理化学要求,因此其很可能与软骨润滑有很大不同。然而,据提议润滑的界面模式可以在包含泪液膜时处于支配状态,如在干眼病中。
被认为造成滑液出色润滑性质的两种机械成分是润滑素和透明质酸(或者透明质酸盐(酯)或“HA”,下文可互换使用)。润滑素已经被显示出在关节连接滑膜关节中作为界面润滑剂以及用于保护软骨的表面以防摩擦力、细胞粘连和蛋白沉积。例如,美国专利号6,960,562和6,743,774公开了包含基本纯的PRG4同种型的润滑多肽,以及通过全身性或者直接施用至组织而润滑滑膜关节或其它组织的方法。HA本身已经被显示出在界面模式润滑下于软骨-软骨界面处相对于盐水而言降低μ(3.3mg/ml的HA中0.12对比PBS中~0.24),而仅有润滑素将μ降低至更低的水平,但是包含HA以及润滑素的滑液可以将仅有润滑素或者HA与润滑素的合成混合物所不能实现的摩擦系数赋予给界面表面。尚未有润滑素与HA的合成混合物能够完全复制天然形式的滑液所赋予的低摩擦系数。来自各种来源的以及各种分子量的HA已经与以下混合进行了测试:从滑膜细胞体外表达的润滑素,牛润滑素,从滑液提取的并且在HA中“重构的”润滑素,以及在早期尝试用重组DNA技术制备时以毫克量表达的润滑素。
此前在适于商业拓展的规模尝试重组生产全长润滑素还没有取得成功。从CHO细胞表达的人类润滑素种类很低的(每升个位或者十位数毫克)生产率被认为过低而不能支持商业产品。解决此问题的一种方法是截短外显子6中的重复数目,并由此降低糖基化侧链的质量而又至少保留一些润滑能力(参见,例如美国专利号7,642,236和7,893,029)。此方法据报道会导致截短的构建物每升300至400毫克的总生产力(纯化前)。
发明概述
现在已发现人类PRG4基因可用于产生大的、商业量的新型的、高度糖基化的类人类形式润滑素,下文简单称之为“润滑素”、多聚体润滑素、重组人润滑素、或rhPRG4。如本文所公开的,这是通过以下来实现的:将人类PRG4基因(hPRG4)转染至某些经修饰的中国仓鼠卵巢(CHO)细胞中,所述细胞已被发现有能力大规模地将表达的蛋白翻译后糖基化,并继而在商业规模体积的培养基中培养所述细胞,例如,至少10升、更常见至少50升、优选至少100升或至少500升、以及最优选1,000升或更多。
本发明的润滑素包含多分散的润滑素单体单元形成二聚体和多聚体以及任选存在的游离单体。每个单元均被高度地且可变地糖基化,其中糖苷残基侧链贡献了其分子量的至少30%、常为35%或40%、以及可能高达45%或更高。
在天然人类润滑素中,糖基化由1型核心O-连接GalNAc-Gal(N-乙酰半乳糖胺-半乳糖)二糖(其至少60%在末端有唾液酸取代)、以及还有2型核心糖基化组成,所述2型核心糖基化在1型核心之外涉及在各种同分异构的构型中的GlcNac(N-乙酰葡萄糖胺)单糖(参见,例如Estrella等,Biochem J.,429(2):359-67(2010))。
本文中公开的所产生的重组材料与天然形式的人类润滑素相比富含1型核心聚糖。其糖基化包含至少95%的1型核心侧链,更可能是超过98%或99%。另外,所述侧链常常会被硫酸化至天然人类润滑素中未曾见过的程度。这将本发明的rhPRG4与天然hPRG4区分开。该提高的硫酸化含量被认为可以向粘液糖蛋白增加额外的负电荷,其可用于增强所述粘液糖蛋白抵制附近生物分子并由此提高其润滑性的能力,并且使分子结构紧绷,从分子角度使其更刚硬,这可以有助于发挥起降低纳米尺度和中尺度摩擦的能力。
全长(非截短的)润滑素单体序列(SEQ ID NO:1)在核心蛋白中包含1404个氨基酸,或者说大约151kDa。人类润滑素的信号序列是SEQ ID NO:1的残基1-24。因而,人类润滑素的成熟形式是SEQ ID NO:1的残基25-1404。如本文所公开的产生的重组产物的彻底还原会产生大约300kDa-460kDa表观分子量的单体种类,这是通过在许多分子量确定技术(包括SDS三羟甲基氨基甲烷醋酸盐3-8%聚丙烯酰胺凝胶电泳)中与分子量标准比较而评估的。使用质谱技术分析糖基化以及组合了其它操作表明,糖基化的重组单体的真实分子量(而不是从凝胶迁移率所推断)很可能是在220-280kDa的范围,且不太可能超过大约300kDa。在润滑素单体的序列中可能存在的作为O-连接糖基化位点的总共大约329个O-连接(其中284个为苏氨酸)中,有大量的可变和未知数量的被取代(100至150个,或许高达200或220)。在总的糖基化中,大约有一般包含两个糖单元(GalNAc-Gal),以及一半包含三个糖单元(GalNAc-Gal-唾液酸)。最丰富的形式是硫酸化的Gal-GalNac,次丰富的是唾液酸化的Gal-GalNac。
所述润滑素表达产物能够抵抗(但却并不能免除)断裂成单体或者二聚体的润滑素种类。彻底还原的结果表明单体单元之间和之内包含二硫交联。另外,用变性缓冲液处理(没有还原)可导致较低分子量的产物,表明了较高级别的四级结构,其中通过疏水相互作用、氢键、物理缠结和/或允许自我组装的其它非共价连结而将链保持在一起。所述二聚体和多聚体是多分散的(polydisperse)。其中的分子种类通常具有大约450-600kDa的分子量,以及多聚体种类常常是2,000kDa或更多。通常,非还原的复合物的一些种类在电泳实验中基本上不进入3-8%的SDS-PAGE凝胶。复合物更大的种类被认为是包含3至5个(或许可高达20个)单体单元。
不受理论局限,认为此类较大的超分子成分是作为单体/二聚体浓度的函数而形成的。目前,认为单体/二聚体至少大约0.5mg/ml的浓度对于较大复合物的自然形成是最佳的。比这低很多的浓度(例如低于大约0.1mg/ml)则包含单体和二聚体,而只有很少的量的复合物;比这高很多的浓度则可形成肉眼可见的聚集物成为雾状或絮状溶液。可以使用表面活性剂或者赋形剂来在形成复合物时防止大聚集物(其总是与二聚体的种类一起出现)的形成,所述表面活性剂优选一般认为是安全的生理学适用的非离子表面活性剂,例如基于聚氧乙烯的表面活性剂。
使用包含本发明润滑素的制剂进行的测试显示出,其在载荷下的润滑和组织保护性质可超过本领域内此前已知的重组润滑素。不受理论局限,本发明人推测,在未受润滑的载荷下交界面组织运动时发生粘滑现象的时候,本发明润滑素的涂敷可以将切力从下面的软骨表面转移至多分散的润滑素涂敷内的层。也即,本发明人认为,在载荷下和往复运动时,下表面经受较少的切力,保持其完整性,因为涂敷中的润滑素分子彼此覆盖,而在载荷去除后很可能会重新排列(参见,例如Lee等,PNAS,110(7):E567-574(2013))。该作者表明了,滑膜关节磨损并不与摩擦系数直接相关,但是更直接地与粘滑滑动相关,并且滑膜关节的不同分子成分协同作用来防止磨损。
在任何情况下,本发明的润滑素产物,在接受测试时,呈现出卓越的润滑性质,导致摩擦系数(静态和动态的)常常位于纯化的天然牛润滑素的系数的150%、120%、110%之内或者基本上与之相等(通过本文公开的软骨对软骨的润滑测试来测定)。在这些测试中,本发明的类人糖蛋白实现了静态摩擦系数位于或低于0.5和低于0.2(取决于本文所公开的测试条件),以及动态摩擦系数常常位于或低于大约0.1,二者都是通过在体外减压软骨对软骨的载荷而进行测量(具有固定接触面积)。当与透明质酸(HA)组合时,这些值提高至对于静态测量的低于大约0.3以及低于0.1(取决于保压时间(dwell time))以及对于动态测量的低于0.1,很接近于滑液可接受的值。因而,此类组合物可以显著减少滑膜关节磨损。
因此,本发明的一个方面包括用于润滑素的商业生产的方法。在一个实施方案中,所述方法包括以下步骤:在培养基中培养中国仓鼠卵巢(CHO)细胞,所述中国仓鼠卵巢(CHO)细胞转染有人类PRG4基因,并且其在足以产生润滑素糖蛋白的时间里和条件下表达所述人类PRG4基因并对表达产物进行翻译后糖基化;和从所述培养基纯化润滑素糖蛋白。例如,在一些实施方案中,将所述润滑素糖蛋白与细胞外液中的宿主细胞蛋白和其它杂质分离,以至少部分地将其纯化。所述重组蛋白仅需要从培养基中富集,而不是纯化至均质性,以便纯化用于本发明方法的目的。所述方法足以产生这样的润滑素糖蛋白,其具有至少30%重量的糖苷残基在培养基中浓度为至少0.4g/L。
在一些实施方案中,所述CHO细胞是包含编码人类PRG4基因的核酸的CHO-M细胞。在其它实施方案中,所述CHO细胞转染有第一载体以及转染有第二载体,其中所述第一载体包含编码染色质元件的核酸,而所述第二载体包含编码人类PRG4基因的核酸。所述染色质元件可以是边界元件、基质附着区、基因座控制区、或通用染色质开放元件(universalchromatin opening element)。在优选的实施方案中,所述染色质元件是基质附着区。
在另外的实施方案中,所述CHO细胞转染有第一载体以及转染有第二载体,所述第一载体包含编码染色质元件和编码人类PRG4基因的核酸,而所述第二载体包含编码染色质元件和编码人类PRG4基因的核酸。在优选的实施方案中,所述第一和第二载体中的染色质元件是基质附着区。
在一些实施方案中,所述二聚体或多聚体润滑素糖蛋白重量的至少30%、至少35%、至少40%、或至少45%是糖苷残基的重量。在一些实施方案中,所述二聚体或多聚体润滑素糖蛋白重量的超过30%、超过35%、超过40%或、超过45%是糖苷残基的重量。所述糖苷残基可以与天然人类润滑素的那些不同,因为重组类人润滑素的糖基化至少90%、至少95%、或至少99%的重量为1型核心糖基化。另外,在一些实施方案中,与天然人类润滑素相比所述糖苷残基富含硫酸化的单糖。
所述方法出乎意料地能够产生具有商业效益的量的全长润滑素糖蛋白。例如,可以在足以产生这样的润滑素糖蛋白的时间里和条件下培养所述细胞,所述润滑素糖蛋白在培养基里的浓度为每升培养基至少约0.4克或0.5克重组润滑素、优选每升培养基至少0.8克、以及最优选每升培养基至少1.0克的润滑素,例如,在至少约10、50或100升的培养中。所述方法经优化后可以在每升的培养基产生多达2.0、至少2.5、或至少3.0克的润滑素。基于优化的纯化方案的开发,将可能会获得每升至少约200毫克的纯化重组润滑素、优选至少300mg/L、更优选至少500mg/L、以及最优选可以获得更多。就申请人所知,此前在任何类粘液素蛋白(或者大小上与润滑素相当的蛋白)的重组表达中都从未实现这些水平的生产力,并且表达PRG4的尝试也从未成功产生具有本文所述产品的性质的材料。
在优选的实施方案中,单体润滑素种类常常从培养基中与多聚体蛋白种类混杂在一起被共同纯化出来。所述多聚体种类富含二聚体润滑素种类。例如,在一些实施方案中,所述方法产生这样的重组润滑素的混合物,其包括单体、二聚体、和多聚体润滑素种类。在一些实施方案中,所述润滑素糖蛋白包含至少5个经二硫键或者经非共价连结的个体糖基化氨基酸链,并且具有至少1200kDa的分子量。
根据本发明的方法所产生的糖蛋白,在使用下文所述方案进行测试时,产生出接近纯化天然哺乳动物润滑素所曾观测到的最低值的摩擦系数。例如,在一些实施方案中,所述重组润滑素糖蛋白是这样的多聚体蛋白蛋白,其在软骨对软骨摩擦测试中测量的所产生的静态摩擦系数不超过纯化的天然牛润滑素静态摩擦系数的150%。在其它实施方案中,所述重组润滑素糖蛋白是这样的多聚体蛋白,其在软骨对软骨摩擦测试中测量的所产生的静态摩擦系数不超过纯化的天然牛润滑素静态摩擦系数的120%。在另外的实施方案中,所述重组润滑素糖蛋白是这样的多聚体蛋白,其在软骨对软骨摩擦测试中测量的所产生的静态摩擦系数不超过纯化的天然牛润滑素静态摩擦系数的110%。
本发明的另一方面涉及在宿主细胞培养中从人类PRG4基因表达的重组多聚体润滑素糖蛋白的组合物。所述重组润滑素糖蛋白至少30%重量为糖苷残基,并且在软骨对软骨摩擦测试中测量的所产生的动态摩擦系数不超过纯化的天然牛润滑素动态摩擦系数的150%。
在一些实施方案中,所述重组润滑素糖蛋白重量的至少35%、至少40%、或至少45%为糖苷残基。
在一些实施方案中,在软骨对软骨摩擦测试中,所述重组润滑素糖蛋白产生不超过纯化的天然牛润滑素的动态摩擦系数的110%或不超过其120%的摩擦系数。
在一些实施方案中,所述重组润滑素的糖苷残基与天然人类润滑素的糖苷残基的不同在于,所述重组润滑素的糖基化重量的至少90%、至少95%、或至少99%为1型核心糖基化。另外,在一些实施方案中,与天然人类润滑素相比所述重组润滑素的糖苷残基富含硫酸化的单糖。
在一些实施方案中,所述重组润滑素是单体、二聚体和多聚体种类的混合物。在一些实施方案中,所述润滑素包括单体种类。在一些实施方案中,所述润滑素包括二聚体的种类。在一些实施方案中,所述润滑素包括多聚体种类。在一些实施方案中,所述润滑素是多聚体单体种类的混合物。
在一些实施方案中,所述润滑素糖蛋白包含至少5个经二硫键或者经非共价连结的个体糖基化氨基酸链,并且具有至少1200kDa的分子量。
在一些实施方案中,重组润滑素糖蛋白的组合物还包含与所述润滑素糖蛋白混杂的透明质酸或其盐。
在另一实施方案中,本发明涉及包含溶液的组合物,所述溶液包含100克的人类润滑素,其中所述润滑素的糖基化至少99%的重量为1型核心糖基化。在一个实施方案中,所述润滑素是重组人类润滑素。在另外的实施方案中,所述溶液中润滑素的浓度为至少0.5g/L。在另外的实施方案中,所述溶液是细胞培养基。
本发明的组合物可用于制备药物,所述药物用于任何已知的或此后发现的PRG4糖蛋白的医疗或其它用途,包括作为用于与身体接触的各种设备的涂层(参见,例如美国专利申请号2009/0068247和2011/0142908);用于通过滑膜关节润滑的增强而在人类或动物中治疗滑膜关节(美国专利申请号2004/0229804)或者粘弹性物补充疗法(美国专利申请号2008/0287369);用于局部应用于组织表面,例如,在手术期间抑制粘连或纤维性结缔组织的随后形成(美国专利申请号2004/0229804);用于治疗干眼病(美国专利申请号2011/0059902);用于治疗口干症(美国专利申请号2013/0039865);用于治疗间质性膀胱炎(美国专利申请号2012/0321693);作为阴道润滑剂(美国专利申请号2012/0052077);用于隐形眼镜护理和储存溶液(美国专利申请号2012/0321611)或者用于全身注射以便,例如抑制细胞-细胞粘连或者在脉管内的运动(参见,例如2013年11月26日提交的美国临时申请61/908,959)。
附图简述
图1和2是用于开发表达润滑素的CHO-M克隆(用于本发明的方法并编码hPRG4全长序列)的载体的质粒图谱。
图3和4描绘了可用于评估本发明的重组人润滑素结构的聚丙烯酰胺凝胶。
图5是一次润滑素生产过程的生产力的图示,该生产过程测量每升转染的CHO-M细胞培养物随时间所产生的润滑素毫克数。在每个收获日期有三个柱状图。左侧的柱状图为“标准曲线24Jun 14”,中间的柱状图为“标准曲线24Jul 14”,而右侧的柱状图为“标准曲线25Jul 14”。
图6是显示本发明重组人润滑素的1型核心聚糖的示意图。
图7是色谱图,其中峰被标记,显示出从本发明的重组人润滑素中的SER和THR残基上垂下的各种二糖和三糖的相对丰度。
图8是示意图,其显示了扩展至从人类滑液提取的天然润滑素上的2型核心结构的更大范围的聚糖。
图9是色谱图,其中峰被标记,显示出天然人类润滑素中各种糖残基的相对丰度。
图10A、10B、和10C是表面张力对比rhPRG4和/或聚氧乙烯表面活性剂浓度的制图,显示出随着rhPRG4浓度的升高表面张力的降低。
图11A和11B示出数据,将rhPRG4溶液的静态(图11A)和动态(图11B)摩擦系数与纯化的天然牛PRG4、盐水(PBS)、和牛滑液比较,其中两种PRG4制剂均为450μg/mL。标注a、b、和c表示结果中统计学显著的差异(p<0.05),n=7。在rh-PRG4(重组的)和nPRG4(天然的)的结果中没有统计学显著的差异,由图11B中每个柱状图上存在的“b”所表明。
图12A-B示出数据,将HA加上rhPRG4溶液的静态(FIG.12A)和动态(图12B)摩擦系数与盐水、仅有rhPRG4、和牛滑液比较,其中rhPRG4为450μg/mL而HA(1.5MDa)为3.33mg/mL。图12B中每个柱状图上的标注a、b、c、和d表示结果中统计学显著的差异(p<0.05),n=4。
图13示出数据,显示在消化天然牛PRG4并应用rhPRG4之后于交界面牛组织表面的润滑性重建。
图14A-D示出数据,显示盐水中300μg/ml的天然牛PRG4和rhPRG4、和仅有盐水时,rhPRG4在人类眼角膜-眼睑交界面(图14A-静态,图14B-动态)和人类眼角膜-PDMS(图14C-静态,图14D-动态)交界面处对界面润滑的作用。数值为均值±SEM(n=6),其中眼角膜-眼睑(AB)和眼角膜-PDMS(CD)交界面的平均正向应力(normal stress)分别为14.1±2.2和16.9±5.3(均值±SD)。这些数据表明了rhPRG4与纯化的天然PRG4在低载荷润滑任务中几乎相同的润滑性质。
图15是全长人类润滑素的氨基酸序列,其长度为1404个氨基酸。信号序列残基(1-24)以粗体显示。
图16是编码全长人类润滑素的核酸序列。
发明详述
本发明人研究了使用重组DNA技术生产已知人类润滑素糖蛋白的选择,目标在于产生这样的生产方法,其中涉及在无血清生长培养基中运用哺乳动物细胞进行的悬浮培养。与申请人熟知的使用重组DNA技术产生蛋白的之前的尝试不同,挑战在于产生商业量的这样的复杂的、大的生物聚合物,其价值在于其纳米尺度的机械性质,而不是其生化性质,并且这些物理性质依赖于翻译后糖基化以此前从未在改造的细胞中观测到的尺度成功进行。
此前重组产生全长润滑素的尝试每升的量仅仅曾产出低数量的毫克,而需要的是每升产生至少约1-2克的方法。对文献的综述表明尚无成功在商业规模重组产生全长的适当糖基化的润滑素的报道,也没有商业规模表达任何粘液素或类粘液素蛋白的报道。检索确实显示有报道提出此类高度糖基化的糖蛋白作为润滑素很难表达。参见,例如美国专利号7,642,236,其中提到:“为了优化表达参数并研究所有大约76-78个类似KEPAPTT的序列的功能必要性,设计了润滑素表达构建物,其使得能够合成具有变化程度的O-连接寡糖取代的重组润滑素蛋白”。表达截短的润滑素构建物的重组细胞系的生产力数据在该专利中没有公开。
本发明人寻找并最终获得了瑞士日内瓦的Selexis S.A.来产生表达润滑素的克隆培养物,这部分地基于报道的Selexis技术的能力(涉及表观遗传调节因子的表达,以增强难以表达的蛋白的生产)(参见Selexis美国专利号7,129,062和8,252,917以及美国专利申请公开号2011/0061117、2012/0231449和2013/0143264,其公开内容援引加入本文;Girod等,Nat Methods 4(9):747-53(2007);Harraghy等,Curr Gene Ther.8(5):353-66(2008))。
Selexis技术的应用导致了成功表达润滑素的克隆的开发。分析之后,进行规模扩大和纯化,发现了新开发的重组生产过程导致了此前从未有描述过的、多聚体的、高度和差异糖基化的类人润滑素形式,并且产量对于此类高度糖基化的、高分子量的类粘液素糖蛋白而言也是出乎意料的水平。对于富含新的重组润滑素形式的制剂所进行的测试证明了出乎意料的性质,并且使得可以产生具有改善的生理学适应性的组织润滑组合物。
重组人润滑素(rhlubricin)制备过程
宿主细胞
产生Selexis克隆的工作是使用其专有的CHO-M细胞系来完成的,该细胞系含有基于DNA的元件控制染色质的动态组织,所谓的基质附着区。所述CHO-M细胞系是中国仓鼠卵巢细胞系衍生自CHO-K1细胞(ATCC,Cat.#CCL-61,Lot.4765275),其适应无血清培养条件并用于产生重组蛋白。参见Girod等,Nat Methods 4(9):747-53(2007)和上文提到的Selexis的美国专利和出版物,其涉及使用基质附着区(MAR)的MAR方法用于开发稳定高表达的原核细胞系如CHO、以及涉及经转染表达蛋白的细胞所述蛋白参与表达产物穿过ER膜的移位和/或穿过细胞质膜的分泌。CHO-M被用于产生治疗性重组蛋白并且允许更高的和更稳定的表达。其使用使得可以分离出展现期望的、高水平表达(用于产生重组蛋白)的克隆。
基质附着区(“MAR”)是以高亲和力结合分离的核骨架或核基质的DNA序列(Hart等,Curr Opin Genet Dev,8(5):519-25(1998)。由此,它们可以定义独立染色质结构域的边界,从而只有所涵盖的顺式调控元件控制结构域内的基因的表达。已经有显示MAR序列与增强子相互作用以提高局部的染色质可接近性(Jenuwein等,Nature,385:269-272(1997)),并且可以在细胞培养系里增强异源基因的表达。携带有鸡溶菌酶5’MAR元件的质粒与一或多个表达载体的共转染会导致提升的稳定转基因表达(显示出产生与对照构建物相比提高20-倍的表达)。
MAR是本文引用的Selexis申请和出版物中公开的一种类型的“染色质元件”(本文中也称作Selexis遗传元件或SGE)。染色质元件或SGE用于防止围绕着异源基因整合至宿主染色体位点的染色质影响所整合的基因的表达水平。染色质元件包括边界元件或者隔离元件(BE)、基质附着区(MAR)、基因座控制区(LCR)、以及通用或者遍在的染色质开放元件(UCOE)。一旦表达载体整合至宿主细胞染色体中,则SGE使染色质成型并因而使转基因保持在高度转录活性状态。
所述CHO-M宿主细胞在SFM4CHO培养基(HyClone)中培养,其中补加了8mM的L-谷氨酰胺、次黄嘌呤和胸苷(1x HT,Invitrogen)。细胞在潮湿的温育器中于37℃和5%的CO2下保持搅动(120rpm,25mm滑动(stroke))。
载体构建
将编码全长1404AA人类润滑素蛋白的PRG4基因(SEQ ID NO:2)插入到了商业可购买的质粒载体中(Selexis S.A.专有)(Geneva,Switzerland)以用于在哺乳动物细胞中增强的基因表达。编码全长人类润滑素的另一个序列可以从GenBank登录号NM_005807.3获得。
构建了两个表达载体。润滑素基因被克隆至携带有嘌呤霉素抗性的载体以及另一个携带有潮霉素抗性的载体中。包括嘌呤霉素抗性的载体命名为pSVpuro_C+_EF1alpha(KOZAK-ext9)EGFP_BGH pA>X_S29(2*HindIII,SalI填充)(Mw=9861)。包括潮霉素抗性的载体被命名为pSVhygro_C+_EF1alpha(KOZAK-ext9)EGFP_BGH pA>X_29(2*HindIII,SalI填充(Mw=10299)。所述表达载体含有来自转座子Tn3(AmpR)的细菌β-内酰胺酶基因(赋予了氨苄青霉素抗性),以及细菌ColE1复制原点。作为pGL3Control(Promega)的衍生物,表达载体的终止子区域含有SV40增强子(位于多腺苷酸化信号的下游)。每个载体还在表达盒的下游包括一个人类X_29SGE以及在SV40启动子控制之下的整合的嘌呤霉素或潮霉素抗性基因。X_29SGE是指Selexis遗传元件(“SGE”),在此情形中是基质附着区(MAR),其在本文引用的Selexis申请和出版物中公开。两种表达载体均编码在hEF-1-alpha启动子结合CMV增强子的控制下的感兴趣的基因(PRG4)。质粒通过测序验证。
携带有嘌呤霉素抗性基因和携带有潮霉素抗性基因的载体的质粒图谱分别在图1和图2中示出。
转染
使用定义为CHO-M细胞脉冲条件(1250V,20ms和3脉冲)的MicroPoratorTM(NanoEnTek Inc.,Korea)来通过微穿孔而转染所述细胞。使用了并行的GFP表达载体来控制转染效率,并显示出转染效率在50-70%之间。首先用嘌呤霉素PRG4表达载体转染所述CHO-M细胞,并通过在含有嘌呤霉素的培养基上的培养来筛选经稳定转染的细胞。更具体而言,将稀释液分配至96-孔平板上,在接下来的一周通过向所有孔添加100μL的新鲜培养基(SFM4CHO培养基,补加有8mM的L-谷氨酰胺、1x HT包括5μg/mL的嘌呤霉素)来进行给料。通过将完全的细胞悬液从相应的96-孔转移至24-孔平板(用相同培养基预处理)的一个孔,而在铺板后的15天将27个小汇集(mini汇集)重置于24-孔平板。在4天之内分析了24-孔的悬液并且将14个小汇集转移至6-孔平板(1mL细胞悬液+2mL新鲜培养基(包括筛选))。3天后通过悬液以及在离心管(5mL工作容积)中收集而将8个表达最好的小汇集进行了扩展,并在3天后在搖瓶(20mL工作容积)中进行培养。在保存前进行了随后的一次传代。
在搖瓶中扩展了抗性细胞的汇集,以产生初步研究所需的材料(总管1-2mg).通过将细胞培养物在800g离心5min而获得了无细胞培养基样品。通过斑点印记分析而测定了重组PRG4的表达。将10微升的无细胞培养基(浓缩的样品)应用于PVDF膜(Millipore)上并使样品干燥成斑点。通过将PRG4从80μg/ml系列稀释至2.5μg/ml而创建了PRG4标准物。通过针对PRG4的润滑素合成肽的单克隆抗体(Pierce)的措施来检测重组PRG4。
接下来用来自性能最佳的小汇集的细胞进行了超转染(对已经过筛选的小汇集群体进行额外的转染),其中施用第二种筛选标记,所述潮霉素抗性盒。使用了上文所述的相同转染方案。在此第二次转染后1天,在SFM4CHO培养基中开始了筛选,也补加了8mM的L-谷氨酰胺和1x HT,但还包括1000μg/mL的潮霉素。在更换培养基后,4天内将3个汇集转移至6-孔平板;4天后将全部3个(3)汇集扩展至离心管(5mL工作容积)并在三天内扩展至摇瓶(20mL工作容积)。
克隆生成
继而在多个以及系列的实验中将超转染的汇集进行培养并分析生长潜力,以尝试将细胞性质最大化。
在第一个实验中,在100细胞/mL的浓度更换培养基之后,将三个超转染的汇集(命名为P01ST、P05ST、和P14ST)转移至6-孔平板(每个汇集两个平板),于半固态培养基(2xSFM4CHO培养基(HyClone)和CloneMatrix(Genetics)中,包括8mM的L-谷氨酰胺,1x HT和细胞Boost 5TM(HyClone),(无筛选)。16天之后对铺板的细胞进行了筛选,(ClonePixTM系统(Molecular Devices)),且挑选了22个候选并转移至96-孔平板(具有上文所述的生长培养基(但是无筛选))。6天后将全部18个生长的候选重置至24-孔平板,其中是通过将完全的细胞悬液从相应的96-孔转移至24-孔平板的一个孔(经1mL的培养基预处理)。在3天内分析了24-孔上清,并将12个候选转移至6-孔平板(1mL细胞悬液+2mL新鲜生长培养基(包括筛选))。5天后将7个最佳表达的候选扩展至离心管(5mL工作容积)内培养基(无筛选)中的悬液培养中,并在5天内扩展至摇瓶(20mL工作容积)中。
所有的细胞系都被保存起来。在摇瓶(接种3x105细胞/mL,20mL培养容积)内于分批给料培养(给料策略-16%的原始体积的CB5溶液(HyClone),52mg/mL,在第0、3、4、5、6、7天给料)中比较了3个最佳候选的性能。在第8天,所述培养物含有4.22x 106至4.95x 106细胞/mL以及94%至96%的活力。对这些汇集的细胞群体进行了计数并稀释用于单一细胞铺板(浓度1细胞/孔,2个平板)。在11天后通过向每孔添加100μl的生长培养基来对单一细胞群(single colony)进行给料(无筛选)。在17天后,将99个克隆重置于24-孔平板中,其中是通过将完全的细胞悬液从相应的96-孔转移至24-孔平板的一个孔(经1mL的培养基预处理)。在4天内,24个被转移至6-孔平板(3mL的新鲜生长培养基包括筛选)。4天后8个克隆被扩展至离心管(5mL工作容积)中的悬液培养,并且在一次培养基更换(SFM4CHO培养基,补加有8mM的L-谷氨酰胺和1x HT)之后所有8个克隆都被扩展至摇瓶(20mL工作容积)。在保存所有候选前进行了随后的一次传代。
使用分批给料培养(给料策略16%的原始容量CB5溶液(HyClone),52mg/mL,在第0、3、4、5、6、7天给料),在摇瓶(接种3x 105细胞/mL,20mL培养容积)中对5个最佳候选的性能进行了比较。在第3天各个培养物中的细胞数目范围在1.61x 106至3.46x 106细胞/mL,翻倍时间范围在19.8至30.7小时)。在第8天,细胞的浓度范围在4.02x 106至9.48x 106细胞/mL,其中细胞活力范围是88.6%至97.7%。
在第二个实验中,将3个不同的超转染的汇集(命名为P14STcp08、P05ST11和P14ST33)用上文所述的相同的程序处理。这导致了4个克隆细胞系。再次,这些克隆的性能在摇瓶中进行了比较,导致在第8天细胞浓度的范围是3.5x 106至9.48x 106细胞/mL并且活力为75.3%至88.1%。
来自上文所述的ClonePixTM系统筛选的第一轮的克隆(P14ST15)(其在第8天展现出6.03x 106细胞/mL以及95.5%的活力)在摇瓶(20mL工作容积)中进行了解冻。在一次随后的传代之后,该候选被转移至单一平板(以200细胞/mL的浓度(1个平板)),于上文所述的半固态培养基外加CloneMatrix中,包括8mM的L-谷氨酰胺,1x HT和细胞Boost 5TM,无筛选。12天后使用ClonePixTM系统对铺板的细胞进行了筛选,挑选了84个克隆并转移至96-孔平板(无筛选)。通过向每孔添加100μl的生长培养基来对单一细胞群进行了给料。96-孔上清的筛选在铺板后18天进行。最佳的24个生长的克隆被重置于24-孔平板,其中是通过将完全的细胞悬液从相应的96-孔转移至24-孔平板的一个孔(经1mL的培养基预处理(无筛选)。在3天内,分析了24-孔上清,并将12个克隆转移至6-孔平板(1mL细胞悬液+2mL新鲜的生长培养基(包括筛选))。4天后将6个最佳表达的克隆扩展至离心管(5mL工作容积)中的悬液培养,以及在4天内扩展至摇瓶(20mL工作容积)。在保存前进行了随后的两次传代。保存了6个克隆细胞系。
如上文在摇瓶中比较了6个最佳候选的性能。在第8天,细胞密度范围在9.04x 106至6.40x 106细胞/mL之间,并且活力在74.6%至93.1%之间。
冷冻保存和测试
在所述克隆汇集的多次传代后(从6至31),以6x106细胞/小管来将所述汇集冷冻保存在小管中并储存于液氮中。通过使用Gem支原体检测试剂盒(MinervaBiolabs)确认了所有细胞系都没有支原体。根据厂商方案接种并温育无菌性测试(Heipha,Caso-Bouillon TSB)。确认了所有小汇集和超转染的小汇集的无菌性。
放大培养
选择了命名为P05ST11-cp05的细胞系用于放大。对于200升的运行,使用了如下条件和方案:
在200升的培养中从第1天至第8天,rhPRG4的表达与存活细胞密度(VCD)一起提高。VCD在第8天进入平台期,继而开始下降,这在一旦条件对于密集细胞培养系统的代谢需求不再是最佳时是通常可见的。尽管如此,rhPRG4的表达依然不减退,并且其表达在VCD为12-14x 106细胞/ml的培养系统中于培养的第13天达到了最大浓度。图5显示了重组润滑素随着时间的累积量,其是使用HPLC作图的曲线下面积测量的,并通过与样品系列稀释的HPLC纯化(认为至少99%的纯润滑素)所制成的三个不同的标准曲线比较而进行解读。如所示,此过程估计重组润滑素的生产接近2.5g/ml。另外的生产运行在由各种技术测量时其表现产量有变化。由竞争性ELISA测量的一个运行产生了1.5g/升水平的润滑素。另一个产生了1.4g/升的读数。
重组PRG4的纯化
开发纯化方案的目的是要在与杂质分离时保留所表达的润滑素产物及其多聚体复合物的润滑功能、避免聚积、以及保持高产量。这由于如下原因而成为挑战:润滑素的重度糖基化、其高分子量、其抗粘连和表面润滑性质、以及其随着纯度提高而形成复合物和聚集形成不可溶微粒的倾向。早前的实验表明,由于所收获的培养基中润滑素滴度很高,因而可能必需要流通模式的色谱来避免纯化损失。开发了一种策略,通过色谱吸附提取杂质而将润滑素产物保留在流通物中。在开发过程中,发现产量对于所使用的非离子表面活性剂成分很敏感,如例如,失水山梨醇月桂酸酯的聚氧乙烯衍生物。润滑素汇集中此种表面活性剂的缺失导致在色谱分离步骤后的超滤/渗滤以及0.2μm过滤期间产物的显著损失。只要使用0.1%重量的表面活性剂即可大大提高产量。通过试错,发现较低浓度的表面活性剂成功保留了功能并改善了产量。
在纯化过程中所使用的非离子表面活性剂之外,生理学相容形式的赋形剂,如[(3-胆酰胺丙基)二甲基氨基]-1-丙磺酸(CHAPS)和/或赖氨酸,可以与本发明润滑素的溶液混合并且可以对稳定溶液有益处,例如,避免或者减少含有超过0.4或0.6mg/ml浓度的溶液中润滑素的聚积。
迭代测试导致了下文所示的纯化过程的开发。
通过沉降所澄清的培养基(100mL)用5mL的200mM Tris、40mM MgCl2、pH 8.2来稀释,并与400单位的Benzonase(250units/μl,Novagen)混合来去除可溶的多核苷酸。该溶液在室温混合4小时,继而与37.8g的尿素混合以将尿素的浓度调节至6M,并导致120mL的溶液。为此加入了1N的NaOH以将pH调节至11以及0.01%的Tween 20(失水山梨醇月桂酸酯,Sigma)。
经Benzonase处理后的材料接着用GE Q Big BeadsTM的阴离子交换树脂(pH 11)处理,其中存在6M的Urea和0.01%的Tween 20并且以流通(FT)模式运行,其中杂质结合至树脂而产物却不结合。该柱首先用0.1N的NaOH来清洁;接着充入100mM的NaPO4、1.5M的NaCl、pH 7.2;并用200mM的Tris-Borate、6M的尿素、pH 10再平衡。30ml容积的(XK 26x 6cm)柱接着装载120ml溶液(4ml/ml树脂20ml/min的流速(240cm/hr),随后用平衡缓冲液-100mMTris-Borate、100mM NaCl、6M尿素、0.01%Tween 20、pH 11来洗涤。装载之后一会儿,通过洗涤收集产物(290mL总体积)直至加入脱离溶液(strip solution)0.1N NaOH+1M NaCl。
用1M的柠檬酸将此种部分纯化的流通物润滑素汇集进行pH调节至pH=7.5,并穿过羟磷灰石柱(BioRad CHT),柱体积–14ml(XK 16x 7cm),柱载荷–21ml装载/ml树脂,流速=10ml/min(300cm/hr)。该柱首先用0.1N NaOH的1M NaCl清洁,充入500mM NaPO4,pH 6.5;用500mM NaPO4/6M尿素,pH 7.4再平衡;并载入来自上述步骤的290mL流通物。这之后是用平衡缓冲液洗涤(15mM NaPO4,6M尿素,0.01%Tween 20,pH 7.4),以产生305ml的含有产物的流通物(flow-through)。
用1M的柠檬酸将来自羟磷灰石柱的流通物调节至pH 4.8并用水稀释,继而穿过GESP Big Bead树脂,柱容积–6ml(XK 1.6x 3cm),柱载荷–58ml载荷/ml树脂,流速=6.7ml/min(200cm/hr)。该柱首先用0.5N NaOH清洁,充入100mM NaPO4,1.5M NaCl,pH 7.4;用50mM柠檬酸钠/6M尿素,0.01%Tween 20,pH 4.8;并载入来自上述步骤的350mL的流通物。随后是用平衡缓冲液、50mM柠檬酸钠/6M尿素、0.01%Tween 20、pH 4.8洗涤,以产生378ml的含有产物的流通物。继而用10N NaOH(pH 7.2)将所述流通物中和。
为了浓缩以及更换缓冲液,使用50kDa分子量截断值的TangenX 0.01m2平片膜(TangenX技术Corporation)、LP筛选通道来过滤阳离子交换后的流通产物汇集。渗滤缓冲液为10mM NaPO4、150mM NaCl、pH 7.2(PBS)和0.1%Tween 20。在用0.1N NaOH清洁后;用MilliQ水清洗;并用10mM NaPO4、150mM NaCl、pH 7.2平衡,该膜以15,000ml/m2进行载荷;穿流(Cross-flow)70ml/min;跨膜压=6-7psi;渗透流=5-6ml/min以将溶液浓缩至50ml。
最后,经UFDF后的产物汇集通过Sartorius Sartopore 2、150-0.015m2的膜而经受0.2μm的过滤,其中膜载荷为~17,000ml/m2,以及流速为45-50ml/min。所述膜首先用10mM的NaPO4、150mM的NaCl、pH 7.4来准备好,继而对产物进行过滤,随后是用~40ml的缓冲液的追踪过滤器(chase filter)并且最后该过滤器被排干。
目前正在检验另外的赋形剂,以改进从UFDF和0.2um的过滤处回收最终纯化的产物。此过程可以从每升收获的培养基产生大量的产物(至少96%的纯度)。另外的纯化策略是本领域技术人员了解的。
润滑素产物的表征
电泳
全长润滑素氨基酸骨架的分子量为150,918道尔顿。分子和分子间的糖基化程度和类型不同。本文中作为二聚体的种类制备的重组PRG4被认为是具有超过大约450kDa的平均分子量。单体应具有220-280kDa的分子量,且不超过大约300kDa。
图3示出了rhPRG4的考马斯亮蓝染色凝胶(Tris-Ac 3-8%SDS-PAGE聚丙烯酰胺凝胶电泳系统,Invitrogen),非还原的(作为纯化的)和还原的和烷基化的。所有编号的条带都通过MS/MS确认为润滑素,具有匹配人类PRG4的氨基酸序列(UniProt登录号Q92954:SEQ ID NO:1)。如所示,如上文所述产生的重组润滑素(NR)含有具有~460kDa的大约分子量(通过与分子量标准比较而估计)的主要条带,一个条带稍稍在之上,以及一个条带在凝胶的顶端未能迁移进入该凝胶。
翻译后加工成分的鉴别是用神经氨酸苷酶(NaNase 1)和O-糖苷酶DS同时消化rhPRG4来完成的,其暴露出rhPRG4的氨基酸核心的分子量(如图4中标记为L-NO的泳道内所示)。该核心的预测分子量为151kDa,其通过此4-12%的SDS-PAGE而实验确认。仅用神经氨酸苷酶消化对分子量有降低作用,说明糖基化对神经氨酸是不完全覆盖。用O-糖苷酶DS(其去除O-连接β(1-3)GalNAc-Gal残基)和神经氨酸苷酶消化表明该批蛋白大致上30%的重量被糖基化。仅用O-糖苷酶消化可能仅在去除一些未覆盖的GalNAC-Gal残基时有作用。
糖基化分析
为了进一步表征此蛋白,对来自重组润滑素和正常滑膜润滑素的O-聚糖进行了质谱分析和比较。简言之,使用DEAE色谱从滑液分离了滑膜润滑素。在转移至PVDF膜之前,使用3-8%三羟甲基氨基甲烷醋酸盐凝胶通过SDS-PAGE来分离重组和滑膜润滑素。继而通过还原性β-消除随后清除而从所述润滑素斑点释放O-聚糖用于LC-MS/MS分析。在MS/MS分析前O-聚糖通过多孔石墨化碳色谱来分离,其中是在线性捕获质谱上以负离子模式使用依赖于数据的方法(LTQ(Thermo Scientific))。
重组润滑素样品的分析仅鉴别出1型核心O-聚糖结构(图6)。展示所鉴别的聚糖的提取的离子色谱在图7中示出。唾液酸化的结构,[M-H]-675,显示为两个主要的峰。它们是相同的异构体,滞留时间21.4min的第二个峰是β-消除过程中创建的化学衍生物。鉴别出了3个硫酸化结构([M-H]-464)的异构体。还鉴别出了单硫酸化单唾液酸化结构的几个异构体。二唾液酸化的结构的丰度很低且不能在色谱中观察到。对所鉴别的每种聚糖的比例的估计在表1中示出(对于糖结构的关键,参见图6)。此分析组合了表1中每种结构的所有的异构体、衍生物和加合物。
表1.在重组润滑素上所鉴别的每种聚糖的百分比。该数据包括表中所列的每种结构的所有异构体、衍生物和加合物。
正常人类滑膜润滑素具有较大范围的聚糖延伸至2型核心结构中(图8)。这些结构中最富集的在图9中示出(提取离子色谱上)。
重组人润滑素的糖基化模式与天然人类糖蛋白有很大差异,这可以容易理解,例如,从图7与图9的比较。在天然滑膜润滑素上,唾液酸化的1型核心结构是最富集的聚糖,但是存在各种类型的显著量的2型核心糖基化,以及仅仅少量的硫酸化的多糖。在重组糖蛋白上,唾液酸化的和未修饰的1型核心构成了聚糖的超过半数,而硫酸化的1型核心结构构成所鉴别的O-聚糖的大约三分之一,其中鉴别出了所有三种可能的异构体。
重组人润滑素的物理化学性质
类表面活性剂(两亲性)性质
rhPRG4的一种重要贡献是其通过物理化学吸附而涂敷生物和非生物表面的能力。天然PRG4是表面活性的,并且掺入了由大的类粘液素结构域分隔的末端球状结构域。这些可以在其结构中分为极性和非极性结构域。中心粘液素结构域(如人类滑液润滑素的表面力仪器研究所显示的),可以折叠回其自身,表明在实现了此种取向时糖基化是朝外的。整体而言,粘液素结构域变得比其N或C末端都更加亲水。其重要性通过了解糖基化的消化回去除润滑能力而得以确认(Jay等,J Glycobiol 2001)。此种两性分子特性也存在于rhPRG4中。这可以通过对脂和水交界面之间界面张力降低的评估来进行测量。
在使用本发明的方法而设计用于测试重组人润滑素的表面活性剂性质的实验中,在PBS溶液中存在浓度增加的rhPRG4(其由未稀释的、疏水的环己烷所覆盖)。将置于含有rhPRG4的水亚相的Du Noüy环向上拉,并记录了该环突破交界面的临界张力在Attension Sigma 702ET张力计中对每个浓度收集5次测量。针对将rhPRG4浓度的剂量反应曲线作图,参见图10A。如所示,随着含PBS的水亚相中rhPRG4浓度的提高,界面张力降低。
因为重组人润滑素溶液含有残留的非离子表面活性剂(Tween 20),重复了该实验以研究这是否是造成添加重组产物后所诱导的表面张力大幅下降的原因,首先仅使用各种浓度的表面活性剂,继而使用很低浓度的本发明的rhPRG4。将微升量的表面活性剂和PRG4添加至15mL的水亚相。结果显示于图10B和图10C中。如所示,仅用PRG4(图10C)降低表面张力比仅用商业表面活性剂要好0.1%(图10B)。因而,含有0.1%Tween和不含有Tween的rhPRG4降低的PBS和环己烷的界面张力比仅用0.1%的Tween更多(所有的都具有相同量的添加的感兴趣溶液)。
这些数据显示,即便是在很低的浓度,rhPRG4优先位于水脂交界面,降低界面张力。此现象概括了在减少摩擦以及模拟天然润滑素行为时所需的表面结合相互作用。另外,减少界面张力的活性可以用作rhPRG4生产的质量控制程序。
润滑性质
软骨润滑
从骨骼成熟的牛后膝滑膜关节的髌股沟,准备了新鲜的软骨样品(n=16)用于摩擦测试(如此前所述的)。简言之,从软骨区块收获了内核(半径=6mm)和外环(外半径=3.2mm以及内半径=1.5mm),二者均具有中央孔(半径=0.5mm)使得流体可以泄压。在PBS中于4℃将样品严格清洗过夜以去除关节表面的残余滑液,并通过测试润滑的存在而对其进行了确认。继而将样品在具有蛋白酶抑制剂的PBS中于-80℃冷冻,解冻,再在PBS中摇动过夜以进一步清除表面处的任何残余PRG4。继而在第二天的测试前,将样品于4℃完全浸入大约0.3ml的各个测试润滑剂(下文所述)过夜,并在下次测试润滑剂中温育前,于每次测试后再用PBS清洗。
使用了Bose的测试仪器(ELF 3200,Eden Prairie,Minnesota)来分析每种PRG4形式以及对照的界面润滑能力,其中使用已经确立的软骨-对-软骨摩擦测试。简言之,将所有样品以0.002mm/s的恒定速率压至18%的总软骨厚度,并允许其应力松弛40分钟以使组织液泄压。继而将样品以已知的有效速度旋转以在泄压的软骨-软骨交界面保持界面模式润滑(0.3mm/s)(±2运转(revolutions))。在留在预滑动的1200、120、12和1.2秒的静止期之后,在每个随后的静止期之后旋转样品,+/-2运转。以相反的旋转方向重复测试顺序,-/+2运转。
两个测试顺序评估了rhPRG4的软骨界面润滑能力(单独以及与HA组合)。在两个测试顺序中,PBS都用作阴性对照润滑剂而牛滑液用作阳性对照润滑剂。rhPRG4和纯化的天然牛PRG4都在PBS中以450μg/mL的浓度制备,而HA(1.5MDA Lifecore Biomedical,Chaska,MN)也在PBS中以3.33mg/mL的生理浓度制备。润滑剂以推测的润滑能力次序(摩擦系数降序)来进行了测试。在测试顺序1中,rhPRG4vs.nbPRG4,顺序为PBS、rhPRG4、nbPRG4、滑液(n=7);在顺序2中,rhPRG4vs.rhPRG4+HA,顺序为PBS、rhPRG4、rhPRG4+HA、滑液(n=4)。
对于此前所描述的每个润滑剂,计算了两个摩擦系数;静态的(μ静态,Neq)(从静止状起始运动的阻力)和动态的(<μ动态,Neq>)(稳定滑动的阻力)。结果在图11和12中示出。数据以均值±SEM给出。使用了ANOVA来评估润滑剂的作用以及预滑动静止期作为μ静态、Neq和<μ动态,Neq>的重复因素,其中在1.2s的预滑动静止期对<μ动态,Neq>进行Tukey事后测试。用Systat12(Systat Software,Inc.,Richmond,CA)进行了统计学分析。
如图11中所示,所测量的重组PRG4的润滑性质、动态摩擦系数,与天然牛PRG4稍低的值之间没有统计学显著性。如图12中所示,与仅有rhPRG4相比,rhPRG4与HA组合改善了静态(图12A)和动态(图12B)润滑性。所有的测定都在PBS中最高而在牛滑液中最低,且rh-PRG4与rhPRG4+HA为中等。rhPRG4+HA的混合溶液趋向于比仅有rhPRG4显著更低的摩擦系数(p=0.075)并且在统计学上与牛滑液类似(0.021±0.001,p=0.20)。
也尝试了使用2小时的透明质酸酶消化来确保从要用作轴承(bearings)的牛软骨去除天然润滑素。透明质酸酶消化是要用于从软骨外植体的浅表层去除天然PRG4(P<0.050)。此种处理去除了表面PRG4而未显著影响关节软骨的机械特征。将rhPRG4应用于这些表面并比较对BSF和PBS对照的摩擦反应,这显示出使用本发明的rhPRG4可以重建低COF。图13显示经透明质酸酶处理的牛内髁软骨外植体(具有rhPRG4)的COF值,BSF和PBS作为居间润滑剂。根据上文所述的方案依照前述润滑剂测试了软骨外植体。如所示,重组类人PRG4重建了低COF(rhPRG4N=18;BSF N=6;PBS(N=8)。
眼睛表面润滑
具有3mm的巩膜的正常人类眼角膜得自Southern Alberta Lions Eye Bank。人类眼睑从来自卡尔加里大学的遗体捐赠项目的新鲜尸体获得。这些组织的使用许可以及批准从Health Research Ethics Board获得。将眼角膜(n=6)储存在4℃的基于硫酸软骨素的眼角膜储存介质(Optisol-GS)中并在两周内使用。眼睑(n=6)被冷冻并在使用时解冻。
通过3-8%的三羟甲基氨基甲烷醋酸盐NUPAGE十二烷基硫酸钠聚丙烯酰胺凝胶电泳评估所述rhPRG4种类的纯度为50%。对富集的rhPRG4制品的浓度进行了测定并调整为将纯度水平纳入考量。
将组织样品装载于具有轴向和旋转执行器、以及轴向载荷和扭矩传感器的BoseELF3200上。通过向巩膜应用腈基丙烯酸酯粘合剂(强力胶),而将切片的眼角膜固定在半球形硅橡胶塞(半径=6mm)的末端。在眼角膜-塞装置周围安置硅橡胶管套,其用于保持住润滑剂流体。继而将此装置附着至所述Bose ELF3200的旋转执行器,由此形成底部关节连接表面。从模型PDMS材料(~0.4mm厚的UntrSylgard 184,Dow Corning,)或者人眼睑组织钻出了外环(外半径=3.2mm,内半径=1.5mm),并粘合至外环支持物。继而将此外环支持物附着至线性执行器,由此形成上部关节连接表面。
在装载完样品之后,将0.3ml的测试润滑剂置于眼角膜上以形成润滑剂浴,并且用测试润滑剂将关节连接表面平衡至少5分钟。将所述组织样品于三个人工确定的轴向位置与相应的0.3±0.02、0.5±0.03、和0.7±0.03N的轴向载荷接触,导致轴向压力范围在12.2至28.5kPa(基于24.6mm2的接触面积。一旦在给定轴向位置接触,所述样品在两个方向都以4个不同的有效速度(νeff=30、10、1.0、0.3mm/s)进行4次运转,其中νeff=ω·reff以及reff=2/3[(ro3–ri3)/(ro2–ri2)]。在旋转期间于20Hz收集了轴向载荷以及力矩。每次运转之间有12秒的保压时间。每个测试顺序(下文所述)包括了预处理步骤,其中所述组织在盐水浴中进行所述的测试方案。
为了确定rhPRG4制品在人类眼角膜-眼睑(测试1)和在人类眼角膜-聚二甲硅氧烷(PDMS,测试2)的交界面处的界面润滑能力,使用了如下测试顺序:盐水中300μg/mL的PRG4,盐水中300μg/mL的rhPRG4,接着盐水(Sensitive Eyes Saline Plus,Bausch&Lomb)。
为了评估测试润滑剂在该两个交界面处的效力,计算了静态和动态的摩擦系数。如图14中所示,PRG4和PRG4,二者都显著地且类似地,在人类眼角膜-PDMS交界面处(参见图14C和14D)和在眼角膜眼睑交界面处(图14A和14B)降低了摩擦。

Claims (40)

1.制备重组润滑素糖蛋白的方法,包括以下步骤:
在培养基中培养中国仓鼠卵巢(CHO)细胞,所述中国仓鼠卵巢(CHO)细胞转染有人类PRG4基因,并且其在足以产生润滑素糖蛋白的时间里和培养条件下表达所述人类PRG4基因并对表达产物进行翻译后糖基化,其中所产生的润滑素糖蛋白包含至少30%重量的糖苷残基,在培养基中浓度为至少0.4g/升,和
从所述培养基纯化润滑素糖蛋白。
2.权利要求1的方法,其中所述CHO细胞是包含编码人类PRG4基因的核酸的CHO-M细胞。
3.权利要求1或2的方法,其中所述CHO细胞转染有第一载体和第二载体,其中所述第一载体包含编码染色质元件的核酸,而所述第二载体包含编码人类PRG4基因的核酸。
4.权利要求3的方法,其中所述染色质元件是边界元件、基质附着区、基因座控制区或通用染色质开放元件。
5.权利要求4的方法,其中所述染色质元件是基质附着区。
6.权利要求1-5任一项的方法,其中在足以产生这样的润滑素糖蛋白的时间里和培养条件下培养所述细胞,所述润滑素糖蛋白在培养基中浓度为至少0.5g/升。
7.权利要求1-5任一项的方法,其中在足以产生这样的润滑素糖蛋白的时间里和培养条件下培养所述细胞,所述润滑素糖蛋白在培养基中浓度为至少0.8g/升。
8.权利要求1-5任一项的方法,其中在足以产生这样的润滑素糖蛋白的 时间里和培养条件下培养所述细胞,所述润滑素糖蛋白在培养基中浓度为至少1.0g/升。
9.权利要求1-5任一项的方法,其中在足以产生这样的润滑素糖蛋白的时间里和培养条件下培养所述细胞,所述润滑素糖蛋白在培养基中浓度为至少2.0g/升。
10.权利要求1-9任一项的方法,其中至少95%重量的所述润滑素糖蛋白的糖基化是1型核心糖基化。
11.权利要求1-9任一项的方法,其中至少99%重量的所述润滑素糖蛋白的糖基化是1型核心糖基化。
12.权利要求1-11任一项的方法,其中与天然人类润滑素相比,所述糖苷残基富含硫酸化的糖侧链。
13.权利要求1-12任一项的方法,其中所述润滑素糖蛋白包含这样的多聚体蛋白,其所产生的在软骨对软骨摩擦测试中测量的静态摩擦系数不超过纯化的天然牛润滑素静态摩擦系数的150%。
14.权利要求1-12任一项的方法,其中所述润滑素糖蛋白包含这样的多聚体蛋白,其所产生的在软骨对软骨摩擦测试中测量的静态摩擦系数不超过纯化的天然牛润滑素静态摩擦系数的120%。
15.权利要求1-12任一项的方法,其中所述润滑素糖蛋白包含这样的多聚体蛋白,其所产生的在软骨对软骨摩擦测试中测量的静态摩擦系数不超过纯化的天然牛润滑素静态摩擦系数的110%。
16.权利要求1-15任一项的方法,其中所述润滑素糖蛋白包含从所述培养基中共纯化的并且混杂有多聚体润滑素种类的单体润滑素种类。
17.权利要求13-15任一项的方法,其中所述润滑素糖蛋白包含二聚体润滑素种类。
18.权利要求1-17任一项的方法,其中所述润滑素糖蛋白包含至少5个经二硫键或者经非共价连结的个体糖基化氨基酸链,并且具有至少1200kDa的分子量。
19.权利要求1-18任一项的方法,其中所述细胞在至少10、50、或100升的培养基中培养。
20.权利要求1-19任一项的方法,其中所述润滑素糖蛋白包含至少35%重量的糖苷残基。
21.由权利要求1-20任一项的方法所生产的润滑素糖蛋白。
22.物质的组合物,其包含:
在宿主细胞培养中从人类PRG4基因表达的重组多聚体润滑素糖蛋白,其包含至少30%重量的糖苷残基,并且其所产生的在软骨对软骨摩擦测试中测量的动态摩擦系数不超过纯化的天然牛润滑素的动态摩擦系数的150%。
23.权利要求22的组合物,其中所述润滑素糖蛋白特征在于,其所产生的在软骨对软骨摩擦测试中测量的动态摩擦系数不超过纯化的天然牛润滑素的动态摩擦系数的120%。
24.权利要求22的组合物,其中所述润滑素糖蛋白特征在于,其所产生的在软骨对软骨摩擦测试中测量的动态摩擦系数不超过纯化的天然牛润滑素的动态摩擦系数的110%。
25.权利要求22-24任一项的组合物,其中所述润滑素糖蛋白包含至少35%重量的糖苷残基。
26.权利要求22-24任一项的组合物,其中所述润滑素糖蛋白包含至少40%重量的糖苷残基。
27.权利要求22-26任一项的组合物,其中所述润滑素糖蛋白的至少99%重量的糖基化为1型核心糖基化。
28.权利要求22-27任一项的组合物,其中与天然人类润滑素相比,所述糖苷残基富含硫酸化的糖侧链。
29.权利要求22-28任一项的组合物,还包含混杂有多聚体润滑素种类的单体润滑素种类。
30.权利要求22-29任一项的组合物,包含二聚体润滑素种类。
31.权利要求22-30任一项的组合物,其包含这样的润滑素种类,所述润滑素种类包含至少5个经二硫键或者经非共价连结的个体糖基化氨基酸链,具有至少1200kDa的分子量。
32.权利要求22-31任一项的组合物,还包含与所述润滑素糖蛋白混杂的透明质酸或其盐。
33.权利要求22-32任一项的组合物,用于制备药物,所述药物用于通过粘弹性物补充疗法治疗滑膜关节。
34.权利要求22-32任一项的组合物,用于制备局部应用于组织表面的药物。
35.权利要求22-32任一项的组合物,用于制备治疗干眼病的药物。
36.权利要求22-32任一项的组合物,用于制备药物,所述药物用于在手术期间应用于体表以抑制随后形成粘连或纤维性结缔组织。
37.权利要求22-32任一项的组合物,用于制备药物,所述药物用于全身性注射以抑制细胞-细胞粘连或者在脉管内的运动。
38.包含溶液的组合物,所述溶液包含100g的人类润滑素,其中所述润滑素包含糖基化,所述糖基化的至少99%重量为1型核心糖基化。
39.权利要求38的组合物,其中所述人类润滑素是重组人类润滑素。
40.权利要求38或39的组合物,其中所述溶液中润滑素的浓度为至少0.5g/L。
CN201480065482.7A 2013-10-22 2014-10-22 重组润滑素的制备 Pending CN105899527A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361894366P 2013-10-22 2013-10-22
US61/894,366 2013-10-22
PCT/US2014/061827 WO2015061488A1 (en) 2013-10-22 2014-10-22 Production of recombinant lubricin

Publications (1)

Publication Number Publication Date
CN105899527A true CN105899527A (zh) 2016-08-24

Family

ID=52993344

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480065482.7A Pending CN105899527A (zh) 2013-10-22 2014-10-22 重组润滑素的制备

Country Status (22)

Country Link
US (5) US9982027B2 (zh)
EP (2) EP3060577B1 (zh)
JP (2) JP6669649B2 (zh)
KR (1) KR102488928B1 (zh)
CN (1) CN105899527A (zh)
AU (2) AU2014340080B2 (zh)
BR (1) BR112016008923A2 (zh)
CA (1) CA2927949A1 (zh)
CY (1) CY1124861T1 (zh)
DK (1) DK3060577T3 (zh)
ES (1) ES2891331T3 (zh)
HR (1) HRP20211497T1 (zh)
HU (1) HUE056397T2 (zh)
IL (2) IL245236B (zh)
LT (1) LT3060577T (zh)
MX (2) MX2016005302A (zh)
PL (1) PL3060577T3 (zh)
PT (1) PT3060577T (zh)
RU (1) RU2758115C2 (zh)
SG (2) SG11201603151VA (zh)
SI (1) SI3060577T1 (zh)
WO (2) WO2015060935A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109055426A (zh) * 2018-08-06 2018-12-21 苏州迈缔姆生物技术有限公司 一种在中华仓鼠卵巢细胞中表达生产类人润滑素的方法
CN115154667A (zh) * 2022-06-27 2022-10-11 天津大学 一种基于重组润滑素蛋白修饰的胶原蛋白基质的制备方法
CN115177790A (zh) * 2022-06-27 2022-10-14 天津大学 透明质酸和润滑素蛋白协同修饰胶原蛋白基质的制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012527485A (ja) 2009-05-22 2012-11-08 ルブリス,エルエルシー. Prg4及びその治療調節作用の応用及び使用
EP2948553B1 (en) * 2013-01-25 2020-04-01 Baylor College Of Medicine A helper-dependent adenoviral gene therapy delivery and expression system
WO2015060935A1 (en) 2013-10-22 2015-04-30 Lubris, Llc Control of rheological properties of mixed hyaluronate/lubricin solutions
JP6571101B2 (ja) 2013-11-26 2019-09-04 ルブリス,エルエルシー. 細胞間相互作用を阻害するための組成物及び方法
ES2808199T3 (es) 2015-01-26 2021-02-25 Lubris Llc Uso de PRG4 como un agente antiinflamatorio
SI3300482T1 (sl) * 2015-05-19 2021-11-30 Lubris Llc Uporaba prg4 za izboljšanje dinamične ostrine vide in aberacij višjega reda
US20220332839A1 (en) * 2019-06-03 2022-10-20 Lubris Llc Use of prg4 to treat cancer
KR20220145361A (ko) 2020-02-24 2022-10-28 노파르티스 아게 재조합적으로 생성된 폴리펩타이드의 정제
WO2023212598A1 (en) 2022-04-27 2023-11-02 Lubris Llc Methods of making polymer films

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040072741A1 (en) * 1999-04-23 2004-04-15 Jay Gregory D. Tribonectin polypeptides and uses thereof
US20080287369A1 (en) * 2004-07-23 2008-11-20 Jay Gregory D Compositions and Methods for Viscosupplementation
CN102575264A (zh) * 2009-09-18 2012-07-11 瑟莱克斯公司 增加的转基因表达和加工的产品和方法
CN102924584A (zh) * 2003-08-14 2013-02-13 惠氏公司 重组润滑素分子及其用途

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1482031B1 (en) * 1996-08-30 2015-10-28 Life Technologies Corporation Serum-free mammalian cell culture medium, and uses thereof
US6530956B1 (en) * 1998-09-10 2003-03-11 Kevin A. Mansmann Resorbable scaffolds to promote cartilage regeneration
US6743774B1 (en) 1999-04-23 2004-06-01 Rhode Island Hospital Tribonectins
US7001881B1 (en) 1999-04-23 2006-02-21 Rhode Island Hospital Tribonectins
EP1395669B1 (en) 2001-01-26 2009-07-22 Selexis S.A. Matrix attachment regions and methods for use thereof
TW200307011A (en) 2002-04-18 2003-12-01 Chugai Pharmaceutical Co Ltd Hyaluronic acid modifier
US7415381B2 (en) 2003-01-09 2008-08-19 Rhode Island Hospital, A Lifespan Partner Joint friction sensing
US20060240037A1 (en) 2003-06-04 2006-10-26 Edward Fey Methods and compositions for the treatment and prevention of degenerative joint disorders
PL2292754T3 (pl) 2003-10-24 2013-06-28 Selexis Sa Wysokowydajny transfer genu i ekspresja w komórkach ssaczych przez procedurę wielokrotnej transfekcji sekwencji regionu przylegania do macierzy
US20090155200A1 (en) 2004-04-20 2009-06-18 Jay Gregory D Methods of promoting cartilage healing or cartilage integration
EP1827478A4 (en) 2004-12-03 2009-08-05 Mucosal Therapeutics Llc METHODS OF TREATING JOINED OR SICK JOINTS
US20070111327A1 (en) 2005-05-05 2007-05-17 Jay Gregory D Methods of detecting lubricin
DK1940467T3 (da) 2005-09-09 2017-02-13 Paladin Labs Inc Lægemiddelsammensætning med langvarig frigivelse
AU2007287327B2 (en) * 2006-08-23 2012-11-22 Selexis S.A. Matrix attachment regions (MARs) for increasing transcription and uses thereof
EP2079442B1 (en) * 2006-09-28 2016-07-27 Hadasit Medical Research Services & Development Limited Use of glycerophospholipids for joint lubrication
WO2008143816A1 (en) 2007-05-15 2008-11-27 Mucosal Therapeutics Compositions and methods for reducing friction between the surface of tendons or other soft tissues
US20090068247A1 (en) 2007-09-12 2009-03-12 Mucosal Therapeutics Biocompatible devices coated with a tribonectin and methods for their production
US20090104148A1 (en) 2007-09-18 2009-04-23 Jay Gregory D Treatment and prevention of joint disease
SI2285364T1 (sl) 2008-05-07 2015-03-31 The Regents Of The University Of California Terapevtska regeneracija in obogatitev lubrikacije okularne površine
US8506944B2 (en) 2008-05-07 2013-08-13 The Regents Of The University Of California Replenishment and enrichment of ocular surface lubrication
EP2381957B1 (en) 2009-01-13 2015-01-07 Lubris LLC Therapeutic modulation of vaginal epithelium boundary lubrication
JP2012527485A (ja) 2009-05-22 2012-11-08 ルブリス,エルエルシー. Prg4及びその治療調節作用の応用及び使用
EP2464375B1 (en) 2009-08-13 2017-06-14 Lubris LLC Prg4 treatment for interstitial cystitis
EP2525805B1 (en) 2010-01-19 2017-03-15 Lubris LLC Oral care compositions and methods
US20130116186A1 (en) 2011-10-04 2013-05-09 Rhode Island Hospital, A Lifespan Partner Lubricin injections to maintain cartilage health
WO2015060935A1 (en) 2013-10-22 2015-04-30 Lubris, Llc Control of rheological properties of mixed hyaluronate/lubricin solutions
JP6571101B2 (ja) 2013-11-26 2019-09-04 ルブリス,エルエルシー. 細胞間相互作用を阻害するための組成物及び方法
US20180161393A1 (en) 2015-01-26 2018-06-14 Lubris Llc Prg4 for treating gout and its symptoms
ES2808199T3 (es) 2015-01-26 2021-02-25 Lubris Llc Uso de PRG4 como un agente antiinflamatorio
SI3300482T1 (sl) 2015-05-19 2021-11-30 Lubris Llc Uporaba prg4 za izboljšanje dinamične ostrine vide in aberacij višjega reda
US20170312335A1 (en) 2015-12-30 2017-11-02 Lubris Llc Topical use of prg4 for treatment of allergy and symptoms of inflammation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040072741A1 (en) * 1999-04-23 2004-04-15 Jay Gregory D. Tribonectin polypeptides and uses thereof
CN102924584A (zh) * 2003-08-14 2013-02-13 惠氏公司 重组润滑素分子及其用途
US20080287369A1 (en) * 2004-07-23 2008-11-20 Jay Gregory D Compositions and Methods for Viscosupplementation
CN102575264A (zh) * 2009-09-18 2012-07-11 瑟莱克斯公司 增加的转基因表达和加工的产品和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SELEXIS: "Selexis Lubris Partnership Advances Difficult-to-Express Protein Towards Clinic", 《HTTP://SELEXIS.COM/SELEXIS-LUBRIS-PARTNERSHIP-ADVANCES-DIFFICULT-EXPRESS-PROTEIN-TOWARDS-CLINIC/》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109055426A (zh) * 2018-08-06 2018-12-21 苏州迈缔姆生物技术有限公司 一种在中华仓鼠卵巢细胞中表达生产类人润滑素的方法
CN109055426B (zh) * 2018-08-06 2021-06-25 智享生物(苏州)有限公司 一种在中华仓鼠卵巢细胞中表达生产类人润滑素的方法
CN115154667A (zh) * 2022-06-27 2022-10-11 天津大学 一种基于重组润滑素蛋白修饰的胶原蛋白基质的制备方法
CN115177790A (zh) * 2022-06-27 2022-10-14 天津大学 透明质酸和润滑素蛋白协同修饰胶原蛋白基质的制备方法

Also Published As

Publication number Publication date
CY1124861T1 (el) 2022-11-25
US20160304572A1 (en) 2016-10-20
PT3060577T (pt) 2021-10-01
AU2019201478B2 (en) 2021-07-08
KR102488928B1 (ko) 2023-01-13
RU2016119532A (ru) 2017-11-28
US20190270783A1 (en) 2019-09-05
WO2015061488A1 (en) 2015-04-30
JP2016535590A (ja) 2016-11-17
PL3060577T3 (pl) 2022-01-24
IL283447A (en) 2021-07-29
MX2016005302A (es) 2017-02-15
US20210130427A1 (en) 2021-05-06
AU2014340080B2 (en) 2018-12-06
HRP20211497T1 (hr) 2021-12-24
RU2016119532A3 (zh) 2018-05-16
US20230234999A1 (en) 2023-07-27
EP3060577B1 (en) 2021-07-07
KR20160086843A (ko) 2016-07-20
JP6970164B2 (ja) 2021-11-24
WO2015060935A1 (en) 2015-04-30
RU2758115C2 (ru) 2021-10-26
CA2927949A1 (en) 2015-04-30
LT3060577T (lt) 2021-12-27
SG11201603151VA (en) 2016-05-30
ES2891331T3 (es) 2022-01-27
IL245236A0 (en) 2016-06-30
AU2019201478A1 (en) 2019-03-28
EP3060577A1 (en) 2016-08-31
JP6669649B2 (ja) 2020-03-18
DK3060577T3 (da) 2021-10-04
IL245236B (en) 2021-12-01
US10125180B2 (en) 2018-11-13
US10723773B2 (en) 2020-07-28
SG10201913598TA (en) 2020-02-27
US11485764B2 (en) 2022-11-01
SI3060577T1 (sl) 2021-12-31
BR112016008923A2 (pt) 2017-09-19
US9982027B2 (en) 2018-05-29
HUE056397T2 (hu) 2022-02-28
AU2014340080A1 (en) 2016-06-02
MX2021003243A (es) 2021-05-12
US20160250286A1 (en) 2016-09-01
EP3060577A4 (en) 2017-05-17
JP2020039348A (ja) 2020-03-19
EP3971203A1 (en) 2022-03-23

Similar Documents

Publication Publication Date Title
CN105899527A (zh) 重组润滑素的制备
Scott Extracellular matrix, supramolecular organisation and shape.
DE60031456T2 (de) Rekombinante alpha-l-iduronisase, deren herstellungs- und aufreinigungsverfahren, und behandlung von durch diese hervorgerufene mangelerkrankungen
Thorn et al. Amyloid fibril formation by bovine milk αs2-casein occurs under physiological conditions yet is prevented by its natural counterpart, αs1-casein
DE602005002829T2 (de) Verwendung eines serumfreien zellkulturmediums zur produktion von il-18bp in säugerzellen
CN107286248B (zh) 高糖基化人生长激素融合蛋白及其制备方法与用途
DE60027562T2 (de) Hyaluronidase aus hirudinaria manillensis, isolierung, reinigung, und rekombinante herstellung
CN106906196A (zh) 可溶性透明质酸酶的大规模生产
Garcia et al. Techno-functional properties of crude extracts from the green microalga Tetraselmis suecica
CN102497877B (zh) 附加了水溶性长链分子的修饰的促红细胞生成素
CN102220338B (zh) 人脐带间充质干细胞表达人2.5Sβ-神经生长因子及分离纯化的方法
Rana et al. Collagen-based hydrogels for the eye: A comprehensive review
DE60311470T2 (de) Verfahren zur reinigung von interleukin-4 und seinen muteinen
CN1300323A (zh) 重组α-L-艾杜糖苷酸酶,其生产和纯化的方法以及治疗其缺乏导致的疾病的方法
BRPI0316039B1 (pt) N-acetylgalactosamine-4-sulfatase precursor, treatment methods using enzyme and methods for enzyme production and purification
CN104854122A (zh) 重组人半乳糖脑苷脂-β-半乳糖苷酶(rhGALC)的纯化
CN101906158B (zh) 一种聚乙二醇化降糖多肽及其制法和用途
Fernàndez-Busquets The sponge as a model of cellular recognition
TWI337868B (en) Method for extracting extract from chaenomeles lagenaria and the applications thereof
Kefalides Basement membranes
CN117177742A (zh) 溶酶体相关膜蛋白靶向化合物及其用途
Crawley Enzyme replacement therapy in a feline model of mucopolysaccharidosis type VI
Stifani Phylogeny of lipoprotein receptor function revealed by studies on the uptake of vitellogenin into growing oocytes.

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination