US20160218231A1 - Metal chalcogenide nanoparticles for preparing light absorption layer of solar cells and method of preparing the same - Google Patents

Metal chalcogenide nanoparticles for preparing light absorption layer of solar cells and method of preparing the same Download PDF

Info

Publication number
US20160218231A1
US20160218231A1 US14/917,265 US201414917265A US2016218231A1 US 20160218231 A1 US20160218231 A1 US 20160218231A1 US 201414917265 A US201414917265 A US 201414917265A US 2016218231 A1 US2016218231 A1 US 2016218231A1
Authority
US
United States
Prior art keywords
metal chalcogenide
solution
chalcogenide nanoparticles
phase
nanoparticles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/917,265
Other languages
English (en)
Inventor
Eunju Park
Seokhee Yoon
Seokhyun Yoon
Hosub LEE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Chem Ltd
Original Assignee
LG Chem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chem Ltd filed Critical LG Chem Ltd
Publication of US20160218231A1 publication Critical patent/US20160218231A1/en
Assigned to LG CHEM, LTD. reassignment LG CHEM, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LEE, Hosub, PARK, EUNJU, YOON, SEOKHEE, YOON, SEOKHYUN
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0326Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising AIBIICIVDVI kesterite compounds, e.g. Cu2ZnSnSe4, Cu2ZnSnS4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention is a U.S. National Stage of PCT/KR2014/008181, filed Sep. 2, 2014, which claims the priority of Korean patent application No. 10-2013-0109717, filed Sep. 12, 2013, which are incorporated herein by reference.
  • the present invention relates to metal chalcogenide nanoparticles for preparing a light absorption layer of solar cells and a method of preparing the same.
  • Solar cells have been manufactured using a light absorption layer formed at high cost and silicon (Si) as a semiconductor material since an early stage of development.
  • Si silicon
  • structures of thin film solar cells, using an inexpensive light absorbing material such as copper indium gallium sulfo (di) selenide (CIGS) or Cu(In, Ga)(S, Se) 2 , have been developed.
  • CIGS-based solar cells typically include a rear electrode layer, an n-type junction part, and a p-type light absorption layer. Solar cells including such CIGS layers have a power conversion efficiency of greater than 19%.
  • CZTS has a direct band gap of about 1.0 eV to about 1.5 eV and an absorption coefficient of 10 4 cm ⁇ 1 or more, reserves thereof are relatively high, and CZTS uses Sn and Zn, which are inexpensive.
  • CZTS hetero-junction PV batteries were reported for the first time, but CZTS-based solar cells have less advanced less than CIGS-based solar cells and photoelectric efficiency of CZTS-based solar cells is 10% or less, much lower than that of CIGS-based solar cells.
  • Thin films of CZTS are prepared by sputtering, hybrid sputtering, pulsed laser deposition, spray pyrolysis, electro-deposition/thermal sulfurization, e-beam processing, Cu/Zn/Sn/thermal sulfurization, and a sol-gel method.
  • PCT/US/2010-035792 discloses formation of a thin film through heat treatment of ink including CZTS/Se nanoparticles on a base.
  • CZTS thin film is formed with CZTS/Se nanoparticles, it is difficult to enlarge crystal size at a forming process of a thin film due to previously formed small crystals.
  • interfaces are extended and thereby electron loss occurs at interfaces, and, accordingly, efficiency is deteriorated.
  • nanoparticles used in a thin film must include Cu, Zn and Sn, and must not be a CZTS crystal type.
  • metal nanoparticles constituted of a single metal element may be easily oxidized and, at a subsequent process, an oxygen removal process using a large amount of Se and high temperature is required.
  • a chalcogenide including each metal is synthesized respectively and mixed, a non-uniform metal composition ratio may raise a problem. Therefore, there is a high need to develop a technology for thin film solar cells including highly efficient light absorption layers that are stable against oxidation and drawbacks of which are minimized due to a homogenous composition.
  • metal chalcogenide nanoparticles including a first phase including copper (Cu)-tin (Sn) chalcogenide and a second phase including zinc (Zn) chalcogenide, and confirmed that, when a thin film was prepared using the metal chalcogenide nanoparticles, generation of a second phase in the thin film may be suppressed, the thin film had an entirely uniform composition and was stable against oxidation by adding S or Se to the nanoparticles, and the amount of a Group VI element in a final thin film was increased, resulting in a superior quality thin film and thus completing the present invention.
  • metal chalcogenide nanoparticles forming light absorption layers of solar cells including a first phase including copper (Cu)-tin (Sn) chalcogenide and a second phase including zinc (Zn) chalcogenide.
  • chalcogenide of the present invention means a material including a Group VI element, for example, sulfur (S) or selenium (Se).
  • the copper (Cu)-tin (Sn) chalcogenide may be Cu a SnS b (1.2 ⁇ a ⁇ 3.2 and 2.5 ⁇ b ⁇ 4.5), and/or Cu x SnSe y (1.2 ⁇ x ⁇ 3.2, 2.5 ⁇ y ⁇ 4.5), the zinc (Zn)-containing chalcogenide may be ZnS and/or ZnSe.
  • the two phases constituting the metal chalcogenide nanoparticles independently exist in one metal chalcogenide nanoparticle and a composition ratio of the metal in the metal chalcogenide nanoparticles may be in a range of 0.5 ⁇ Cu/(Zn+Sn) ⁇ 1.5 and 0.5 ⁇ Zn/Sn ⁇ 2.0, particularly in a range of 0.7 ⁇ Cu/(Zn+Sn) ⁇ 1.2 and 0.8 ⁇ Zn/Sn ⁇ 1.4.
  • a structure of the metal chalcogenide nanoparticles namely, a distribution type of the first phase and second phase, which is not specifically limited, may be a type wherein the first phase and second phase are evenly distributed, as illustrated in FIGS. 13 to 15B .
  • the first phase and second phase may exist in a bulk type and thereby may form a complex.
  • the metal chalcogenide nanoparticles may have a core-shell structure in which the first phase forms a core and the second phase forms a shell.
  • composition ratio of metal in the metal chalcogenide nanoparticles in the observed area may be determined in a range of 0.5 ⁇ Cu/(Zn+Sn) ⁇ 1.5 and 0.5 ⁇ Zn/Sn ⁇ 2.0, particularly may be determined in a range of 0.7 ⁇ Cu/(Zn+Sn) ⁇ 1.2 and 0.8 ⁇ Zn/Sn ⁇ 1.4.
  • the diameter of the core may be 5 nanometers to 200 nanometers and the thickness of the shell may be 1 nanometer to 100 nanometers in a range corresponding to the volume of the first phase and second phase occupying the nanoparticles, considering the diameter of the core.
  • the metal chalcogenide nanoparticles formed into the shell are too large and thereby pores among particles in a final thin film having a thickness of 1 micrometer to 2 micrometers are enlarged.
  • the size of the core is too small, particles may be easily aggregated.
  • the thickness of the shell becomes extremely thin and thereby, it is difficult to form the shell to a proper thickness.
  • a composition ratio of the first phase and second phase occupying in a total of the metal chalcogenide nanoparticles may be determined in a range of 0.5 ⁇ Cu/(Zn+Sn) ⁇ 1.5 and 0.5 ⁇ Zn/Sn ⁇ 2.0, particularly may be determined in a range of 0.7 ⁇ Cu/(Zn+Sn) ⁇ 1.2 and 0.8 ⁇ Zn/Sn ⁇ 1.4.
  • the metal chalcogenide nanoparticles may include 0.5 mol to 3 mol of a chalcogenide element based on 1 mol of a metal element.
  • the metal element indicates all metal types.
  • the present invention also provides a method of synthesizing the metal chalcogenide nanoparticles.
  • the method may particularly include:
  • the method of preparing metal chalcogenide nanoparticles according to the present invention is performed by a solution process instead of a conventional vacuum process and thereby process costs may be dramatically reduced.
  • a solvent to prepare a solution harmful hydrazine is not used and thereby a risk which may occur in a conventional solution process may be removed.
  • a Group VI source may be further added.
  • the Group VI source is included in an amount of 0.5 mol to 3 mol based on 1 mol of a metal element. If the first solution includes a sufficient amount of the Group VI source, an additional Group VI source is not required when the third solution is mixed. However, when the first solution does not include a sufficient amount of the Group VI source, a Group VI source may be further added to solve partial deficiency of a Group VI element. Here, the Group VI source may be added considering the amount of a Group VI element existing in a reaction product of the first solution and the second solution.
  • solvents for the first solution, second solution and third solution may be at least one selected from the group consisting of water, alcohols, diethylene glycol (DEG), oleylamine, ethylene glycol, triethylene glycol, dimethyl sulfoxide, dimethyl formamide, and N-methyl-2-pyrrolidone (NMP).
  • the alcohol solvents may be methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol and octanol having 1 to 8 carbons.
  • the copper (Cu) salt, tin (Sn) salt and zinc (Zn) salt each independently may be at least one salt selected from the group consisting of a chloride, a bromide, an iodide, a nitrate, a nitrite, a sulfate, an acetate, a sulfite, an acetylacetonate and a hydroxide.
  • tin (Sn) salt a divalent or tetravalent salt may be used, but embodiments of the present invention are not limited thereto.
  • the Group VI source may be at least one salt selected from the group consisting of Se, Na 2 Se, K 2 Se, CaSe, (CH 3 ) 2 Se, SeO 2 , SeCl 4 , H 2 SeO 3 , H 2 SeO 4 , Na 2 S, K 2 S, CaS, (CH 3 ) 2 S, H 2 SO 4 , S, Na 2 S 2 O 3 and NH 2 SO 3 H, and hydrates thereof, thiourea, thioacetamide, selenoacetamide and selenourea.
  • the first solution to third solution may further comprise a capping agent.
  • the capping agent is included during a solution process and thereby the size and particle phase of synthesized metal chalcogenide nanoparticles may be controlled.
  • the capping agent includes atoms such as N, O, S and the like, and thereby the capping agent easily binds to surfaces of metal chalcogenide nanoparticles through lone pair electrons of the atoms and surrounds the surfaces. Accordingly, oxidization of the metal chalcogenide nanoparticles may be prevented.
  • the capping agent is not particularly limited and may, for example, be at least one selected from the group consisting of polyvinylpyrrolidone, sodium L-tartrate dibasic dehydrate, potassium sodium tartrate, sodium mesoxalate, sodium acrylate, poly(acrylic acid sodium salt), poly(vinyl pyrrolidone), sodium citrate, trisodium citrate, disodium citrate, sodium gluconate, sodium ascorbate, sorbitol, triethyl phosphate, ethylene diamine, propylene diamine, 1,2-ethanedithiol, and ethanethiol.
  • the present invention also provides an ink composition for preparing light absorption layers including the metal chalcogenide nanoparticles and a method of preparing a thin film using the ink composition.
  • the method of preparing the thin film according to the present invention includes:
  • the solvent of step (i) is not particularly limited so long as the solvent is a general organic solvent and may be one organic solvent selected from among alkanes, alkenes, alkynes, aromatics, ketones, nitriles, ethers, esters, organic halides, alcohols, amines, thiols, carboxylic acids, phosphines, phosphites, phosphates, sulfoxides, and amides or a mixture of at least one organic solvent selected therefrom.
  • the solvent is a general organic solvent and may be one organic solvent selected from among alkanes, alkenes, alkynes, aromatics, ketones, nitriles, ethers, esters, organic halides, alcohols, amines, thiols, carboxylic acids, phosphines, phosphites, phosphates, sulfoxides, and amides or a mixture of at least one organic solvent selected therefrom.
  • the alcohols may be at least one mixed solvent selected from among ethanol, 1-propanol, 2-propanol, 1-pentanol, 2-pentanol, 1-hexanol, 2-hexanol, 3-hexanol, heptanol, octanol, ethylene glycol (EG), diethylene glycol monoethyl ether (DEGMEE), ethylene glycol monomethyl ether (EGMME), ethylene glycol monoethyl ether (EGMEE), ethylene glycol dimethyl ether (EGDME), ethylene glycol diethyl ether (EGDEE), ethylene glycol monopropyl ether (EGMPE), ethylene glycol monobutyl ether (EGMBE), 2-methyl-1-propanol, cyclopentanol, cyclohexanol, propylene glycol propyl ether (PGPE), diethylene glycol dimethyl ether (DEGDME), 1,2-propanediol (1,
  • the amines may be at least one mixed solvent selected from among triethyl amine, dibutyl amine, dipropyl amine, butylamine, ethanolamine, diethylenetriamine (DETA), triethylenetetramine (TETA), triethanolamine, 2-aminoethyl piperazine, 2-hydroxyethyl piperazine, dibutylamine, and tris(2-aminoethyl)amine.
  • mixed solvent selected from among triethyl amine, dibutyl amine, dipropyl amine, butylamine, ethanolamine, diethylenetriamine (DETA), triethylenetetramine (TETA), triethanolamine, 2-aminoethyl piperazine, 2-hydroxyethyl piperazine, dibutylamine, and tris(2-aminoethyl)amine.
  • the thiols may be at least one mixed solvent selected from among 1,2-ethanedithiol, pentanethiol, hexanethiol, and mercaptoethanol.
  • the alkanes may be at least one mixed solvent selected from among hexane, heptane, and octane.
  • the aromatics may be at least one mixed solvent selected from among toluene, xylene, nitrobenzene, and pyridine.
  • the organic halides may be at least one mixed solvent selected from among chloroform, methylene chloride, tetrachloromethane, dichloroethane, and chlorobenzene.
  • the nitriles may be acetonitrile.
  • the ketones may be at least one mixed solvent selected from among acetone, cyclohexanone, cyclopentanone, and acetyl acetone.
  • the ethers may be at least one mixed solvent selected from among ethyl ether, tetrahydrofuran, and 1,4-dioxane.
  • the sulfoxides may be at least one mixed solvent selected from among dimethyl sulfoxide (DMSO) and sulfolane.
  • DMSO dimethyl sulfoxide
  • the amides may be at least one mixed solvent selected from among dimethyl formamide (DMF) and n-methyl-2-pyrrolidone (NMP).
  • DMF dimethyl formamide
  • NMP n-methyl-2-pyrrolidone
  • the esters may be at least one mixed solvent selected from among ethyl lactate, ⁇ -butyrolactone, and ethyl acetoacetate.
  • the carboxylic acids may be at least one mixed solvent selected from among propionic acid, hexanoic acid, meso-2,3-dimercaptosuccinic acid, thiolactic acid, and thioglycolic acid.
  • the ink in preparation of the ink, may be prepared by further adding an additive.
  • the additive may, for example, be at least one selected from the group consisting of a dispersant, a surfactant, a polymer, a binder, a crosslinking agent, an emulsifying agent, an anti-foaming agent, a drying agent, a filler, a bulking agent, a thickening agent, a film conditioning agent, an antioxidant, a fluidizer, a leveling agent, and a corrosion inhibitor.
  • the additive may be at least one selected from the group consisting of polyvinylpyrrolidone (PVP), polyvinyl alcohol, Anti-terra 204, Anti-terra 205, ethyl cellulose, and DispersBYK110.
  • a method of forming a coating layer by coating the ink may, for example, be any one selected from the group consisting of wet coating, spray coating, spin-coating, doctor blade coating, contact printing, top feed reverse printing, bottom feed reverse printing, nozzle feed reverse printing, gravure printing, micro gravure printing, reverse micro gravure printing, roller coating, slot die coating, capillary coating, inkjet-printing, jet deposition, and spray deposition.
  • step (iii) may be carried out at a temperature of 400 to 900° C.
  • a selenization process may be included to prepare the thin film of a solar cell having much higher density.
  • the selenization process may be carried out through a variety of methods.
  • effects obtained from the selenization process may be achieved by preparing an ink by dispersing S and/or Se in a particle type in a solvent with metal chalcogenide nanoparticles in step (i), and by combining the heat treatment of step (iii).
  • effects obtained from the selenization process may be achieved through the heat treatment of step (iii) in the presence of S or Se
  • S or Se may be present by supplying H 2 S or H 2 Se in a gaseous state or supplying Se or S in a gaseous state through heating.
  • step (ii) S or Se may be deposited on the coated base, following by performing step (iii).
  • the deposition process may be performed by a solution process or a deposition method.
  • the present invention also provides a thin film prepared using the above-described method.
  • the thin film may have a thickness of 0.5 ⁇ m to 3.0 ⁇ m, more particularly 0.5 ⁇ m to 2.5 ⁇ m.
  • the thickness of the thin film is less than 0.5 ⁇ m, the density and amount of the light absorption layer are insufficient and thus desired photoelectric efficiency may not be obtained.
  • the thickness of the thin film exceeds 3.0 ⁇ m, movement distances of carriers increase and, accordingly, there is an increased probability of recombination, which results in reduced efficiency.
  • the present invention also provides a thin film solar cell manufactured using the thin film.
  • a method of manufacturing a thin film solar cell is known in the art and thus a detailed description thereof will be omitted herein.
  • FIG. 1 is an SEM image of Cu 2 SnS 3 —ZnS nanoparticles formed according to Example 1;
  • FIG. 2 is a TEM image of Cu 2 SnS 3 —ZnS nanoparticles formed according to Example 1;
  • FIG. 3 is an XRD graph of Cu 2 SnS 3 —ZnS nanoparticles formed according to Example 1;
  • FIG. 4 is an SEM image of Cu 2 SnS 3 —ZnS nanoparticles formed according to Example 1;
  • FIG. 5 is an XRD graph of Cu 2 SnS 3 —ZnS nanoparticles formed according to Example 1;
  • FIGS. 6A and 6B are SEM images of a thin film prepared according to Example 17:
  • FIG. 7 is an XRD graph of a thin film prepared according to Example 17.
  • FIG. 8 is an XRD graph of a thin film prepared according to Comparative Example 3.
  • FIG. 9 is an XRD graph of a thin film prepared according to Comparative Example 4.
  • FIG. 10 is an IV characteristic graph of a thin film solar cell prepared according to Example 18.
  • FIG. 11 is an IV characteristic graph of a thin film solar cell manufactured according to Comparative Example 5.
  • FIG. 12 is an IV characteristic graph of a thin film solar cell manufactured according to Comparative Example 6;
  • FIG. 13 is a table illustrating SEM-EDX results of Cu 2 SnS 3 —ZnS nanoparticles demonstrating even particle distribution in particles synthesized according to the present invention
  • FIGS. 14A-14E are an EDS mapping result of Cu 2 SnS 3 —ZnS nanoparticles demonstrating even metal distribution in particles synthesized according to the present invention.
  • FIGS. 15A-15B are a line-scan result of a Cu 2 SnS 3 —ZnS nanoparticle composition demonstrating even metal distribution in particles synthesized according to the present invention.
  • cupric acetylacetonate Cu(acac) 2
  • zinc acetate Zn(OAc) 2
  • Sn(acac) 2 Br 2 Sn(acac) 2 Br 2
  • temperature was elevated upto 225° C.
  • the Cu 2 SnS 3 —ZnS prepared according to Example 8 was dispersed in a mixture of alcohol-based solvents to prepare an ink. Subsequently, the ink was coated onto a glass substrate coated with molybdenum (Mo) to form a coating film and then the coating film was dried. Subsequently, the coating film was heated with a glass substrate deposited with Se to provide a Se atmosphere and then subjected to rapid thermal annealing (RTA) at 575° C., resulting in a CZTSSe-based thin film. An SEM image and XRD graph of the obtained thin film are illustrated in FIGS. 6A, 6B and 7 , respectively.
  • RTA rapid thermal annealing
  • the CZTS nanoparticles prepared according to Comparative Example 1 were dispersed in toluene as a solvent to prepare an ink, and the ink was coated onto a soda lime glass substrate coated with Mo to form a coating film. Subsequently, the coating film was dried and then subjected to heat treatment at 450° C. in a Se atmosphere, resulting in a CZTSSe-based thin film.
  • An XRD graph of the obtained thin film is illustrated in FIG. 8 .
  • the Cu 2 SnS 3 nanoparticles and ZnS nanoparticles prepared according to Comparative Example 2 were dispersed in a mixture of alcohol-based solvents to prepare an ink. Subsequently, the ink was coated onto a glass substrate coated with molybdenum (Mo) to form a coating film and then the coating film was dried. Subsequently, the coating film was heated with a glass substrate deposited with Se to provide an Se atmosphere and then subjected to rapid thermal annealing (RTA) at 575° C., resulting in a CZTSSe-based thin film. An XRD graph of the obtained thin film is illustrated in FIG. 9 .
  • the CZTSSe-based thin film prepared according to Example 17 was etched using a potassium cyanide (KCN) solution, a CdS layer having a thickness of 50 nm was formed thereon by chemical bath deposition (CBD), and a ZnO layer having a thickness of 100 nm and an Al-doped ZnO layer having a thickness of 500 nm were sequentially stacked thereon by sputtering, thereby completing preparation of a thin film. Subsequently, an Al electrode was formed at the thin film, thereby completing manufacture of a thin film solar cell. A graph showing current-voltage (I-V) characteristics of the thin film solar cell is illustrated in FIG. 10 .
  • a CdS layer was formed on the CZTSSe-based thin film prepared according to Comparative Example 3 by chemical bath deposition (CBD) and then a ZnO layer and an ITO layer were sequentially stacked thereon by sputtering, thereby completing preparation of a thin film solar cell.
  • CBD chemical bath deposition
  • I-V current-voltage
  • a CdS layer was mounted on the CZTSSe-based thin film prepared according to Comparative Example 4 by chemical bath deposition (CBD) and then a ZnO layer and an ITO layer were sequentially stacked thereon by sputtering, thereby completing preparation of a thin film solar cell.
  • CBD chemical bath deposition
  • I-V current-voltage
  • J sc which is a variable determining the efficiency of each solar cell, represents current density
  • V oc denotes an open circuit voltage measured at zero output current
  • the photoelectric efficiency means a rate of cell output according to irradiance of light incident upon a solar cell plate
  • fill factor (FF) represents a value obtained by dividing the product of current density and voltage values at maximum power by the product of Voc and J sc .
  • the metal chalcogenide nanoparticles prepared according to the present invention were used in light absorption layer formation, the light absorption layer showed superior photoelectric efficiency due to high current density and voltage, when compared with metal chalcogenide nanoparticles prepared according to a prior method.
  • metal chalcogenide nanoparticles according to the present invention include a first phase including copper (Cu)-tin (Sn) chalcogenide and a second phase including zinc (Zn) chalcogenide in one particle. Therefore, when a thin film is prepared using the metal chalcogenide nanoparticles, generation of a second phase may be suppressed, and the thin film may have an entirely uniform composition since one particle includes all of the metals.
  • nanoparticles include S or Se, the nanoparticles are stable against oxidation and the amount of a Group VI element in a final thin layer may be increased. Furthermore, the volumes of particles are extended in a selenization process due to addition of a Group VI element and thereby a light absorption layer having higher density may be grown.
  • metal chalcogenide nanoparticles according to the present invention are prepared through a solution process, process costs may be dramatically reduced, when compared with conventional processes. Furthermore, a harmful reducing agent such as hydrazine is not used and, as such, risk due to use of the reducing harmful agent may be removed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Photovoltaic Devices (AREA)
  • Luminescent Compositions (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Paints Or Removers (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
US14/917,265 2013-09-12 2014-09-02 Metal chalcogenide nanoparticles for preparing light absorption layer of solar cells and method of preparing the same Abandoned US20160218231A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2013-0109717 2013-09-12
KR20130109717 2013-09-12
PCT/KR2014/008181 WO2015037856A1 (ko) 2013-09-12 2014-09-02 태양전지 광흡수층 제조용 금속 칼코게나이드 나노 입자 및 이의 제조방법

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/008181 A-371-Of-International WO2015037856A1 (ko) 2013-09-12 2014-09-02 태양전지 광흡수층 제조용 금속 칼코게나이드 나노 입자 및 이의 제조방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/638,240 Division US10170649B2 (en) 2013-09-12 2017-06-29 Metal chalcogenide nanoparticles for preparing light absorption layer of solar cells and method of preparing the same

Publications (1)

Publication Number Publication Date
US20160218231A1 true US20160218231A1 (en) 2016-07-28

Family

ID=52665913

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/917,265 Abandoned US20160218231A1 (en) 2013-09-12 2014-09-02 Metal chalcogenide nanoparticles for preparing light absorption layer of solar cells and method of preparing the same
US15/638,240 Active US10170649B2 (en) 2013-09-12 2017-06-29 Metal chalcogenide nanoparticles for preparing light absorption layer of solar cells and method of preparing the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/638,240 Active US10170649B2 (en) 2013-09-12 2017-06-29 Metal chalcogenide nanoparticles for preparing light absorption layer of solar cells and method of preparing the same

Country Status (8)

Country Link
US (2) US20160218231A1 (zh)
EP (1) EP3026714B1 (zh)
JP (1) JP6246373B2 (zh)
KR (1) KR101650049B1 (zh)
CN (1) CN105518872B (zh)
ES (1) ES2834993T3 (zh)
TW (1) TWI603919B (zh)
WO (1) WO2015037856A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160133768A1 (en) * 2013-08-01 2016-05-12 Lg Chem, Ltd. Ink composition for manufacturing light absorption layer of solar cells and method of manufacturing thin film using the same
US10319589B2 (en) * 2014-09-12 2019-06-11 The Regents Of The University Of California High performance thin films from solution processible two-dimensional nanoplates
US11087976B2 (en) 2016-10-07 2021-08-10 Haldor Topsøe A/S Kesterite material of CZTS, CZTSe or CZTSSe type

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107377010B (zh) * 2017-06-28 2019-12-10 安阳师范学院 新型微孔硫属化物、其制备方法及应用
KR102231108B1 (ko) * 2019-11-27 2021-03-23 재단법인대구경북과학기술원 비스무트 칼코할라이드 박막의 제조방법 및 이를 포함하는 태양전지의 제조방법
CN115872439B (zh) * 2022-12-09 2023-11-17 湖北工业大学 纳米晶促铜锌锡硫颗粒生长的薄膜制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI458115B (zh) 2009-11-11 2014-10-21 Univ Nat Kaohsiung Marine Solar cell X ZnSnS Y Film (CZTS) manufacturing method
WO2011066205A1 (en) * 2009-11-25 2011-06-03 E. I. Du Pont De Nemours And Company Aqueous process for producing crystalline copper chalcogenide nanoparticles, the nanoparticles so-produced, and inks and coated substrates incorporating the nanoparticles
CN102668021A (zh) * 2009-11-25 2012-09-12 E·I·内穆尔杜邦公司 CZTS/Se前体油墨及用于制备CZTS/Se薄膜和基于CZTS/Se的光伏电池的方法
US9105796B2 (en) * 2009-11-25 2015-08-11 E I Du Pont De Nemours And Company CZTS/Se precursor inks and methods for preparing CZTS/Se thin films and CZTS/Se-based photovoltaic cells
US8366975B2 (en) * 2010-05-21 2013-02-05 E I Du Pont De Nemours And Company Atypical kesterite compositions
US20120067408A1 (en) * 2010-09-16 2012-03-22 Solexant Corp. Sintered CZTS Nanoparticle Solar Cells
US20120100660A1 (en) * 2010-10-25 2012-04-26 Hagedorn Kevin V Method for preparation of metal chalcogenide solar cells on complexly shaped surfaces
US20140048137A1 (en) * 2010-11-22 2014-02-20 E I Du Pont De Nemours And Company Process for preparing coated substrates and photovoltaic devices
US8771555B2 (en) * 2011-05-06 2014-07-08 Neo Solar Power Corp. Ink composition
US20120282730A1 (en) * 2011-05-06 2012-11-08 Yueh-Chun Liao Ink composition, Chalcogenide Semiconductor Film, Photovoltaic Device and Methods for Forming the same
US20130037110A1 (en) * 2011-08-10 2013-02-14 International Business Machines Corporation Particle-Based Precursor Formation Method and Photovoltaic Device Thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Syntheses of Cu2SnS3 and Cu2ZnSnS4 nanoparticles with tunable Zn/Sn ratios under multibubble sonoluminescence conditions, Park et al., Dalton Trans., 2013, 42, 10545–10550. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160133768A1 (en) * 2013-08-01 2016-05-12 Lg Chem, Ltd. Ink composition for manufacturing light absorption layer of solar cells and method of manufacturing thin film using the same
US9876131B2 (en) * 2013-08-01 2018-01-23 Lg Chem, Ltd. Ink composition for manufacturing light absorption layer of solar cells and method of manufacturing thin film using the same
US10319589B2 (en) * 2014-09-12 2019-06-11 The Regents Of The University Of California High performance thin films from solution processible two-dimensional nanoplates
US11087976B2 (en) 2016-10-07 2021-08-10 Haldor Topsøe A/S Kesterite material of CZTS, CZTSe or CZTSSe type

Also Published As

Publication number Publication date
EP3026714A4 (en) 2017-04-12
WO2015037856A1 (ko) 2015-03-19
US20170301806A1 (en) 2017-10-19
EP3026714A1 (en) 2016-06-01
JP6246373B2 (ja) 2017-12-13
CN105518872A (zh) 2016-04-20
ES2834993T3 (es) 2021-06-21
TW201527219A (zh) 2015-07-16
US10170649B2 (en) 2019-01-01
KR101650049B1 (ko) 2016-08-22
KR20150030598A (ko) 2015-03-20
JP2016537823A (ja) 2016-12-01
CN105518872B (zh) 2018-04-27
TWI603919B (zh) 2017-11-01
EP3026714B1 (en) 2020-11-04

Similar Documents

Publication Publication Date Title
US10170649B2 (en) Metal chalcogenide nanoparticles for preparing light absorption layer of solar cells and method of preparing the same
US9525086B2 (en) Method of preparing metal nanoparticles for solar cell, ink composition including the metal nanoparticles, and method of preparing thin film using the same
US9478684B2 (en) Three-layer core-shell nanoparticles for manufacturing solar cell light absorption layer and method of manufacturing the same
US10418498B2 (en) Method of preparing metal chalcogenide nanoparticles and method of producing light absorption layer thin film based thereon
US9972731B2 (en) Precursor for preparing light absorption layer of solar cells and method of preparing the same
US9876131B2 (en) Ink composition for manufacturing light absorption layer of solar cells and method of manufacturing thin film using the same
EP3029742B1 (en) Metal chalcogenide nanoparticles for preparing light absorption layer of solar cell, and preparation method therefor
KR101660265B1 (ko) 태양전지 광흡수층 제조용 금속 칼코게나이드 나노 입자 및 이의 제조방법
KR101723062B1 (ko) 태양전지 광흡수층 제조용 금속 칼코게나이드 나노 입자 및 이의 제조방법

Legal Events

Date Code Title Description
AS Assignment

Owner name: LG CHEM, LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PARK, EUNJU;YOON, SEOKHEE;YOON, SEOKHYUN;AND OTHERS;REEL/FRAME:040201/0114

Effective date: 20161101

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION