CN105518872A - 用于制造太阳能电池的光吸收层的金属硫属化物纳米颗粒及其制备方法 - Google Patents

用于制造太阳能电池的光吸收层的金属硫属化物纳米颗粒及其制备方法 Download PDF

Info

Publication number
CN105518872A
CN105518872A CN201480048450.6A CN201480048450A CN105518872A CN 105518872 A CN105518872 A CN 105518872A CN 201480048450 A CN201480048450 A CN 201480048450A CN 105518872 A CN105518872 A CN 105518872A
Authority
CN
China
Prior art keywords
solution
nano particle
metal chalcogenide
phase
chalcogenide nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480048450.6A
Other languages
English (en)
Other versions
CN105518872B (zh
Inventor
朴银珠
尹锡喜
尹锡炫
李豪燮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Chem Ltd
LG Corp
Original Assignee
LG Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chemical Co Ltd filed Critical LG Chemical Co Ltd
Publication of CN105518872A publication Critical patent/CN105518872A/zh
Application granted granted Critical
Publication of CN105518872B publication Critical patent/CN105518872B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0326Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising AIBIICIVDVI kesterite compounds, e.g. Cu2ZnSnSe4, Cu2ZnSnS4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Photovoltaic Devices (AREA)
  • Luminescent Compositions (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Paints Or Removers (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

本发明涉及形成太阳能电池的光学吸收层的金属硫属化物纳米颗粒,并且更具体地涉及包括第一相和第二相的金属硫属化物纳米颗粒及其制备方法,所述第一相包含铜(Cu)-锡(Sn)硫属化物,所述第二相包含锌(Zn)硫属化物。

Description

用于制造太阳能电池的光吸收层的金属硫属化物纳米颗粒及其制备方法
技术领域
本发明涉及用于制备太阳能电池的光吸收层的金属硫属化物纳米颗粒及其制备方法。
背景技术
自其发展初期以来,太阳能电池使用在高成本下形成的光吸收层及作为半导体材料的硅(Si)制造。为更经济地制造商业上可行的太阳能电池,已经开发了利用廉价光吸收材料(例如(二)硒硫化铜铟镓(CIGS)或Cu(In,Ga)(S,Se)2)的薄膜太阳能电池结构。这类CIGS基太阳能电池一般包含背电极层、n型结部件及p型光吸收层。含有这类CIGS层的太阳能电池的功率转换效率大于19%。然而,虽然CIGS基薄膜太阳能电池具有潜能,但In的供给不足及其成本是利用CIGS基光吸收层的薄膜太阳能电池在商业上广泛应用的主要障碍。因此,对使用不含In元素或使用低成本的普遍存在元素的太阳能电池的开发存在迫切需要。
因此,作为该CIGS基光吸收层的替代品,含有极廉价元素铜(Cu)、锌(Zn)、锡(Sn)、硫(S)或硒(Se)的CZTS(Cu2ZnSn(S,Se)4)基太阳能电池近来受到了关注。CZTS的直接带隙为约1.0eV至约1.5eV,吸收系数为104cm-1以上,其储量相对较高,而且CZTS使用了廉价的Sn与Zn。
1996年首次报告了CZTS异质结PV电池,但CZTS基太阳能电池的进展落后于CIGS基太阳能电池,CZTS基太阳能电池的光电效率为10%或更低,比CIGS基太阳能电池低得多。CZTS薄膜通过下列方法制造:溅镀法、复合溅镀法、脉冲激光沉积法、喷雾热解法、电沉积/热处理硫化法、电子束处理法、Cu/Zn/Sn/热处理硫化法、及溶胶-凝胶法。
同时,PCT/US/2010-035792公开了在基底上通过对包括CZTS/Se纳米颗粒的墨进行热处理来形成薄膜。通常,当使用CZTS/Se纳米颗粒形成CZTS薄膜时,在薄膜的形成过程中由于先前形成的小晶体而难以增大晶体尺寸。因此,当每个晶粒小时,界面延伸并由此在界面处发生电子的损失,因此效率劣化。
因此,在薄膜中所使用的纳米颗粒必须包括Cu、Zn和Sn,并且一定不是CZTS晶型。然而,由单一金属元素构成的金属纳米颗粒可能易于被氧化,并且在随后过程中,需要使用大量Se和高温的氧去除过程。另外,当包括每种金属的硫属化物分别被合成并混合时,可能产生不均匀的金属组成比的问题。
因此,高度需要开发包括高效率光吸收层的薄膜太阳能电池的技术,所述光吸收层的抗氧化性稳定,并且由于均匀的组成而使其缺点最小化。
发明内容
技术问题
因此,进行本发明以解决尚未被解决的以上或其他技术问题。
作为各种深入研究和各种试验的结果,本发明的发明人开发了一种包括第一相和第二相的金属硫属化物纳米颗粒,所述第一相包含铜(Cu)-锡(Sn)硫属化物,所述第二相包含锌(Zn)硫属化物,并且证实了在使用该金属硫属化物纳米颗粒制备薄膜时可以抑制薄膜中的第二相的产生,薄膜具有完全均匀的组成并且通过向纳米颗粒添加S或Se而抗氧化性稳定,而且在最终薄膜中第VI族元素的量增加,得到了优良品质的薄膜,从而完成了本发明。
问题的解决方案
根据本发明的一个方面,提供了一种形成太阳能电池的光吸收层的金属硫属化物纳米颗粒,所述金属硫属化物纳米颗粒包括:包含铜(Cu)-锡(Sn)硫属化物的第一相;和包含锌(Zn)硫属化物的第二相。
本发明的术语“硫属化物”是指包括第VI族元素例如硫(S)或硒(Se)的材料。作为一个实施方案,铜(Cu)-锡(Sn)硫属化物可以为CuaSnSb(1.2≤a≤3.2且2.5≤b≤4.5)和/或CuxSnSey(1.2≤x≤3.2,2.5≤y≤4.5),含锌(Zn)硫属化物可以为ZnS和/或ZnSe。
构成金属硫属化物纳米颗粒的两相独立地存在于一个金属硫属化物纳米颗粒中,并且金属硫属化物纳米颗粒中金属的组成比可以在0.5≤Cu/(Zn+Sn)≤1.5并且0.5≤Zn/Sn≤2.0的范围内,特别地在0.7≤Cu/(Zn+Sn)≤1.2并且0.8≤Zn/Sn≤1.4的范围内。
金属硫属化物纳米颗粒的结构(即,第一相和第二相的分布类型)没有特别的限制,可以为其中第一相和第二相均匀分布的类型,如图13至图15所示。第一相和第二相可以以块形态存在并且由此可以形成复合体。可替代地,金属硫属化物纳米颗粒可以具有核-壳结构,其中第一相形成核,而第二相形成壳。
如果金属硫属化物纳米颗粒均匀地分布,则在使用SEM-EDX或TEM-EDX观察金属硫属化物中的某一区域时,在观察区域中金属硫属化物纳米颗粒中金属的组成比可以被确定为在0.5≤Cu/(Zn+Sn)≤1.5并且0.5≤Zn/Sn≤2.0的范围内,具体地可以被确定为在0.7≤Cu/(Zn+Sn)≤1.2并且0.8≤Zn/Sn≤1.4的范围内。
在金属硫属化物纳米颗粒具有核-壳结构时,核的直径可以为5纳米至200纳米,壳的厚度在考虑到核的直径的情况下在与第一相和第二相占所述纳米颗粒的体积对应的范围内可以为1纳米至100纳米。
在该范围之外,如果核的尺寸过大,则形成在壳中的金属硫属化物纳米颗粒过大,由此在厚度为1微米至2微米的最终薄膜中颗粒间的孔增大。另一方面,如果核的尺寸过小,则颗粒可能容易团聚。另外,为了提供具有合适组成比的最终薄膜,壳的厚度变得极其薄并且由此难以形成合适厚度的壳。
同时,不管形状如何,第一相和第二相占金属硫属化物纳米颗粒的总量的组成比可以确定为在0.5≤Cu/(Zn+Sn)≤1.5并且0.5≤Zn/Sn≤2.0的范围内,具体地可以被确定为在0.7≤Cu/(Zn+Sn)≤1.2并且0.8≤Zn/Sn≤1.4的范围内。
作为一个具体实施方案,金属硫属化物纳米颗粒可以包括基于1mol金属元素的0.5mol至3mol的硫属化物元素。在此,金属元素是指所有的金属类型。
在上述范围之外,如果包括过多的金属元素,则第VI族元素无法被充分供应,由此不会形成稳定相例如上述金属硫属化物,并且因此,在后续过程中,相可能改变并且形成第二相,或者单独的金属可能被氧化。相反,如果包括过多的硫属化物元素,则第VI族来源在用于制备薄膜的热处理过程期间被蒸发,由此最终薄膜可能具有太多孔。
本发明还提供了一种合成金属硫属化物纳米颗粒的方法。所述方法具体地可以包括:
(i)制备包含至少一种第VI族来源的第一溶液,所述第VI族来源选自包含硫(S)或硒(Se)的化合物;
(ii)制备包含铜(Cu)盐和锡(Sn)盐的第二溶液以及包含锌(Zn)盐的第三溶液;
(iii)将第一溶液与第二溶液进行混合并进行反应;以及
(iv)将所述第三溶液与步骤(iii)的反应产物进行混合并进行反应。
也就是说,根据本发明的制备金属硫属化物纳米颗粒的方法通过溶液工艺代替常规真空工艺来进行,由此可显著减低工艺成本。另外,作为制备溶液的溶剂,未使用有害的阱,由此可以消除在常规溶液工艺中可能发生的风险。
作为一个具体实施方案,在步骤(iv)中将第三溶液混合时,可以另外地添加第VI族来源。
如上所述,按1mol的金属元素计以0.5mol至3mol的量包含第VI族来源。如果第一溶液包含足量的第VI族来源,则在对第三溶液进行混合时不需要附加的第VI族来源。然而,如果第一溶液不包含足量的第VI族来源,则可以另外地添加第VI族来源以解决第VI族元素的部分缺乏。在此,考虑到存在于第一溶液和第二溶液的反应产物中的第VI族元素的量可以添加第VI族来源。
在一个具体实施方案中,用于第一溶液、第二溶液和第三溶液的溶剂可以为选自水、醇、二甘醇(DEG)、油胺、乙二醇、三甘醇、二甲基亚砜、二甲基甲酰胺和N-甲基-2-吡咯烷酮(NMP)中的至少一种。具体地,醇类溶剂可以为具有1至8个碳的甲醇、乙醇、丙醇、丁醇、戊醇、己醇、庚醇和辛醇。
在一个具体实施方案中,铜(Cu)盐、锡(Sn)盐和锌(Zn)盐各自独立地可以为选自氯化物、溴化物、碘化物、硝酸盐、亚硝酸盐、硫酸盐、乙酸盐、亚硫酸盐、乙酰丙酮化物和氢氧化物中的至少一种盐。作为锡(Sn)盐,可以使用二价盐或三价盐,但是本发明的实施方案不限于此。
在一个具体实施方案中,第VI族来源可以为选自Se、Na2Se、K2Se、CaSe、(CH3)2Se、SeO2、SeCl4、H2SeO3、H2SeO4、Na2S、K2S、CaS、(CH3)2S、H2SO4、S、Na2S2O3、NH2SO3H、及其水合物、硫脲、硫代乙酰胺、硒代乙酰胺和硒脲中的至少一种。
同时,第一溶液至第三溶液还可以包括封端剂。
在溶液工艺期间包含封端剂,从而可以控制所合成的金属硫属化物纳米颗粒的尺寸和颗粒相。此外,封端剂包含例如N、O和S等原子,从而封端剂易于通过所述原子的孤对电子与金属硫属化物纳米颗粒的表面结合并且包围该表面。因此,可以防止金属硫属化物纳米颗粒的氧化。
封端剂没有特别限制,例如可以是选自聚乙烯吡咯烷酮、L-酒石酸二钠盐二水合物、酒石酸钾钠、丙酮二酸钠、丙烯酸钠、聚(丙烯酸钠盐)、聚(乙烯吡咯烷酮)、柠檬酸钠、柠檬酸三钠、柠檬酸二钠、葡萄糖酸钠、抗坏血酸钠、山梨糖醇、磷酸三乙酯、乙二胺、丙二胺、1,2-乙二硫醇和乙硫醇中的至少一种。
本发明还提供了制备包含金属硫属化物纳米颗粒的光吸收层的墨组合物以及使用所述墨组合物制备薄膜的方法。
根据本发明的所述制备薄膜的方法包括:
(i)将包括第一相和第二相的金属硫属化物纳米颗粒分散在溶剂中以制备墨,所述第一相包含铜(Cu)-锡(Sn)硫属化物,所述第二相包含锌(Zn)硫属化物;
(ii)将所述墨涂布在设置有电极的基底上;以及
(iii)对已涂布在设置有电极的基底上的墨进行干燥并且然后进行热处理。
在具体的实施方案中,步骤(i)中的溶剂没有特别限制,只要该溶剂是一般有机溶剂即可,并且其可为选自以下的一种有机溶剂,或选自其中的至少一种有机溶剂的混合物:烷烃、烯烃、炔烃、芳族化合物、酮、腈、醚、酯、有机卤化物、醇、胺、硫醇、羧酸、膦、亚磷酸酯、磷酸酯、亚砜及酰胺。
特别地,醇可为选自以下中的至少一种混合溶剂:乙醇、1-丙醇、2-丙醇、1-戊醇、2-戊醇、1-己醇、2-己醇、3-己醇、庚醇、辛醇、乙二醇(EG)、二甘醇单乙醚(DEGMEE)、乙二醇单甲醚(EGMME)、乙二醇单乙醚(EGMEE)、乙二醇二甲醚(EGDME)、乙二醇二乙醚(EGDEE)、乙二醇单丙醚(EGMPE)、乙二醇单丁醚(EGMBE)、2-甲基-1-丙醇、环戊醇、环己醇、丙二醇丙醚(PGPE)、二甘醇二甲醚(DEGDME)、1,2-丙二醇(1,2-PD)、1,3-丙二醇(1,3-PD)、1,4-丁二醇(1,4-BD)、1,3-丁二醇(1,3-BD)、α-萜品醇、二甘醇(DEG)、甘油、2-(乙基氨基)乙醇、2-(甲基氨基)乙醇、及2-氨基-2-甲基-1-丙醇。
胺可为选自以下中的至少一种混合溶剂:三乙胺、二丁基胺、二丙胺、丁胺、乙醇胺、二亚乙基三胺(DETA)、三亚乙基四胺(TETA)、三乙醇胺、2-氨基乙基哌嗪、2-羟基乙基哌嗪、二丁胺、及三(2-氨基乙基)胺。
硫醇可为选自以下中的至少一种混合溶剂:1,2-乙二硫醇、戊硫醇、己硫醇、及巯基乙醇。
烷烃可为选自以下中的至少一种混合溶剂:己烷、庚烷、及辛烷。
芳族化合物可为选自以下中的至少一种混合溶剂:甲苯、二甲苯、硝基苯、及吡啶。
有机卤化物可为选自以下中的至少一种混合溶剂:氯仿、二氯甲烷、四氯甲烷、二氯乙烷、及氯苯。
腈可为乙腈。
酮可为选自以下中的至少一种混合溶剂:丙酮、环己酮、环戊酮、及乙酰丙酮。
醚可为选自以下中的至少一种混合溶剂:乙醚、四氢呋喃、及1,4-二烷。
亚砜可为选自以下中的至少一种混合溶剂:二甲基亚砜(DMSO)及环丁砜。
酰胺可为选自以下中的至少一种混合溶剂:二甲基甲酰胺(DMF)及N-甲基-2-比咯烷酮(NMP)。
酯可为选自以下中的至少一种混合溶剂:乳酸乙酯、γ-丁内酯、及乙酰乙酸乙酯。
羧酸可为选自以下中的至少一种混合溶剂:丙酸、己酸、内消旋-2,3-二巯基丁二酸、硫代乳酸、及硫代乙醇酸。
然而,所述溶剂仅作为实例提供,而本发明的实施方案不限于此。
在某些情况下,在步骤(i)中制备墨时,可以通过另外加入添加剂来制造墨。
该添加剂可为,例如,选自以下中的至少一种:分散剂、表面活性剂、聚合物、粘合剂、交联剂、乳化剂、消泡剂、干燥剂、填料、增量剂、增稠剂、膜调理剂、抗氧化剂、流化剂、流平剂、及腐蚀抑制剂。特别地,该添加剂可为选自以下中的至少一种:聚乙烯吡咯烷酮(PVP)、聚乙烯醇、Anti-terra204、Anti-terra205、乙基纤维素、及DispersBYK110。
在步骤(ii)中通过涂布墨形成涂布层的方法可为,例如,选自以下中的至少一种:湿法涂布、喷涂、旋涂、刮刀涂布、接触印刷、顶部进料反转印刷、底部进料反转印刷、喷嘴进料反转印刷、照相凹版印刷、微型照相凹版印刷、反转微型照相凹版印刷、辊涂、狭缝模头涂布、毛细涂布、喷墨印刷、喷射沉积或喷雾沉积。
步骤(iii)的热处理可以在400℃至900℃的温度下进行。
同时,可以包括硒化过程以制备具有高得多的密度的太阳能电池薄膜。硒化过程可以通过各种方法进行。
作为第一实例,可以通过经由将颗粒形式的S和/或Se分散到步骤(i)中的具有金属硫属化物纳米颗粒的溶剂中,并结合步骤(iii)的热处理来制备墨从而实现从硒化过程所获得的效果。
作为第二实例,可以通过在S或Se存在的条件下进行步骤(iii)的热处理来实现从硒化过程所获得的效果。
具体地,S或Se可以通过供应气态的H2S或H2Se或者通过加热供应气态的Se或S来呈现。
作为第三实例,在步骤(ii)之后,可以在已被涂布的基底上沉积S或Se,接着进行步骤(iii)。具体地,可以通过溶液工艺或沉积方法来进行沉积过程。
本发明还提供了使用上述方法制备的薄膜。
薄膜的厚度可以为0.5μm至3.0μm,更具体地为0.5μm至2.5μm。
如果薄膜的厚度小于0.5μm,则光吸收层的密度和量不足,因而无法获得期望的光电效率。另一方面,如果薄膜的厚度超过3.0μm时,载流子的移动距离增加,因而复合的可能性增加,这导致效率降低。
本发明还提供了使用薄膜制造的薄膜太阳能电池。
制造薄膜太阳能电池的方法在本领域中是已知的,因此在本文中将省略对其的详细描述。
附图说明
图1是根据实施例1形成的Cu2SnS3-ZnS纳米颗粒的SEM图像;
图2是根据实施例1形成的Cu2SnS3-ZnS纳米颗粒的TEM图像;
图3是根据实施例1形成的Cu2SnS3-ZnS纳米颗粒的XRD图;
图4是根据实施例7形成的Cu2SnS3-ZnS纳米颗粒的SEM图像;
图5是根据实施例7形成的Cu2SnS3-ZnS纳米颗粒的XRD图;
图6是根据实施例17制备的薄膜的SEM图像;
图7是根据实施例17制备的薄膜的XRD图;
图8是根据比较例3制备的薄膜的XRD图;
图9是根据比较例4制备的薄膜的XRD图;
图10是根据实施例18制备的薄膜太阳能电池的IV特性图;
图11是根据比较例5制造的薄膜太阳能电池的IV特性图;
图12是根据比较例6制造的薄膜太阳能电池的IV特性图;
图13是示出了Cu2SnS3-ZnS纳米颗粒的SEM-EDX结果的表格,证明了根据本发明合成的颗粒中的均匀颗粒分布;
图14是Cu2SnS3-ZnS纳米颗粒的EDS映射结果,证明了根据本发明合成的颗粒中的均匀金属分布;以及
图15是Cu2SnS3-ZnS纳米颗粒组合物的线扫描结果,证明了根据本发明合成的颗粒中的均匀金属分布。
具体实施方式
现在,将参照下面的实施例更详细地描述本发明。提供这些实施例仅用于说明本发明并且不应该解释为限制本发明的范围和精神。
<实施例1>
Cu 2 SnS 3 -ZnS颗粒
在向包含10mmol的CuCl2的DEG溶液和包含5mmol的SnCl2的DEG溶液添加包含30mmol的硫代乙酰胺的DEG溶液之后,将温度升高至175℃,然后使溶液在搅拌同时发生反应三小时。接着,在室温下向已经反应的溶液慢慢地滴加包含7mmol的ZnCl2的DEG溶液。接着,将溶液加热至180℃或更高,然后保持在该温度下搅拌三小时。接着,通过离心作用对所述溶液进行纯化,得到Cu2SnS3-ZnS纳米颗粒。在图1至图3中示出了所形成的颗粒的扫描电子显微镜(SEM)图像、透射电子显微镜(TEM)图像和XRD图。
<实施例2>
Cu 2 SnS 3 -ZnS颗粒
在向包含10mmol的CuSO4的DEG溶液和包含5mmol的SnCl2的DEG溶液添加包含30mmol的硫代乙酰胺的DEG溶液之后,将温度升高至175℃,然后使溶液在搅拌同时反应三小时。接着,在室温下向已经反应的溶液慢慢地滴加包含7mmol的ZnCl2的DEG溶液。接着,将溶液加热至180℃或更高,然后保持在该温度下搅拌三小时。接着,通过离心作用对所述溶液进行纯化,得到Cu2SnS3-ZnS纳米颗粒。
<实施例3>
Cu 2 SnS 3 -ZnS颗粒的合成
在向包含10mmol的CuSO4的DEG溶液和包含5mmol的Sn(OAc)2的DEG溶液添加包含30mmol的硫代乙酰胺的DEG溶液之后,将温度升高至175℃,然后使溶液在搅拌同时反应三小时。接着,在室温下向已经反应的溶液慢慢地滴加包含7mmol的ZnCl2的DEG溶液。接着,将溶液加热至180℃或更高,然后保持在该温度下搅拌三小时。接着,通过离心作用对所述溶液进行纯化,得到Cu2SnS3-ZnS纳米颗粒。
<实施例4>
Cu 2 SnS 3 -ZnS颗粒的合成
在向包含10mmol的CuCl2的DEG溶液和包含5mmol的SnCl2的DEG溶液添加包含30mmol的硫脲的DEG溶液之后,将温度升高至175℃,然后使溶液在搅拌同时反应三小时。接着,在室温下向已经反应的溶液慢慢地滴加包含7mmol的ZnCl2的DEG溶液。接着,将溶液加热至180℃或更高,然后保持在该温度下搅拌三小时。接着,通过离心作用对所述溶液进行纯化,得到Cu2SnS3-ZnS纳米颗粒。
<实施例5>
Cu 2 SnS 3 -ZnS颗粒的合成
在向包含10mmol的CuCl2的DEG溶液和包含5mmol的SnCl2的DEG溶液添加包含15mmol的硫代乙酰胺的DEG溶液之后,将温度升高至175℃,然后使溶液在搅拌同时反应五小时。接着,在室温下向已经反应的溶液慢慢地滴加包含6mmol的ZnCl2的DEG溶液和包含6mmol硫代乙酰胺的DEG溶液。接着,将溶液加热至180℃或更高,然后保持在该温度下搅拌三小时。接着,通过离心作用对所述溶液进行纯化,得到Cu2SnS3-ZnS纳米颗粒。
<实施例6>
Cu 2 SnS 3 -ZnS颗粒的合成
在向包含10mmol的CuCl2的DEG溶液和包含5mmol的SnCl2的DEG溶液添加包含20mmol的硫代乙酰胺的DEG溶液之后,将温度升高至175℃,然后使溶液在搅拌同时反应三小时。接着,在室温下向已经反应的溶液慢慢地滴加包含6mmol的ZnCl2的DEG溶液和包含12mmol的硫代乙酰胺的DEG溶液。接着,将溶液加热至180℃或更高,然后保持在该温度下搅拌三小时。接着,通过离心作用对所述溶液进行纯化,得到Cu2SnS3-ZnS纳米颗粒。
<实施例7>
Cu 2 SnS 3 -ZnS颗粒的合成
在向包含10mmol的CuCl2的DEG溶液和包含5mmol的SnCl2的DEG溶液添加包含20mmol的硫代乙酰胺的DEG溶液之后,将温度升高至175℃,然后使溶液在搅拌同时反应六小时。接着,在室温下向已经反应的溶液慢慢地滴加包含6mmol的ZnCl2的DEG溶液和包含12mmol的硫代乙酰胺的DEG溶液。接着,将溶液加热至180℃或更高,然后保持在该温度下搅拌三小时。接着,通过离心作用对所述溶液进行纯化,得到Cu2SnS3-ZnS纳米颗粒。在图4和图5中示出了所形成的颗粒的扫描电子显微镜(SEM)图像和XRD图。
<实施例8>
Cu 2 SnS 3 -ZnS颗粒的合成
在向包含10mmol的CuCl2的EG溶液和包含5mmol的SnCl2的EG溶液添加包含30mmol的硫代乙酰胺的EG溶液之后,将温度升高至175℃,然后使溶液在搅拌同时反应三小时。接着,在室温下向已经反应的溶液慢慢地滴加包含6mmol的ZnCl2的EG溶液。接着,将溶液加热至180℃或更高,然后保持在该温度下搅拌三小时。接着,通过离心作用对所述溶液进行纯化,得到Cu2SnS3-ZnS纳米颗粒。
<实施例9>
Cu 2 SnS 3 -ZnS颗粒的合成
在向包含10mmol的CuCl2的DEG溶液、包含5mmol的SnCl2的DEG溶液和包含1mmol的PVP的DEG溶液添加包含30mmol的硫代乙酰胺的DEG溶液之后,将温度升高至175℃,然后使溶液在搅拌同时反应三小时。接着,在室温下向已经反应的溶液慢慢地滴加包含7mmol的ZnCl2的DEG溶液。接着,将溶液加热至180℃或更高,然后保持在该温度下搅拌三小时。接着,通过离心作用对所述溶液进行纯化,得到Cu2SnS3-ZnS纳米颗粒。
<实施例10>
Cu 2 SnS 3 -ZnS颗粒的合成
在向包含10mmol的CuCl2的H2O溶液和包含5mmol的SnCl2的H2O溶液添加包含30mmol的硫代乙酰胺的H2O溶液之后,将温度升高至100℃,然后使溶液在搅拌同时反应三小时。接着,在室温下向已经反应的溶液慢慢地滴加包含6mmol的ZnCl2的H2O溶液,然后将温度升高至100℃。保持在该温度下,将溶液搅拌三小时,然后通过离心作用进行纯化,得到Cu2SnS3-ZnS纳米颗粒。
<实施例11>
Cu 2 SnS 3 -ZnS颗粒的合成
在向包含10mmol的CuCl2的H2O溶液、包含5mmol的SnCl2的H2O溶液和包含10mmol的柠檬酸钠的H2O溶液添加包含30mmol的硫代乙酰胺的H2O溶液之后,将温度升高至100℃,然后使溶液在搅拌同时反应六小时。接着,在室温下向已经反应的溶液慢慢地滴加包含6mmol的ZnCl2的H2O溶液和包含12mmol的硫代乙酰胺的H2O溶液,然后将温度升高至100℃。保持在该温度下,将溶液搅拌三小时,然后通过离心作用进行纯化,得到Cu2SnS3-ZnS纳米颗粒。
<实施例12>
Cu 2 SnS 3 -ZnS颗粒的合成
在向包含10mmol的Cu(NO3)2的H2O溶液、包含5mmol的SnCl2的H2O溶液和包含10mmol的丙酮二酸钠的H2O溶液添加包含30mmol的硫代乙酰胺的H2O溶液之后,将温度升高至100℃,然后使溶液在搅拌同时反应六小时。接着,在室温下向已经反应的溶液慢慢地滴加包含6mmol的Zn(OAc)2的H2O溶液和包含12mmol的硫代乙酰胺的H2O溶液,然后将温度升高至100℃。保持在该温度下,将溶液搅拌五小时,然后通过离心作用进行纯化,得到Cu2SnS3-ZnS纳米颗粒。
<实施例13>
Cu 2 SnS 3 -ZnS颗粒的合成
在向包含10mmol的CuCl2的H2O溶液和包含5mmol的SnCl2的H2O溶液添加包含30mmol的Na2S的H2O溶液之后,使所得到的溶液在搅拌同时在室温下反应三小时。接着,向已经反应的溶液慢慢地滴加包含6mmol的ZnCl2的H2O溶液,然后将所得到的溶液在室温下搅拌三小时。通过离心作用对所得的溶液进行纯化,得到Cu2SnS3-ZnS纳米颗粒。
<实施例14>
Cu 2 SnS 3 -ZnS颗粒的合成
在向包含10mmol的CuSO4的H2O溶液、包含5mmol的SnCl2的H2O溶液和包含15mmol的柠檬酸钠的H2O溶液添加包含30mmol的Na2S的H2O溶液之后,使所得到的溶液在搅拌同时在室温下反应三小时。接着,向已经反应的溶液慢慢地滴加包含6mmol的ZnCl2的H2O溶液,然后将所得到的溶液在室温下搅拌三小时。通过离心作用对所得到的溶液进行纯化,得到Cu2SnS3-ZnS纳米颗粒。
<实施例15>
Cu 2 SnS 3 -ZnS颗粒的合成
在向包含10mmol的CuSO4的H2O溶液和包含5mmol的SnCl2的H2O溶液添加包含30mmol的Na2S的H2O溶液之后,使所得到的溶液在搅拌同时在室温下反应三小时。接着,向已经反应的溶液慢慢地滴加包含6mmol的ZnCl2的H2O溶液,然后将所得到的溶液在室温下搅拌三小时。通过离心作用对所得到的溶液进行纯化,得到Cu2SnS3-ZnS纳米颗粒。
<实施例16>
Cu 2 SnS 3 -ZnS颗粒的合成
在向包含10mmol的Cu(NO3)2的H2O溶液和包含5mmol的SnCl2的H2O溶液添加包含30mmol的Na2S的H2O溶液之后,使溶液在搅拌同时在室温下反应三小时。接着,向已经反应的溶液慢慢地滴加包含6mmol的ZnCl2的H2O溶液,然后将所得到的溶液在室温下搅拌三小时。通过离心作用对所得到的溶液进行纯化,得到Cu2SnS3-ZnS纳米颗粒。
<比较例1>
在将乙酰丙酮铜(Cu(acac)2)、醋酸锌(Zn(OAc)2)和Sn(acac)2Br2溶解到油胺溶液中之后,将温度升高至225℃。将溶解有S元素的油胺溶液另外地滴加于其中。通过离心作用对所形成的颗粒进行纯化,得到CZTS纳米颗粒。
<比较例2>
在将CuCl2·2H2O、SnCl2和硫代乙酰胺溶解到二甘醇溶液中之后,将所得到的溶液加热至175℃保持2.5小时。通过离心作用对所合成的颗粒进行纯化,得到Cu2SnS3颗粒。此外,在另外将ZnCl2、硫代乙酰胺和PVP溶解到二甘醇溶液中之后,将所得到的溶液加热至175℃保持2.5小时。通过离心作用对所合成的颗粒进行纯化,得到ZnS颗粒。
<实施例17>
薄膜的制备
将根据实施例8所制备的Cu2SnS3-ZnS分散到基于醇的溶剂的混合物中以制备墨。接着,将墨涂布至涂布有钼(Mo)的玻璃衬底上以形成涂布膜,然后将涂布膜干燥。接着,将涂布膜与沉积有Se的玻璃衬底一起加热以提供Se气氛,然后在575℃进行快速热退火(RTA),得到CZTSSe基薄膜。在图6和图7中分别示出了所得到的薄膜的SEM图像和XRD图。
<比较例3>
薄膜的制备
将根据比较例1所制备的CZTS纳米颗粒分散到作为溶剂的甲苯中以制备墨,并将墨涂布至涂布有Mo的钠钙玻璃衬底上以形成涂布膜。接着,将涂布膜干燥,然后在450℃的Se气氛中进行热处理,得到CZTSSe基薄膜。在图8中示出了所得到的薄膜的XRD图。
<比较例4>
薄膜的制备
将根据比较例2所制备的Cu2SnS3纳米颗粒和ZnS纳米颗粒分散到基于醇的溶剂的混合物中以制备墨。接着,将墨涂布至涂布有钼(Mo)的玻璃衬底上以形成涂布膜,然后将涂布膜干燥。接着,将涂布膜与沉积有Se的玻璃衬底一起加热以提供Se气氛,然后在575℃进行快速热退火(RTA),得到CZTSSe基薄膜。在图9中示出了所得到的薄膜的XRD图。
<实施例18>
薄膜太阳能电池的制备
将根据实施例17所制备的CZTSSe基薄膜用氰化钾(KCN)溶液蚀刻,通过化学浴沉积(CBD)在其上形成具有50nm厚度的CdS层,通过溅射法在其上顺序地层积具有100nm厚度的ZnO层和具有500nm厚度的掺Al的ZnO层,从而完成薄膜的制备。接着,在薄膜处形成Al电极,从而完成薄膜太阳能电池的制备。在图10中示出了显示薄膜太阳能电池的电流电压(I-V)特性的图。
<比较例5>
薄膜太阳能电池的制备
通过化学浴沉积(CBD)将CdS形成在根据比较例3所制备的CZTSSe基薄膜上,然后通过溅射法在其上顺序地层积ZnO层和ITO层,从而完成薄膜太阳能电池的制备。在图11中示出了显示薄膜太阳能电池的电流电压(I-V)特性的图。
<比较例6>
薄膜太阳能电池的制备
通过化学浴沉积(CBD)将CdS层安装在根据比较例4所制备的CZTSSe基薄膜上,然后通过溅射法在其上顺序地层积ZnO层和ITO层,从而完成薄膜太阳能电池的制备。在图12中示出了显示薄膜太阳能电池的电流电压(I-V)特性的图。
<实验例1>
对实施例18和比较例5以及比较例6的薄膜太阳能电池的光电效率进行了测量,下面的表1和图10至图12示出了测试结果。
[表1]
Jsc(mA/cm2) Voc(V) FF 光电效率(%)
实施例18 18.7 0.240 0.299 1.34
比较例5 10.5 0.188 0.372 0.73
比较例6 9.1 0.171 0.371 0.58
表1中,Jsc表示电流密度,其是确定每个太阳能电池的效率的变量,Voc表示在零输出电流下测得的开路电压,光电效率是指根据入射到太阳能电池板上的光的辐照度的电池输出率,填充因子(FF)表示通过用在最大功率下的电流密度和电压值的乘积除以Voc和Jsc的乘积而获得的值。
如以上在表1中看出的,与根据现有技术方法所制备的金属硫属化物纳米颗粒相比,在根据本发明制备的金属硫属化物纳米颗粒被用于形成光吸收层时,光吸收层由于高电流密度和电压而显示出优越的光电效率。
尽管已经公开了本发明的优选实施方案用于说明目的,但是本领域技术人员将理解,在不脱离所附权利要求中所公开的本发明的范围和精神的情况下可以有各种修改、添加和替换。
工业实用性
如上文所述,根据本发明的金属硫属化物纳米颗粒包括在一个颗粒中的第一相和第二相,第一相包含铜(Cu)-锡(Sn)硫属化物,第二相包含锌(Zn)硫属化物。因此,当使用金属硫属化物纳米颗粒制备薄膜时,可以抑制第二相的产生,薄膜可具有完全均匀的组成,这是因为一个颗粒包含了所有金属。另外,由于纳米颗粒包含S或Se,所以纳米颗粒的抗氧化性稳定,并且在最终薄层中的第VI族元素的量可以增加。此外,在硒化过程中颗粒的体积由于第VI族元素的添加而增加,由此可以生长具有较高密度的光吸收层。
另外,因为根据本发明的金属硫属化物纳米颗粒是通过溶液工艺制备的,所以当与常规工艺进行比较时可以显著减低工艺成本。此外,未使用有害的还原剂例如肼,因此,可以消除由于使用有害的还原剂所产生的风险。

Claims (30)

1.一种形成太阳能电池的光吸收层的金属硫属化物纳米颗粒,包括:包含铜(Cu)-锡(Sn)硫属化物的第一相;和包含锌(Zn)硫属化物的第二相。
2.根据权利要求1所述的金属硫属化物纳米颗粒,其中所述铜(Cu)-锡(Sn)硫属化物为CuaSnSb,其中1.2≤a≤3.2且2.5≤b≤4.5;和/或CuxSnSey,其中1.2≤x≤3.2且2.5≤y≤4.5。
3.根据权利要求1所述的金属硫属化物纳米颗粒,其中所述锌(Zn)硫属化物为ZnS和/或ZnSe。
4.根据权利要求1所述的金属硫属化物纳米颗粒,其中所述第一相和所述第二相独立地存在。
5.根据权利要求1所述的金属硫属化物纳米颗粒,其中所述金属硫属化物纳米颗粒中金属的组成比被确定为在0.5≤Cu/(Zn+Sn)≤1.5并且0.5≤Zn/Sn≤2.0的范围内。
6.根据权利要求1所述的金属硫属化物纳米颗粒,其中所述第一相和所述第二相均匀地分布在所述金属硫属化物纳米颗粒中。
7.根据权利要求6所述的金属硫属化物纳米颗粒,其中在观测所述金属硫属化物中的任意区域时,在所述区域中所述金属硫属化物纳米颗粒中金属的组成比被确定为在0.5≤Cu/(Zn+Sn)≤1.5并且0.5≤Zn/Sn≤2.0的范围内。
8.根据权利要求7所述的金属硫属化物纳米颗粒,其中在所述区域中所述金属硫属化物纳米颗粒中所述金属的组成比被确定为在0.7≤Cu/(Zn+Sn)≤1.2并且0.8≤Zn/Sn≤1.4的范围内。
9.根据权利要求1所述的金属硫属化物纳米颗粒,其中所述金属硫属化物纳米颗粒为以块形态存在的所述第一相和所述第二相的复合体。
10.根据权利要求1所述的金属硫属化物纳米颗粒,其中所述金属硫属化物纳米颗粒为具有核-壳结构的纳米颗粒,其包括由所述第一相组成的核和由所述第二相组成的壳。
11.根据权利要求10所述的金属硫属化物纳米颗粒,其中所述核的直径为5纳米至200纳米。
12.根据权利要求10所述的金属硫属化物纳米颗粒,其中所述壳的厚度为1纳米至100纳米。
13.一种合成根据权利要求1所述的金属硫属化物纳米颗粒的方法,所述方法包括:
(i)制备包含至少一种第VI族来源的第一溶液,所述第VI族来源选自包含硫(S)或硒(Se)的化合物;
(ii)制备包含铜(Cu)盐和锡(Sn)盐的第二溶液以及包含锌(Zn)盐的第三溶液;
(iii)将所述第一溶液与所述第二溶液进行混合并进行反应;以及
(iv)将所述第三溶液与步骤(iii)的反应产物进行混合并进行反应。
14.根据权利要求13所述的方法,其中当在步骤(iv)中将所述第三溶液混合时,另外地添加第VI族来源。
15.根据权利要求13所述的方法,其中所述第一溶液、所述第二溶液和所述第三溶液的溶剂为选自水、二甘醇、甲醇、乙醇、油胺、乙二醇、三甘醇、二甲基亚砜、二甲基甲酰胺和NMP(N-甲基-2-吡咯烷酮)中的至少一种。
16.根据权利要求13所述的方法,其中所述铜(Cu)盐、所述锡(Sn)盐和所述锌(Zn)盐分别独立地为选自氯化物、溴化物、碘化物、硝酸盐、亚硝酸盐、硫酸盐、乙酸盐、亚硫酸盐、乙酰丙酮化物和氢氧化物中的至少一种。
17.根据权利要求13所述的方法,其中所述第VI族来源为选自Se、Na2Se、K2Se、CaSe、(CH3)2Se、SeO2、SeCl4、H2SeO3、H2SeO4、Na2S、K2S、CaS、(CH3)2S、H2SO4、S、Na2S2O3、NH2SO3H、及其水合物、硫脲、硫代乙酰胺、硒代乙酰胺和硒脲中的至少一种。
18.一种用于制备包含根据权利要求1所述的金属硫属化物纳米颗粒的光吸收层的墨组合物。
19.一种使用根据权利要求18所述的用于制备所述光吸收层的墨组合物来制备薄膜的方法,所述方法包括:
(i)将包括第一相和第二相的金属硫属化物纳米颗粒分散在溶剂中以制备墨组合物,所述第一相包含铜(Cu)-锡(Sn)硫属化物,所述第二相包含锌(Zn)硫属化物;
(ii)将所述墨组合物涂布在设置有电极的基底上;以及
(iii)对涂布在所述设置有电极的基底上的所述墨组合物进行干燥并且然后进行热处理。
20.根据权利要求19所述的方法,其中步骤(i)中的所述溶剂为选自烷烃、烯烃、炔烃、芳族化合物、酮、腈、醚、酯、有机卤化物、醇、胺、硫醇、羧酸、膦、磷酸酯、亚砜和酰胺中的至少一种有机溶剂。
21.根据权利要求19所述的方法,其中步骤(i)的所述墨组合物通过另外加入添加剂来制备。
22.根据权利要求19所述的方法,其中所述添加剂为选自聚乙烯吡咯烷酮(PVP)、聚乙烯醇、Anti-terra204、Anti-terra205、乙基纤维素、和DispersBYK110中的至少一种。
23.根据权利要求19所述的方法,其中步骤(ii)的所述涂布通过湿法涂布、喷涂、刮刀涂布和喷墨打印来进行。
24.根据权利要求19所述的方法,其中步骤(iii)的所述热处理在400℃至900℃的范围内进行。
25.根据权利要求19所述的方法,其中在步骤(i)的所述分散中,S和/或Se以颗粒形式与所述金属硫属化物纳米颗粒一起分散在溶剂中。
26.根据权利要求19所述的方法,其中步骤(iii)的所述热处理在存在S或Se的情况下进行。
27.根据权利要求26所述的方法,其中所述存在S或Se通过供应气态的H2S或H2Se或者经由加热供应气态的Se或S来获得。
28.根据权利要求19所述的方法,还包括在步骤(ii)的所述涂布之后层积S或Se。
29.一种通过根据权利要求19至28中任一项所述的方法制备的薄膜。
30.一种使用根据权利要求29所述的薄膜制造的薄膜太阳能电池。
CN201480048450.6A 2013-09-12 2014-09-02 用于制造太阳能电池的光吸收层的金属硫属化物纳米颗粒及其制备方法 Active CN105518872B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2013-0109717 2013-09-12
KR20130109717 2013-09-12
PCT/KR2014/008181 WO2015037856A1 (ko) 2013-09-12 2014-09-02 태양전지 광흡수층 제조용 금속 칼코게나이드 나노 입자 및 이의 제조방법

Publications (2)

Publication Number Publication Date
CN105518872A true CN105518872A (zh) 2016-04-20
CN105518872B CN105518872B (zh) 2018-04-27

Family

ID=52665913

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480048450.6A Active CN105518872B (zh) 2013-09-12 2014-09-02 用于制造太阳能电池的光吸收层的金属硫属化物纳米颗粒及其制备方法

Country Status (8)

Country Link
US (2) US20160218231A1 (zh)
EP (1) EP3026714B1 (zh)
JP (1) JP6246373B2 (zh)
KR (1) KR101650049B1 (zh)
CN (1) CN105518872B (zh)
ES (1) ES2834993T3 (zh)
TW (1) TWI603919B (zh)
WO (1) WO2015037856A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107377010A (zh) * 2017-06-28 2017-11-24 安阳师范学院 新型微孔硫属化物、其制备方法及应用
CN115872439A (zh) * 2022-12-09 2023-03-31 湖北工业大学 纳米晶促铜锌锡硫颗粒生长的薄膜制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9876131B2 (en) * 2013-08-01 2018-01-23 Lg Chem, Ltd. Ink composition for manufacturing light absorption layer of solar cells and method of manufacturing thin film using the same
WO2016040690A1 (en) * 2014-09-12 2016-03-17 The Regents Of The University Of California High performance thin films from solution processible two-dimensional nanoplates
WO2018065156A1 (en) 2016-10-07 2018-04-12 Haldor Topsøe A/S KESTERITE MATERIAL OF CZTS, CZTSe OR CZTSSe TYPE
KR102231108B1 (ko) * 2019-11-27 2021-03-23 재단법인대구경북과학기술원 비스무트 칼코할라이드 박막의 제조방법 및 이를 포함하는 태양전지의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012037276A1 (en) * 2010-09-16 2012-03-22 Solexant Corp. Sintered czts nanoparticle solar cells
CN102612486A (zh) * 2009-11-25 2012-07-25 E·I·内穆尔杜邦公司 用于生产结晶铜硫属元素化物纳米颗粒的含水方法、如此生产的纳米颗粒、以及掺入了此类纳米颗粒的油墨和涂覆的基底
CN102668021A (zh) * 2009-11-25 2012-09-12 E·I·内穆尔杜邦公司 CZTS/Se前体油墨及用于制备CZTS/Se薄膜和基于CZTS/Se的光伏电池的方法
CN102906014A (zh) * 2010-05-21 2013-01-30 纳幕尔杜邦公司 非典型锌黄锡矿组合物
US20130037110A1 (en) * 2011-08-10 2013-02-14 International Business Machines Corporation Particle-Based Precursor Formation Method and Photovoltaic Device Thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI458115B (zh) 2009-11-11 2014-10-21 Univ Nat Kaohsiung Marine Solar cell X ZnSnS Y Film (CZTS) manufacturing method
US9105796B2 (en) * 2009-11-25 2015-08-11 E I Du Pont De Nemours And Company CZTS/Se precursor inks and methods for preparing CZTS/Se thin films and CZTS/Se-based photovoltaic cells
US20120100660A1 (en) * 2010-10-25 2012-04-26 Hagedorn Kevin V Method for preparation of metal chalcogenide solar cells on complexly shaped surfaces
US20140048137A1 (en) * 2010-11-22 2014-02-20 E I Du Pont De Nemours And Company Process for preparing coated substrates and photovoltaic devices
US8771555B2 (en) * 2011-05-06 2014-07-08 Neo Solar Power Corp. Ink composition
US20120282730A1 (en) * 2011-05-06 2012-11-08 Yueh-Chun Liao Ink composition, Chalcogenide Semiconductor Film, Photovoltaic Device and Methods for Forming the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102612486A (zh) * 2009-11-25 2012-07-25 E·I·内穆尔杜邦公司 用于生产结晶铜硫属元素化物纳米颗粒的含水方法、如此生产的纳米颗粒、以及掺入了此类纳米颗粒的油墨和涂覆的基底
CN102668021A (zh) * 2009-11-25 2012-09-12 E·I·内穆尔杜邦公司 CZTS/Se前体油墨及用于制备CZTS/Se薄膜和基于CZTS/Se的光伏电池的方法
CN102906014A (zh) * 2010-05-21 2013-01-30 纳幕尔杜邦公司 非典型锌黄锡矿组合物
WO2012037276A1 (en) * 2010-09-16 2012-03-22 Solexant Corp. Sintered czts nanoparticle solar cells
US20130037110A1 (en) * 2011-08-10 2013-02-14 International Business Machines Corporation Particle-Based Precursor Formation Method and Photovoltaic Device Thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JONGPIL PARK ET AL.: "Syntheses of Cu2SnS3 and Cu2ZnSnS4 nanoparticles with tunable Zn/Sn ratios under multibubble sonoluminescence conditions", 《ROYAL SOCIETY OF PUBLISHING》 *
QIJIE GUO等: ""A Simple Solution-based Route to High-Efficiency CZTSSe Thin-film Solar Cells"", 《IEEE》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107377010A (zh) * 2017-06-28 2017-11-24 安阳师范学院 新型微孔硫属化物、其制备方法及应用
CN107377010B (zh) * 2017-06-28 2019-12-10 安阳师范学院 新型微孔硫属化物、其制备方法及应用
CN115872439A (zh) * 2022-12-09 2023-03-31 湖北工业大学 纳米晶促铜锌锡硫颗粒生长的薄膜制备方法
CN115872439B (zh) * 2022-12-09 2023-11-17 湖北工业大学 纳米晶促铜锌锡硫颗粒生长的薄膜制备方法

Also Published As

Publication number Publication date
EP3026714A4 (en) 2017-04-12
WO2015037856A1 (ko) 2015-03-19
US20170301806A1 (en) 2017-10-19
EP3026714A1 (en) 2016-06-01
JP6246373B2 (ja) 2017-12-13
ES2834993T3 (es) 2021-06-21
TW201527219A (zh) 2015-07-16
US10170649B2 (en) 2019-01-01
KR101650049B1 (ko) 2016-08-22
US20160218231A1 (en) 2016-07-28
KR20150030598A (ko) 2015-03-20
JP2016537823A (ja) 2016-12-01
CN105518872B (zh) 2018-04-27
TWI603919B (zh) 2017-11-01
EP3026714B1 (en) 2020-11-04

Similar Documents

Publication Publication Date Title
CN105308758B (zh) 用于制造太阳能电池光吸收层的三层核‑壳型纳米颗粒及其制造方法
CN105518872A (zh) 用于制造太阳能电池的光吸收层的金属硫属化物纳米颗粒及其制备方法
CN104822477A (zh) 用于太阳能电池的金属纳米粒子的制备方法,包含该金属纳米粒子的油墨组合物,以及使用该油墨组合物制备薄膜的方法
CN106796962B (zh) 用于制备太阳能电池的光吸收层的前体及其制备方法
CN107078170B (zh) 制备金属硫属化物纳米颗粒的方法及基于其制造光吸光层薄膜的方法
CN105308759A (zh) 用于制造太阳能电池之光吸收层的墨组合物及使用其制造薄膜的方法
CN105324852B (zh) 用于制备太阳能电池的光吸收层的金属硫族化合物纳米颗粒及其制备方法
CN105324851B (zh) 用于制造太阳能电池光吸收层的聚集前驱体及其制造方法
KR101660265B1 (ko) 태양전지 광흡수층 제조용 금속 칼코게나이드 나노 입자 및 이의 제조방법
CN104488091A (zh) 制造光吸收层用的ci(g)s纳米颗粒的制造方法及使用其制造的ci(g)s纳米颗粒
KR20160059159A (ko) 태양전지 광흡수층 제조용 금속 칼코게나이드 나노 입자 및 및 이의 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant