CN105789305A - 半导体装置 - Google Patents

半导体装置 Download PDF

Info

Publication number
CN105789305A
CN105789305A CN201510463261.1A CN201510463261A CN105789305A CN 105789305 A CN105789305 A CN 105789305A CN 201510463261 A CN201510463261 A CN 201510463261A CN 105789305 A CN105789305 A CN 105789305A
Authority
CN
China
Prior art keywords
mentioned
layer
insulating film
gate insulating
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510463261.1A
Other languages
English (en)
Other versions
CN105789305B (zh
Inventor
西堀弥
西堀一弥
中川贵博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of CN105789305A publication Critical patent/CN105789305A/zh
Application granted granted Critical
Publication of CN105789305B publication Critical patent/CN105789305B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4983Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET with a lateral structure, e.g. a Polysilicon gate with a lateral doping variation or with a lateral composition variation or characterised by the sidewalls being composed of conductive, resistive or dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6656Unipolar field-effect transistors with an insulated gate, i.e. MISFET using multiple spacer layers, e.g. multiple sidewall spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/06Modifications for ensuring a fully conducting state
    • H03K17/063Modifications for ensuring a fully conducting state in field-effect transistor switches

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

一种半导体装置。根据1个实施方式,半导体装置是切换高频信号的半导体装置,具备第1导电型的半导体层;设置于上述半导体层的第2导电型的第1层;设置于上述半导体层的第2导电型的第2层;设置于上述第1层上、上述第2层上以及上述半导体层上的栅极绝缘膜;以及设置于上述栅极绝缘膜上的栅极电极。上述栅极绝缘膜包括:第1栅极绝缘膜,在上述栅极电极的栅极宽度方向延伸;以及第2栅极绝缘膜,在上述第1栅极绝缘膜的两侧设置,并且至少一部分介于上述栅极电极与上述第1层以及上述第2层之间,且该第2栅极绝缘膜比上述第1栅极绝缘膜厚。

Description

半导体装置
关联申请
本申请享受以日本专利申请2015-005357号(申请日:2015年1月14日)为基础申请的优先权。本申请通过参照该基础申请而包含基础申请的全部的内容。
技术领域
本发明的实施方式涉及半导体装置。
背景技术
便携设备等电子设备具备将发送电路或者接收电路与天线连接的高频电路。高频电路为了将发送电路或者接收电路选择性地与天线连接而具有高频切换电路。在高频切换电路的切换元件中,使用了GaAs的HEMT(HighElectronMobilityTransistor)被频繁地使用。但是,近年,因为切换电路的高性能化以及低价格化,考虑了使用了Si的MISFET(MetalInsulatorSemiconductorFieldEffectTransistor)的应用。
可是,高频切换电路的切换元件优选使高频信号没有劣化地向天线通过。即,优选高频信号的插入损失小。为了减小高频信号的插入损失,减少切换元件的导通电阻是重要的。为了减少切换元件的导通电阻,不仅缩短沟道长度(栅极长度),还需要减薄栅极绝缘膜。
但是,若减薄栅极绝缘膜,则在切换元件为断开状态时,由于栅极-漏极间的电压差,电场在处于栅极电极的正下方的漏极延展层集中,变得容易产生GIDL(Gate-InducedDrainLeakage)。因此,由于切换元件的断开耐压降低,所以,必须使切换元件为断开状态时的栅极-漏极间的电压差降低。这意味着必须使高频切换电路的输入电力(允许输入电力)降低。
因此,在将MISFET应用于高频切换电路的切换元件,为了使高频信号的插入损失减少而减薄栅极绝缘膜的膜厚时,由于GIDL,断开耐压降低。由此,产生不能维持高频切换电路的允许输入电力的问题。
发明内容
实施方式提供一种高频信号的插入损失低并且断开耐压高的半导体装置。
根据1个实施方式,半导体装置是切换高频信号的半导体装置,具备:第1导电型的半导体层;第2导电型的第1层,设置于上述半导体层;第2导电型的第2层,设置于上述半导体层;栅极绝缘膜,设置于上述第1层之上、上述第2层之上以及上述半导体层之上;以及栅极电极,设置于上述栅极绝缘膜之上。上述栅极绝缘膜具备:第1栅极绝缘膜,在上述栅极电极的栅极宽度方向延伸;第2栅极绝缘膜,设置在上述第1栅极绝缘膜的两侧,且至少一部分介于上述栅极电极与上述第1层以及上述第2层之间,该第2栅极绝缘膜比上述第1栅极绝缘膜厚。
根据上述构成的半导体装置,能够提供一种高频信号的插入损失低并且断开耐压高的半导体装置。
附图说明
图1是对本实施方式的天线切换装置1以及其周边的构成例进行表示的框图。
图2是对本实施方式的切换元件T1的构成的一例进行表示的剖视图。
图3是对本实施方式的切换元件T1的制造方法的一例进行表示的剖视图。
图4是接着图3对切换元件T1的制造方法的一例进行表示的剖视图。
图5是对切换元件T1的栅极端部的观察结果进行表示的剖视图。
具体实施方式
下面,参照附图对本发明的实施方式进行说明。本实施方式并不限定本发明。
图1是对本实施方式的天线切换装置1以及其周边的构成例进行表示的框图。天线切换装置1具备切换部SW、控制部CNT、接口部INT。另外,天线切换装置1可以是作为1个半导体芯片而在SOI(SiliconOnInsulator:绝缘体上硅)基板上设置的半导体集成电路装置。
接口部INT将为了生成控制信号Scnt所使用的串行数据从输入端子输入,将该串行数据转换成并行数据(切换信号)。因此,接口部INT具有串行\并行转换电路,并且由被高集成化后的能够高速动作的数字LSI(LargeScaleIntegration)构成。因此,为了高集成化,接口部INT所使用的MISFET具有非常小的尺寸(沟道长度、沟道幅)。另外,为了高集成化,MISFET的主体与基准电压源不连接。
控制部CNT从接口部INT收取并行数据(切换信号),将该并行数据的电压转换成规定电压,生成并输出控制信号Scnt。控制信号Scnt是为了对切换部SW的切换元件进行导通/断开控制所使用的信号。由此,控制部CNT使并行数据的电压向为了使切换元件导通而足够高的电压升压,生成控制信号Scnt。因此,控制部CNT所使用的MISFET需要具有足够高的耐压,以使并行数据能够向控制信号Scnt升压。为了得到高耐压,MISFET具有主体电极,主体电极与基准电压源(例如,源极电位、接地线)连接。
切换部SW在本实施方式中是SPnT(SinglePolenThrough(n=1,2,3···))型的天线切换电路。另外,在图1中,切换部SW仅示出了3个切换元件,但是也可以如下面那样,具有n个切换元件,切换n种高频信号。
切换部SW具备输入输出端口P以及与输入输出端口P连接的切换元件T1~Tn。即,切换元件T1~Tn分别连接于1个天线端口P与n个RF信号端口之间。切换元件T1~Tn由MISFET构成。为了得到高耐压,MISFET的主体电极与基准电压源(例如,源极电位、接地线)连接。另外,分路开关设置于各切换元件T1~Tn的一端与基准电压源之间,但在此,省略了分路开关的图示。
切换元件T1~Tn输入高频信号Srf1~Srfn以及控制信号Scnt。切换元件T1~Tn基于控制信号Scnt被导通/断开控制,将高频信号Srf1~Srfn向天线ANT连接或者切断。例如,在切换元件T1变成导通状态,切换元件T2~Tn为断开状态的情况下,切换元件T1将高频信号Srf1向天线ANT连接,切换元件T2~Tn切断高频信号Srf2~Srfn。在切换元件T2变成导通状态,切换元件T1、T3~Tn为断开状态的情况下,切换元件T2将高频信号Srf2向天线ANT连接,切换元件T1、T3~Tn切断高频信号Srf1以及Srf3~Srfn。以下相同。这样,切换部SW能够基于控制信号Scnt,将高频信号Srf1~Srfn向天线ANT选择性地连接。切换元件T1~Tn也可以分别用于发送或者接收的任一个。在用于发送的情况下,切换元件T1~Tn从发送功率放大器PA接受高频信号Srf1~Srfn,并将该高频信号Srf1~Srfn向天线ANT发送。在用于接收的情况下,切换元件T1~Tn从天线ANT接受高频信号Srf1~Srfn,并将该高频信号Srf1~Srfn向接收放大器LNA发送。关于切换元件T1~Tn所使用的MISFET的构成在后叙述。
发送功率放大器PA将高频信号的电力向所希望的电力放大并向天线切换装置1输出。接收放大器LNA(LowNoiseAmplifier)对在天线ANT接收到的高频信号的电力进行放大。
高频信号Srf1~Srfn可以是分别不同的通信方式(例如,CDMA(CodeDivisionMultipleAccess)、GSM(GlobalSystemforMobile)(注册商标)等)所使用的高频信号。
随后,对切换部SW所使用的切换元件T1~Tn的构成进行说明。
图2是对构成本实施方式的切换元件T1的晶体管的一例进行表示的剖视图。另外,切换元件T2~Tn的构成可以是与切换元件T1相同的构成,所以省略关于切换元件T2~Tn的说明。
切换元件T1具备半导体层30、漏极层D、源极层S、延展层EXTd、EXTs、栅极绝缘膜41、42d、42s、栅极电极G、侧壁绝缘膜43、以及间隔物50。
切换元件T1是例如,在SOI基板或者SOS(SiliconOnSapphire:蓝宝石上硅)基板上设置的N型MISFET。另外,在本实施方式中,作为一例,切换元件T1设成在SOI基板上设置的切换元件。SOI基板具备支承基板10、BOX(BuriedOxide)层20以及SOI层30。切换元件T1形成于作为半导体层的SOI层30。
SOI层30例如是单晶硅等,是含有P型杂质的半导体层。
作为第1层的延展层EXTd是在SOI层30内设置的N型杂质扩散层。延展层EXTd设置在栅极电极G的漏极侧的SOI层30,该延展层EXTd与漏极层D相邻。延展层EXTd设置在SOI层30的表面区域,该延展层EXTd没有到SOI层30的底部为止地被设置。但是,为了使导通电阻降低,延展层EXTd也可以在某程度上较深地形成。
作为第2层的延展层EXTs是在SOI层30内设置的N型杂质扩散层。延展层EXTs设置在栅极电极G的源极侧的SOI层30,该延展层EXTs与源极层S相邻。延展层EXTs设置在SOI层30的表面区域,该延展层EXTs没有到SOI层30的底部为止地被设置。但是,为了使导通电阻降低,延展层EXTs也可以在某程度上较深地形成。
另外,担心若加深延展层EXTd、EXTs则产生短沟道效果。但是,高频信号的切换所使用的切换元件T1通常在线型区域进行动作,因此,与在饱和区域进行动作的数字电路所使用的晶体管进行比较,短沟道效果不会成为问题。
作为第3层的漏极层D与延展层EXTd相邻,该漏极层D与延展层EXTd、EXTs相同地是N型杂质扩散层。漏极层D被设置成从SOI层30的表面开始到SOI层30的底面为止。
作为第4层的源极层S与延展层EXTs相邻,该源极层S与延展层EXTs、EXTd以及漏极层D相同地是N型杂质扩散层。源极层S被设置成从SOI层30的表面开始到SOI层30的底面为止。
通过漏极层D以及源极层S从SOI层30的表面开始到SOI层30的底面为止地被设置,能够限制从漏极层D、源极层S延伸的耗尽层,使断开电容减少。通过减少切换元件T1的断开电容,切换元件T1能够在断开状态之时使相对于高频信号的阻抗上升,更可靠地抑制高频信号的通过。
在延展层EXTd与延展层EXTs之间的SOI层30(主体部分)的表面形成有切换元件的沟道区域CH。另外,为了得到高耐压,切换元件T1的主体部分与基准电压源(例如,源极电位、接地线)连接。
第1栅极绝缘膜41以及第2栅极绝缘膜42d、42s在延展层EXTd上、延展层EXTs上以及SOI层30上设置。第1栅极绝缘膜41以及第2栅极绝缘膜42d、42s例如,可以是氧化硅薄膜或者比氧化硅薄膜介电常数高的绝缘膜。
栅极电极G在第1栅极绝缘膜41以及第2栅极绝缘膜42d、42s上设置。栅极电极G例如是掺杂多晶硅等。
在此,第1栅极绝缘膜41在栅极电极G的栅极宽度方向上延伸。第2栅极绝缘膜42d、42s在第1栅极绝缘膜41的两侧设置。第2栅极绝缘膜42d的至少一部分介于栅极电极G与延展层EXTd之间。第2栅极绝缘膜42s的至少一部介于栅极电极G与延展层EXTs之间。第2栅极绝缘膜42d、42s的膜厚比第1栅极绝缘膜41的膜厚厚。第2栅极绝缘膜42d、42s具有鸟嘴形的形状,第2栅极绝缘膜42d、42s的厚度从栅极电极G的两侧开始朝向第1栅极绝缘膜41变薄。例如,在切换元件T1的栅极长度为大致100nm~300nm,SOI层30的膜厚为大致200nm的情况下,第1栅极绝缘膜41的膜厚(EOT:EquivalentOxideThickness)为大致6nm以下,第2栅极绝缘膜42d、42s的膜厚(EOT)为大致6nm~12nm。
进而,漏极侧的延展层EXTd的端部Eextd位于栅极电极G的下方,并且,位于第2栅极绝缘膜42d的下方。即,在从半导体层30的上方观察时,延展层EXTd与栅极电极G重叠,但没有到栅极电极G的中心部为止地延伸,而与栅极电极G的端部重叠。因此,延展层EXTd的端部Eextd与第1栅极绝缘膜41和第2栅极绝缘膜42d的边界相比位于更靠漏极侧,并且,与栅极电极端相比位于更靠源极侧。因此,延展层EXTd的端部Eextd与第2栅极绝缘膜42d相接而设置。端部Eextd也可以位于第1栅极绝缘膜41和第2栅极绝缘膜42d的边界正下方。即,端部Eextd也可以设置成与第1栅极绝缘膜41和第2栅极绝缘膜42d的边界相接。在切换元件T1的栅极长度方向上,从延展层EXTd的与栅极电极G的端部正下方对应的位置开始到延展层EXTd的端部Eextd为止的长度(图5的Lov)是第2栅极绝缘膜42d的长度(图5的Lbp)以下。
这样,在本实施方式中,第2栅极绝缘膜42d的膜厚比第1栅极绝缘膜41的膜厚厚,并且,延展层EXTd的端部Eextd位于第2栅极绝缘膜42d之下。
如果在第2栅极绝缘膜42d具有与第1栅极绝缘膜41几乎相等的膜厚,或者延展层EXTd延伸到栅极电极G的中心部(第1栅极绝缘膜41)的下方为止的情况下,在切换元件T1为断开状态时,由栅极-漏极间的电压差造成的比较大的电场集中到延展层EXTd。由此,在栅极电极G的下方的延展层EXTd的区域中,垂直方向(纵方向)的表面电势增大,产生隧道电流。如上述那样,这成为引起GIDL的原因,使切换元件T1的断开耐压降低。
对此,根据本实施方式,比第1栅极绝缘膜41厚的第2栅极绝缘膜42d介于延展层EXTd与栅极电极G的端部之间。由此,在切换元件T1为断开状态时,对由栅极-漏极间的电压差造成的电场集中到延展层EXTd进行缓和,难以引起GIDL。因此,能够使栅极-漏极间的切换元件T1的断开耐压上升。其结果是,因为能够使切换元件T1为断开状态时的漏极电压增大,所以能够使允许输入电力上升。
另一方面,考虑到在栅极电极G的端部若第2栅极绝缘膜42d、42s厚,则切换元件T1的导通电阻某程度地上升。但是,第2栅极绝缘膜42d、42s只不过在栅极电极G的端部的一部分上设置,导通电阻的上升是有限的。另外,在本实施方式中,能够通过加厚第2栅极绝缘膜42d、42s的膜厚来抑制GIDL,并且另一方面,能够充分地减薄第1栅极绝缘膜41的膜厚。因此,在考虑第1栅极绝缘膜41的膜厚的薄度时,能够相反地减少切换元件T1的导通电阻。当然,由于若第2栅极绝缘膜42d、42s的膜厚过厚,则使导通电阻上升,所以对于第2栅极绝缘膜42d、42s的膜厚具有优选的范围。关于第2栅极绝缘膜42d、42s的膜厚的优选的范围在后叙述。
根据本实施方式,切换元件T1形成于SOI基板或者SOS基板上。源极层S以及漏极层D形成为从SOI层30的表面开始到达BOX层20。由此,如上述那样,能够使断开电容减少。通过减少切换元件T1的断开电容,切换元件T1在断开状态之时使相对于高频信号的阻抗上升,能够更可靠地抑制高频信号的通过。
天线用的切换元件被要求高频信号的插入损失小(导通电阻低)、断开耐压高(具有较高的允许输入电力)、以及断开电容小(断开状态下的高频信号的阻抗高)。本实施方式如上述那样能够满足这些要求,能够满足这些要求的折衷选择。
另外,数字LSI所使用的晶体管在饱和区域使用。在饱和区域的漏极电压比在线型区域的漏极电压高,因此,需要充分地考虑短沟道效果。为了抑制短沟道效果,随着缩短晶体管的栅极长度,漏极侧的延展层需要形成得较浅。另一方面,鸟嘴通常在延展层的形成前与栅极侧壁绝缘膜一起以氧化工序被形成(参照图3(C))。在该氧化工序中,氧化膜与栅极侧壁绝缘膜一起被形成在延展形成区域的SOI层上。因此,若想要形成鸟嘴,则延展形成区域的氧化膜也形成得较厚。在这种情况下,较浅地形成延展层变得困难,短沟道效果的抑制变得困难。因此,在需要使延展层变浅(变薄)的数字LSI用晶体管,优选设置鸟嘴。
对此,本实施方式的切换元件T1用于高频的切换,在线型区域进行动作,因此,短沟道效果不会成为相当的问题。因此,切换元件T1即使在栅极绝缘膜的端部具有鸟嘴也没有关系。由此,延展层EXTd、EXTs即使形成得较深也没有问题。甚至可以说,为了使导通电阻减少,延展层EXTd、EXTs某程度地较深是优选的。
另外,延展层EXTd、EXTs还可以分别设置于位于第2栅极绝缘膜42d、42s之下的SOI层30的表面整体。即,延展层EXTd的端部Eextd还可以延伸到第1栅极绝缘膜41与第2栅极绝缘膜42d之间的边界的正下方为止。延展层EXTs的端部Eexts还可以延伸到第1栅极绝缘膜41与第2栅极绝缘膜42s之间的边界的正下方为止。由此,能够使切换元件T1的断开耐压上升,并且能够进一步地使导通电阻降低。
另外,在将施加有比较高的电压的扩散层设成漏极时,切换元件T1切换高频信号,所以,源极和漏极通过在源极-漏极间施加的电压的符号,以高频被交替。因此,切换元件T1优选为关于图2的中心线CTR在源极侧和漏极侧对称(左右对称)。即,优选地,源极层S和漏极层D是对称的,延展层EXTd和延展层EXTs是对称的,第2栅极绝缘膜42s和第2栅极绝缘膜42d是对称的。
随后,对本实施方式的切换元件T1的制造方法进行说明。
图3(A)~图4(B)是对本实施方式的切换元件T1的制造方法的一例进行表示的剖视图。
首先,在SOI基板的SOI层30上形成第1栅极绝缘膜41。第1栅极绝缘膜41例如为氧化硅薄膜,通过对SOI层30的表面进行热氧化而形成。第1栅极绝缘膜41的膜厚例如为大致6nm。
随后,第1栅极绝缘膜41上堆积栅极电极G的材料。栅极电极G的材料例如为掺杂多晶硅。随后,使用光刻技术以及蚀刻技术,将栅极电极G的材料加工成栅极电极G的图案。由此,如图3(A)所示,形成栅极电极G。栅极电极G的栅极长度例如为大致100nm~大致300nm。第1栅极绝缘膜41与栅极电极G一起蚀刻成与栅极电极G相同的图案。
随后,在栅极电极G的表面、栅极电极G的侧面以及SOI层30的表面形成侧壁氧化膜43。此时,氧从栅极电极G的端部(第1栅极绝缘膜41的端部)侵入,第1栅极绝缘膜41的端部变厚。由此,如图3(B)所示,第1栅极绝缘膜41的端部形成为鸟嘴形。在此,在第1栅极绝缘膜41的端部,将比第1栅极绝缘膜41的中心部形成得更厚的栅极绝缘膜设成第2栅极绝缘膜42d、42s。第2栅极绝缘膜42d、42s的膜厚例如为大致6nm~大致12nm。
随后,将栅极电极G作为掩模使用并离子注入N型杂质(磷或者砷)。此时,杂质离子先从SOI层30上的侧壁绝缘膜43通过并向SOI层30的表面注入。通过活性化该杂质,如图3(C)所示,延展层EXTd、EXTs自对准(Self-alignment)地形成。
随后,将间隔物50的材料堆积到侧壁绝缘膜43上。随后,通过对间隔物50的材料进行回蚀,如图4(A)所示,间隔物50隔着侧壁绝缘膜43形成于栅极电极G的侧面上。
随后,将栅极电极G以及间隔物50作为掩模使用,并离子注入N型杂质。通过活性化该杂质,如图4(B)所示,形成漏极层D以及源极层S。
之后,通过形成层间绝缘膜IDL、接点、布线层等,完成本实施方式的切换元件T1。
随后,关于第2栅极绝缘膜42d的厚度进行考察。
图5(A)~图5(C)是分别对切换元件T1的栅极端部的观察结果进行表示的剖视图。在图5(A)~图5(C)中,第2栅极绝缘膜42d的厚度分别不同。例如,图5(A)所示的第2栅极绝缘膜42d的厚度为大致6nm,图5(B)所示的第2栅极绝缘膜42d的厚度为大致9nm,图5(C)所示的第2栅极绝缘膜42d的厚度为大致12nm。
在此,第1栅极绝缘膜41的膜厚设成大致6nm以下。将延展层EXTd的扩散距离(从侧壁绝缘膜43的侧面F43开始到延展层EXTd的端部Eextd为止的距离)设成大致20nm。将从栅极电极G的端部Eg开始到延展层EXTd的端部Eextd为止的距离(与栅极电极G的底面对置的延展层EXTd的沟道长度方向的距离)设成重叠距离Lov。在这种情况下,重叠距离Lov在图5(A)中为大致14nm(20nm-6nm),在图5(B)中为大致11nm(20nm-9nm),在图5(C)中为大致8nm(20nm-12nm)。
若将鸟嘴的长度(第2栅极绝缘膜42d的沟道长度方向的长度)设成Lbp,则如图5(A)所示,在第1栅极绝缘膜41的膜厚为大致6nm的情况下,鸟嘴的长度Lbp为大致0nm。如图5(B)所示,在第2栅极绝缘膜42d的膜厚为大致9nm的情况下,鸟嘴的长度LBP为大致10nm。如图5(C)所示,在第2栅极绝缘膜42d的膜厚为大致12nm的情况下,鸟嘴的长度LBP为大致13nm。
如图5(A)所示,在第2栅极绝缘膜42d的膜厚与第1栅极绝缘膜41的膜厚几乎相等的情况下,在第1栅极绝缘膜41的端部几乎没有形成鸟嘴。在这种情况下,切换元件T1的导通电阻变低,但产生GIDL,因此,有可能导通耐压降低,允许输入电力降低。
如图5(B)所示,在第2栅极绝缘膜42d的膜厚比第1栅极绝缘膜41的膜厚厚,鸟嘴的长度Lbp与重叠距离Lov几乎相等(大致10nm~大致11nm)情况下,能够抑制GIDL的产生,能够较高地维持导通耐压。因此,还能够较高地维持允许输入电力。另外,为了GIDL的抑制,重叠距离Lov优选为鸟嘴的长度Lbp以下。但是,如图5(B)所示,重叠距离Lov也可以稍微比鸟嘴的长度Lbp大。因为即使在这种情况下,GIDL也能被抑制。另外,在第2栅极绝缘膜42d的下方整体存在延展层EXTd,在第2栅极绝缘膜42d之下几乎没有沟道区域CH。因此,能够有效地抑制导通电阻的上升。即,通过将Lbp与Lov设成几乎相等,能够实现允许输入电力的维持和导通电阻上升的抑制这两方面。
如图5(C)所示,在第2栅极绝缘膜42d的膜厚比第1栅极绝缘膜41的膜厚厚的多,鸟嘴的长度Lbp比重叠距离Lov长的情况下,抑制GIDL的产生,能够较高地维持导通耐压。因此,也能较高地维持允许输入电力。另一方面,若鸟嘴的长度Lbp过长,则位于第2栅极绝缘膜42d的下方的沟道区域CH的长度变得过长。这导致导通电阻的上升。
根据以上内容,虽然取决于切换元件T1的构成,但对于第2栅极绝缘膜42d的沟道长度方向的长度(即,鸟嘴的长度Lbp、侧壁绝缘膜43的厚度)具有适当的范围。在上述具体例中,鸟嘴的长度Lbp优选为大致6nm~大致12nm的范围内。通常,天线切换装置1所使用的切换元件1具有大致100nm~300nm的栅极长度,具有大致6nm以下的第1栅极绝缘膜41的膜厚(EOT)。因此,可以说当前状态的切换元件1优选具有大致6nm~12nm的第2栅极绝缘膜42d、42s的膜厚(EOT)。
对本发明的几个实施方式进行了说明,但这些实施方式是作为例子而提出的,并没有意图限定发明的范围。这些实施方式可以以其他各种方式进行实施,在不超出发明主旨的范围内,可进行各种省略、调换以及变更。这些实施方式及其变形包括在发明的范围和主旨内,同样,也包括在权利要求所记载的发明和与其等同的范围内。

Claims (15)

1.一种半导体装置,该半导体装置是切换高频信号的半导体装置,
上述半导体装置具备:
第1导电型的半导体层;
第2导电型的第1层,设置于上述半导体层;
第2导电型的第2层,设置于上述半导体层;
栅极绝缘膜,设置于上述第1层之上、上述第2层之上以及上述半导体层之上;以及
栅极电极,设置于上述栅极绝缘膜之上,
上述栅极绝缘膜包括第1栅极绝缘膜和第2栅极绝缘膜,上述第1栅极绝缘膜在上述栅极电极的栅极宽度方向延伸,上述第2栅极绝缘膜设置在上述第1栅极绝缘膜的两侧,且至少一部分介于上述栅极电极与上述第1层及上述第2层之间,上述第2栅极绝缘膜比上述第1栅极绝缘膜厚。
2.根据权利要求1记载的半导体装置,
上述半导体层是SOI基板或者SOS基板的半导体层,
上述半导体层还具备:
第2导电型的第3层,与上述第1层相邻,设置成从上述半导体层的表面开始到上述半导体层的底面为止;以及
第2导电型的第4层,与上述第2层相邻,设置成从上述半导体层的表面开始到上述半导体层的底面为止。
3.根据权利要求1记载的半导体装置,
上述第2导电型是N型。
4.根据权利要求2记载的半导体装置,
上述第2导电型是N型。
5.根据权利要求1记载的半导体装置,
上述第1层与上述第2层之间的上述半导体层与基准电压源连接。
6.根据权利要求1记载的半导体装置,
上述第1层的端部设置成与上述第1栅极绝缘膜和上述第2栅极绝缘膜的边界相接,或者,设置成与上述第2栅极绝缘膜相接。
7.根据权利要求2记载的半导体装置,
上述第1层的端部设置成与上述第1栅极绝缘膜和上述第2栅极绝缘膜的边界相接,或者,设置成与上述第2栅极绝缘膜相接。
8.根据权利要求1记载的半导体装置,
在栅极长度方向上,从上述第1层的与上述栅极电极端部正下方对应的位置开始到上述第1层的上述端部为止的长度为上述第2栅极绝缘膜的长度以下。
9.根据权利要求2记载的半导体装置,
在栅极长度方向上,从上述第1层的与上述栅极电极端部正下方对应的位置开始到上述第1层的上述端部为止的长度为上述第2栅极绝缘膜的长度以下。
10.一种半导体装置,该半导体装置是半导体集成电路装置,该半导体集成电路装置具备:
接口部,将被输入的数据转换成切换信号来进行输出;
控制部,转换上述切换信号的电压,输出控制信号;以及
切换部,基于上述控制信号来输入输出高频信号,
上述切换部具备多个切换元件,该多个切换元件基于上述控制信号切换上述高频信号,
上述切换元件具备:
第1导电型的半导体层;
第2导电型的第1层,设置于上述半导体层;
第2导电型的第2层,设置于上述半导体层;
栅极绝缘膜,设置于上述第1层之上、上述第2层之上以及上述半导体层之上;以及
栅极电极,设置于上述栅极绝缘膜之上,
上述栅极绝缘膜包括第1栅极绝缘膜和第2栅极绝缘膜,上述第1栅极绝缘膜在上述栅极电极的栅极宽度方向延伸,上述第2栅极绝缘膜设置在上述第1栅极绝缘膜的两侧,且至少一部分介于上述栅极电极与上述第1层及上述第2层之间,上述第2栅极绝缘膜比上述第1栅极绝缘膜厚。
11.根据权利要求10记载的半导体装置,
上述第1层的端部设置成与上述第1栅极绝缘膜和上述第2栅极绝缘膜的边界相接,或者,设置成与上述第2栅极绝缘膜相接。
12.根据权利要求10记载的半导体装置,
在栅极长度方向上,从上述第1层的与上述栅极电极端部正下方对应的位置开始到上述第1层的上述端部为止的长度为上述第2栅极绝缘膜的长度以下。
13.根据权利要求10记载的半导体装置,
上述半导体层是SOI基板或者SOS基板的半导体层,
上述半导体层还具备:
第3层,与上述第1层相邻,是与上述第1层相同的导电型,设置成从上述半导体层的表面开始到上述半导体层的底面为止;以及
第4层,与上述第2层相邻,是与上述第2层相同的导电型,设置成从上述半导体层的表面开始到上述半导体层的底面为止。
14.根据权利要求10记载的半导体装置,
上述第2导电型是N型。
15.根据权利要求10记载的半导体装置,
上述第1层与上述第2层之间的上述半导体层与基准电压源连接。
CN201510463261.1A 2015-01-14 2015-07-31 半导体装置 Active CN105789305B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015005357A JP6382731B2 (ja) 2015-01-14 2015-01-14 半導体装置
JP2015-005357 2015-01-14

Publications (2)

Publication Number Publication Date
CN105789305A true CN105789305A (zh) 2016-07-20
CN105789305B CN105789305B (zh) 2018-11-09

Family

ID=56368113

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510463261.1A Active CN105789305B (zh) 2015-01-14 2015-07-31 半导体装置

Country Status (3)

Country Link
US (1) US9768268B2 (zh)
JP (1) JP6382731B2 (zh)
CN (1) CN105789305B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111121452A (zh) * 2020-01-09 2020-05-08 青田林心半导体科技有限公司 一种基于导体半导体互相切换的加热器
US20210328058A1 (en) * 2015-07-24 2021-10-21 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3135827A1 (fr) * 2022-05-19 2023-11-24 Stmicroelectronics (Crolles 2) Sas Transistor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6204138B1 (en) * 1999-03-02 2001-03-20 Advanced Micro Devices, Inc. Method for fabricating a MOSFET device structure which facilitates mitigation of junction capacitance and floating body effects
JP2001168330A (ja) * 1999-12-13 2001-06-22 Seiko Epson Corp Mosfetおよびmosfetの製造方法
US20100200927A1 (en) * 2009-02-11 2010-08-12 International Business Machines Corporation Semiconductor-on-insulator substrate and structure including multiple order radio ferquency harmonic supressing region
US20120132977A1 (en) * 2010-11-29 2012-05-31 Kabushiki Kaisha Toshiba Semiconductor device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000049346A (ja) 1998-07-31 2000-02-18 Nec Corp 半導体装置およびその製造方法
JP3191287B2 (ja) 1998-07-31 2001-07-23 日本電気株式会社 半導体装置およびその製造方法
JP2002094067A (ja) * 2000-09-12 2002-03-29 Fujitsu Ltd Soi構造のmos型半導体装置及びその設計方法
US6680504B2 (en) * 2000-12-22 2004-01-20 Texas Instruments Incorporated Method for constructing a metal oxide semiconductor field effect transistor
KR100373851B1 (ko) * 2001-03-30 2003-02-26 삼성전자주식회사 소이형 반도체 장치 및 그 형성 방법
JP2007281006A (ja) * 2006-04-03 2007-10-25 Seiko Epson Corp 半導体装置及びその製造方法
JP2007150327A (ja) * 2006-12-21 2007-06-14 Yamaha Corp 半導体装置の製造方法
JP2011015289A (ja) 2009-07-03 2011-01-20 Renesas Electronics Corp 半導体集積回路装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6204138B1 (en) * 1999-03-02 2001-03-20 Advanced Micro Devices, Inc. Method for fabricating a MOSFET device structure which facilitates mitigation of junction capacitance and floating body effects
JP2001168330A (ja) * 1999-12-13 2001-06-22 Seiko Epson Corp Mosfetおよびmosfetの製造方法
US20100200927A1 (en) * 2009-02-11 2010-08-12 International Business Machines Corporation Semiconductor-on-insulator substrate and structure including multiple order radio ferquency harmonic supressing region
US20120132977A1 (en) * 2010-11-29 2012-05-31 Kabushiki Kaisha Toshiba Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210328058A1 (en) * 2015-07-24 2021-10-21 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and manufacturing method thereof
US11735662B2 (en) * 2015-07-24 2023-08-22 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and manufacturing method thereof
CN111121452A (zh) * 2020-01-09 2020-05-08 青田林心半导体科技有限公司 一种基于导体半导体互相切换的加热器

Also Published As

Publication number Publication date
CN105789305B (zh) 2018-11-09
JP2016131214A (ja) 2016-07-21
JP6382731B2 (ja) 2018-08-29
US9768268B2 (en) 2017-09-19
US20160204213A1 (en) 2016-07-14

Similar Documents

Publication Publication Date Title
US8237195B2 (en) Power MOSFET having a strained channel in a semiconductor heterostructure on metal substrate
US9640654B2 (en) Semiconductor device
US8557674B2 (en) High voltage semiconductor device including field shaping layer and method of fabricating the same
EP1536464A3 (en) Method of making high-voltage semiconductor devices
EP3217432A1 (en) Semiconductor device capable of high-voltage operation
CN110246898A (zh) 场效应晶体管
JP2009503853A (ja) 基板上に形成される半導体構造およびその製造方法
TW200845362A (en) Semiconductor device
US10304819B2 (en) Semiconductor device with multigate transistor structure
JP2007329295A (ja) 半導体及びその製造方法
TWI794496B (zh) 半導體裝置及其製造方法
EP3217434A1 (en) Semiconductor device capable of high-voltage operation
JP2012033599A (ja) 半導体装置の製造方法及び半導体装置
KR20160067640A (ko) 헤테로구조를 갖는 반도체 소자 및 그 형성 방법
CN105789305A (zh) 半导体装置
JP2017130625A (ja) 高周波スイッチ
KR102192571B1 (ko) 버퍼 층을 갖는 반도체 소자 및 그 형성 방법
US10326013B2 (en) Method of forming a field-effect transistor (FET) or other semiconductor device with front-side source and drain contacts
US20180145171A1 (en) Field Effect Transistor (FET) or Other Semiconductor Device with Front-Side Source and Drain Contacts
US8492796B2 (en) MuGFET switch
JP2010045240A (ja) 縦型mosfet
CN109817721A (zh) 半导体器件及其制造方法及包括该器件的电子设备
JPH11186555A (ja) 半導体装置
CN116313813A (zh) 结型场效应晶体管制备方法及结型场效应晶体管
JP2005159347A (ja) 改善されたゲート構成を有する金属酸化膜半導体デバイス

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant