CN105418921B - 一种高磺化度可交联聚酰亚胺、制备方法及其在质子交换膜方面的应用 - Google Patents

一种高磺化度可交联聚酰亚胺、制备方法及其在质子交换膜方面的应用 Download PDF

Info

Publication number
CN105418921B
CN105418921B CN201510861617.7A CN201510861617A CN105418921B CN 105418921 B CN105418921 B CN 105418921B CN 201510861617 A CN201510861617 A CN 201510861617A CN 105418921 B CN105418921 B CN 105418921B
Authority
CN
China
Prior art keywords
polyimide
diamine monomer
crosslinkable
degree
crosslinkable polyimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510861617.7A
Other languages
English (en)
Other versions
CN105418921A (zh
Inventor
关绍巍
姚洪岩
宋宁宁
石凯祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Haoen New Material Technology Co ltd
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201510861617.7A priority Critical patent/CN105418921B/zh
Publication of CN105418921A publication Critical patent/CN105418921A/zh
Application granted granted Critical
Publication of CN105418921B publication Critical patent/CN105418921B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/1064Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • C08J5/2262Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation containing fluorine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0293Matrices for immobilising electrolyte solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

本发明公开了一种高磺化度可交联聚酰亚胺、制备方法及其在质子交换膜方面的应用,本发明属于质子交换膜领域。本发明中高磺化度交联聚酰亚胺是分子链间具有共价交联链桥结构的磺化聚酰亚胺聚合物,其制备有含可交联乙烯基侧基芳香二胺单体的制备,可交联磺化聚酰亚胺聚合物的合成和聚合物膜的交联及酸化处理三个过程。本发明的高磺化度交联聚酰亚胺能够作为燃料电池质子交换膜材料,其具有高质子传导率、较低的溶胀率、较低的甲醇渗透率、优良的耐溶剂性、氧化稳定性、水解稳定性和机械性能,能够满足材料作为燃料电池质子交换膜的要求。

Description

一种高磺化度可交联聚酰亚胺、制备方法及其在质子交换膜 方面的应用
技术领域
本发明属于质子交换膜领域。
背景技术
质子交换膜燃料电池(PEMFC)是一种高效,低污染的发电装置,它能够将化学能直接转化为电能,并具有比功率高、操作温度低和寿命长等优点。其中聚合物质子交换膜(PEM)作为质子交换膜燃料电池的关键组成部分,承担着提供传输通道、阻隔燃料气体和氧化剂的功能,因此其性能直接决定了燃料电池的运行稳定性、燃料利用效率和使用寿命。当前,商用的燃料电池用质子交换膜是以Nafion为代表的全氟磺酸型质子交换膜(PFSA),其具有优异的化学、机械稳定性和高质子传导率。然而,较高的燃料渗透性导致电池运行过程中性能的降低。此外,较低的玻璃化转变温度(~110℃)和复杂的合成工艺也限制了其进一步应用和商业化。
磺化芳香聚合物因为具有优异的机械性能、突出的耐热、化学稳定性和低的燃料渗透性能,有希望成为全氟磺酸膜的替代材料。但是,刚性的芳香聚合物骨架结构阻碍了连续的亲水-疏水相分离结构的形成,使得芳香聚合物膜的质子传导率低于全氟磺酸膜。提高磺化度是增强芳香聚合物膜质子传导率的有效手段之一。然而,较高的磺化度也常常导致聚合物膜吸水率的明显增加,吸水会导致膜的尺寸稳定性、阻醇性能和机械性能降低,从而影响高磺化度聚合物膜的实际使用。
发明内容
高磺化度聚酰亚胺具有吸水性在制备成膜后吸水率明显增加,而吸水则导致制备成膜后其尺寸稳定性、阻醇性能和机械性能降低,针对这个问题,本发明利用聚合物的自身共价交联能够减弱高磺化度聚酰亚胺因吸水性造成的不利影响的原理,设计合成了一种高磺化度可交联聚酰亚胺以及制备高磺化度可交联聚酰亚胺过程中所必需的可交联的芳香二胺单体。
本发明还利用高磺化度可交联聚酰亚胺得到了高磺化度交联聚酰亚胺质子交换膜,因其一方面克服了吸水率增加导致的性能降低的问题,另一方面也克服了引入小分子导致热性能降低的问题,使该质子交换膜具有了优异的性能。
本发明中高磺化度可交联聚酰亚胺为:
x=0.05~0.4。在将所述高磺化度可交联聚酰亚胺用于制备质子交换膜时,使用的高磺化度可交联聚酰亚胺分子量为5万~10万之间。
高磺化度可交联聚酰亚胺的制备方法的反应路线如下:
具体步骤如下:
将摩尔比为1:2~2.5的4,4’-(二氨基二苯)醚-2,2’-二磺酸和三乙胺溶于有机溶剂中,加入二胺单体、1,4,5,8-萘四甲酸二酐和苯甲酸后搅拌均匀,升温至60~90℃反应3~6小时,160~200℃反应16~24小时,得到高磺化度可交联聚酰亚胺与反应物混合溶液;待高磺化度可交联聚酰亚胺与反应物混合溶液冷却后,加入有机溶剂稀释,然后在丙酮中出料,过滤后所得滤饼经丙酮抽提、干燥获得高磺化度可交联聚酰亚胺;
其中,二胺单体、4,4’-(二氨基二苯)醚-2,2’-二磺酸、1,4,5,8-萘四甲酸二酐和苯甲酸的摩尔比为(0.05~0.4):(0.6~0.95):1:(1~1.4);有机溶剂质量为4,4’-(二氨基二苯)醚-2,2’-二磺酸、二胺单体和1,4,5,8-萘四甲酸二酐总质量的4~9倍(含固量10%~20%);所述二胺单体为2,2-二[3-氨基-4-(2,3,5,6-四氟-4-乙烯基苯氧基)苯基]六氟丙烷或3,3’-二(2,3,5,6-四氟-4-乙烯基苯氧基)-4,4’-联苯二胺;所述有机溶剂通常使用间甲酚。
其中,所述二胺单体为可交联的芳香二胺单体,其分子结构式为:
其中,
即:2,2-二[3-氨基-4-(2,3,5,6-四氟-4-乙烯基苯氧基)苯基]六氟丙烷(以下简称6FATFVP)或3,3’-二(2,3,5,6-四氟-4-乙烯基苯氧基)-4,4’-联苯二胺(以下简称TFVBPA)。
可交联的芳香二胺单体的制备方法如下:
其中,
以二羟基二胺和五氟苯乙烯为原料,N,N二甲基乙酰胺(DMAC)作为溶剂,氢化钙和氟化铯作为催化剂,60-100℃反应8-30小时后得到混合溶液,混合溶液中含有目标产物6FATFVP或TFVBPA。其中二羟基的二胺、五氟苯乙烯、氢化钙和氟化铯的投料摩尔比为1:(2~3):(2~3):(0.05~1)。混合溶液在水中出料,然后通过萃取、干燥、去除溶剂和色谱分离对目标产物进行提纯;所述的二羟基的二胺是(2,2-二(3-氨基-4-羟基苯基)六氟丙烷或3,3’-二羟基-4,4’-联苯二胺。
利用本发明中高磺化度可交联聚酰亚胺制备高磺化度交联聚酰亚胺质子交换膜的方法:
制膜:将高磺化度可交联聚酰亚胺溶解于二甲基亚砜(DMSO)中,配制为澄清透明浓度为0.05~0.1g/mL的聚合物溶液,过滤后倾倒于玻璃板上,通过干燥去除溶剂后,获得坚韧的聚酰亚胺薄膜(三乙胺盐形式)。
交联:将聚酰亚胺薄膜置于真空烘箱中经240~270℃热处理2~4小时获得交联聚合物膜,待降至室温,将其浸泡于水中,将膜从玻璃板上取下。
酸化:聚酰亚胺交联膜在1~2mol/L的强酸水溶液中室温浸泡10~24小时完全转化为磺酸形式的膜,去离子水将膜洗涤至中性,真空120℃干燥24小时,最终获得高磺化度交联聚酰亚胺质子交换膜。
本发明的有益效果:
利用本发明方法制备的高磺化度交联聚酰亚胺质子交换膜具有高质子传导率、较低的溶胀率、较低的甲醇渗透率、优良的耐溶剂性、氧化稳定性、水解稳定性和机械性能。
附图说明
图1是实施例1制备的二胺单体2,2-二(3-氨基-4-(2,3,5,6-四氟-4-乙烯基苯氧基)苯基)六氟丙烷(6FATFVP)的核磁氢谱图。
图2是实施例2制备的二胺单体3,3’-二(2,3,5,6-四氟-4-乙烯基苯氧基)-4,4’-联苯二胺(TFVBPA)的核磁氢谱图。
图3是实施例3中使用2,2-二(3-氨基-4-(2,3,5,6-四氟-4-乙烯基苯氧基)苯基)六氟丙烷(6FATFVP)合成的高磺化度可交联聚酰亚胺聚合物SPI90-6FATFVP10的核磁氢谱图。
图4是实施例4中使用3,3’-二(2,3,5,6-四氟-4-乙烯基苯氧基)-4,4’-联苯二胺(TFVBPA)合成的高磺化度可交联聚酰亚胺聚合物SPI90-TFVBPA10的核磁氢谱图。
图5是本发明的高磺化度交联聚酰亚胺质子交换膜的质子传导率与温度的关系曲线。
具体实施方式
实施例1(二胺单体6FATFVP的制备)
以具有二羟基的二胺(2,2-二(3-氨基-4-羟基苯基)六氟丙烷、五氟苯乙烯为原料,N,N二甲基乙酰胺(DMAC)作为溶剂,氢化钙和氟化铯作为催化剂,在安装带有温度计的氮气通口和冷凝管的三口瓶中,加入二羟基的二胺(2,2’-二(3-氨基-4-羟基苯基)六氟丙烷、五氟苯乙烯、氢化钙和氟化铯,摩尔投料比为1:2.5:2.5:0.1。
加入足量N,N二甲基乙酰胺(DMAC)使上述物料充分溶解(含固量为20%),在氮气保护下,60~100℃反应18h,得到混合溶液。混合溶液中含有目标产物6FATFVP。
目标产物提纯:将混合溶液倾倒入大量去离子水中,使用乙醚萃取后获得的有机相经过无水硫酸镁干燥,旋蒸去除溶剂后的固体经过层析色谱柱分离提纯最终获得纯净的目标产物。
实施例2(二胺单体TFVBPA的制备)
以具有二羟基的二胺单体3,3-二(2,3,5,6-四氟-4-乙烯基苯氧基)-4,4’-联苯二胺、五氟苯乙烯为原料,N,N二甲基乙酰胺(DMAC)作为溶剂,氢化钙和氟化铯作为催化剂,在安装带有温度计的氮气通口和冷凝管的三口瓶中,加入二羟基的二胺单体(2,2’-二(3-氨基-4-羟基苯基)六氟丙烷、五氟苯乙烯、氢化钙和氟化铯,投料比为1:2.5:2.5:0.1。
加入足量N,N二甲基乙酰胺(DMAC)使上述物料充分溶解(含固量为20%),在氮气保护下,60~100℃反应18h,得到混合溶液。混合溶液中含有目标产物TFVBPA。
目标产物提纯:将混合溶液倾倒入大量去离子水中,使用乙醚萃取后获得的有机相经过无水硫酸镁干燥,旋蒸去除溶剂后的固体经过层析色谱柱分离提纯最终获得纯净的目标产物。
实施例3(高磺化度可交联聚酰亚胺SPI90-6FATFVP10的制备)
在带有氮气通口、机械搅拌和干燥管的50mL三口瓶中,加入4,4’-(二氨基二苯)醚-2,2’-二磺酸(ODADS)、三乙胺和间甲酚,通入氮气,搅拌数分钟至ODADS完全溶解,加入1,4,5,8-萘四甲酸二酐(NTDA)、苯甲酸和6FATFVP。反应混合物在室温搅拌30min,升温至80℃反应4h,180℃反应20h。
待反应体系降温至100℃后,加入间甲酚稀释产物溶液,出料于丙酮中。过滤得到的滤饼经丙酮抽提48h后,真空120℃干燥24h,获得黄色聚合物粉末。其中6FATFVP、ODADS、NTDA和苯甲酸的摩尔比为0.1:0.9:1:1.3,聚合物溶液含固量为15%。
实施例4(高磺化度可交联聚酰亚胺SPI90-TFVBPA10的制备)
在带有氮气通口、机械搅拌和干燥管的50mL三口瓶中,加入4,4’-(二氨基二苯)醚-2,2’-二磺酸(ODADS)、三乙胺和间甲酚,通入氮气,搅拌数分钟至ODADS完全溶解,加入1,4,5,8-萘四甲酸二酐(NTDA)、苯甲酸和TFVBPA。反应混合物在室温搅拌30min,升温至80℃反应4h,180℃反应20h。
待反应体系降温至100℃后,加入间甲酚稀释产物溶液,出料于丙酮中。过滤得到的滤饼经丙酮抽提48h后,真空120℃干燥24h,获得黄色聚合物粉末。其中TFVBPA、ODADS、NTDA和苯甲酸的摩尔比为0.1:0.9:1:1.3,聚合物溶液含固量为15%。
实施例5(制膜、交联和酸化处理)
首先将高磺化度可交联聚酰亚胺溶解于二甲基亚砜(DMSO)中,配制为澄清透明浓度为0.05~0.1g/mL的聚合物溶液,过滤后倾倒于玻璃板上,经80℃干燥10小时,真空120℃干燥24h后,获得坚韧的聚酰亚胺薄膜(三乙胺盐形式)。将聚合物膜置于真空烘箱中经260℃热处理2小时获得交联聚合物膜,待降至室温,将其浸泡于去离子水中,将膜从玻璃板上取下。三乙胺盐形式的交联膜在1mol/L的盐酸中室温浸泡16小时完全转化为磺酸形式的膜,去离子水将膜洗涤至中性,真空120℃干燥24小时,最终获得高磺化度的交联聚酰亚胺质子交换膜;上述步骤中所使用的高磺化度可交联聚酰亚胺分子量为5万~10万之间。
实施例6
本发明实施例中为本发明优选方案,所使用的两种单体6FATFVP和TFVBPA之间可以相互替代,两种单体的作用机理相同,因此产生的效果也相同。在制备6FATFVP和TFVBPA两种单体时催化剂的使用量可以适当增加和减少,合成温度60~100℃之间,增加温度可减少反应时间,最短反应时间为8小时。
实施例7
高磺化度可交联聚酰亚胺的制备时,先升温至60~90℃反应3~6小时,然后在160~200℃反应16~24小时,在上述温度范围内制备的产物与实施例4相同,且合成时苯甲酸可过量使用。
效果验证
由图1~图4所示的核磁氢谱图可知,本发明制备了含可交联乙烯基侧基芳香二胺单体,并利用其进一步制备了高磺化度可交联聚酰亚胺。
如图5所示,本发明与现在商用的质子交换膜Nafion-117相比,在测试温度范围20~100℃的范围内,都保持着更高的质子传导率。
本发明对溶胀率、甲醇渗透率、水解稳定性和机械性能进行了表征,结果如表1所示。从表1中可以看出相比现有技术,本发明具有较低的溶胀率、较低的甲醇渗透率、优良的耐溶剂性、氧化稳定性、水解稳定性和机械性能。
表1

Claims (10)

1.一种高磺化度可交联聚酰亚胺,其特征在于:其分子结构式为
其中,x=0.05~0.4。
2.一种制备权利要求1所述的高磺化度可交联聚酰亚胺所需的二胺单体,其特征在于:该二胺单体为可交联的芳香二胺单体,其分子结构式为:
3.一种权利要求2所述的制备高磺化度可交联聚酰亚胺所需二胺单体的制备方法,具体步骤如下:
以二羟基二胺和五氟苯乙烯为原料,氢化钙和氟化铯作为催化剂,N,N二甲基乙酰胺作为溶剂,在60-100℃反应8-30小时后得到混合溶液,混合溶液中含有所述二胺单体;含有二胺单体的混合溶液在水中出料,得到二胺单体的粗产品;其中二羟基二胺、五氟苯乙烯、氢化钙和氟化铯的摩尔比为1:(2~3):(2~3):(0.05~1);所述二羟基二胺为2,2-二(3-氨基-4-羟基苯基)六氟丙烷或3,3’-二羟基-4,4’-联苯二胺。
4.根据权利要求3所述的二胺单体的制备方法,其特征在于:将二胺单体的粗产品经萃取、干燥、去除溶剂和色谱分离的步骤进行提纯。
5.根据权利要求3或4所述的二胺单体的制备方法,其特征在于:二羟基二胺、五氟苯乙烯、氢化钙和氟化铯的摩尔比为1:2.5:2.5:0.1。
6.一种权利要求1所述的高磺化度可交联聚酰亚胺的制备方法,具体步骤如下:
将摩尔比为1:2~2.5的4,4’-(二氨基二苯)醚-2,2’-二磺酸和三乙胺溶于有机溶剂中,加入二胺单体、1,4,5,8-萘四甲酸二酐和苯甲酸后搅拌均匀,升温至60~90℃反应3~6小时,160~200℃反应16~24小时,得到高磺化度可交联聚酰亚胺与反应物混合溶液;待高磺化度可交联聚酰亚胺与反应物混合溶液冷却后,加入所述有机溶剂稀释混合溶液,然后在丙酮中出料,过滤后所得滤饼经丙酮抽提、干燥获得高磺化度可交联聚酰亚胺;
其中,二胺单体、4,4’-(二氨基二苯)醚-2,2’-二磺酸、1,4,5,8-萘四甲酸二酐和苯甲酸的摩尔比为(0.05~0.4):(0.6~0.95):1:(1~1.4);有机溶剂质量为4,4’-(二氨基二苯)醚-2,2’-二磺酸、二胺单体和1,4,5,8-萘四甲酸二酐总质量的4~9倍;所述二胺单体为2,2-二[3-氨基-4-(2,3,5,6-四氟-4-乙烯基苯氧基)苯基]六氟丙烷或3,3’-二(2,3,5,6-四氟-4-乙烯基苯氧基)-4,4’-联苯二胺。
7.根据权利要求6所述的高磺化度可交联聚酰亚胺的制备方法,其特征在于:二胺单体、4,4’-(二氨基二苯)醚-2,2’-二磺酸、1,4,5,8-萘四甲酸二酐和苯甲酸的摩尔比为0.1:0.9:1:1.3。
8.根据权利要求6所述的高磺化度可交联聚酰亚胺的制备方法,其特征在于:所述有机溶剂为间甲酚。
9.一种利用权利要求1所述的高磺化度可交联聚酰亚胺用于制备质子交换膜的用途。
10.根据权利要求9所述的高磺化度可交联聚酰亚胺用于制备质子交换膜的用途,其特征在于,制备步骤如下:
一、制膜:将高磺化度可交联聚酰亚胺配制成浓度为0.05~0.1g/mL的聚合物溶液,过滤后倾倒于玻璃板上,经干燥去除溶剂后,获得高磺化度可交联聚酰亚胺薄膜;
二、交联:将高磺化度可交联聚酰亚胺薄膜置于真空烘箱中经240~270℃热处理2~4小时获得高磺化度可交联聚酰亚胺交联膜,待降至室温,将其浸泡于水中,将膜从玻璃板上取下;
三、酸化:对高磺化度可交联聚酰亚胺交联膜酸化处理,经洗涤和干燥后,获得高磺化度交联聚酰亚胺质子交换膜。
CN201510861617.7A 2015-12-01 2015-12-01 一种高磺化度可交联聚酰亚胺、制备方法及其在质子交换膜方面的应用 Active CN105418921B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510861617.7A CN105418921B (zh) 2015-12-01 2015-12-01 一种高磺化度可交联聚酰亚胺、制备方法及其在质子交换膜方面的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510861617.7A CN105418921B (zh) 2015-12-01 2015-12-01 一种高磺化度可交联聚酰亚胺、制备方法及其在质子交换膜方面的应用

Publications (2)

Publication Number Publication Date
CN105418921A CN105418921A (zh) 2016-03-23
CN105418921B true CN105418921B (zh) 2017-06-16

Family

ID=55497493

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510861617.7A Active CN105418921B (zh) 2015-12-01 2015-12-01 一种高磺化度可交联聚酰亚胺、制备方法及其在质子交换膜方面的应用

Country Status (1)

Country Link
CN (1) CN105418921B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108428837B (zh) * 2018-02-11 2021-03-16 湖南德沃普电气股份有限公司 一种侧链型磺化聚酰亚胺/全氟磺酸复合膜及其制备方法和应用
CN108963308A (zh) * 2018-08-02 2018-12-07 王琪宇 一种新型聚酰亚胺质子交换膜的制备方法
CN113488688B (zh) * 2020-05-09 2022-07-08 深圳盛德新能源科技有限公司 一种用于燃料电池的交联结构侧链磺化聚合物质子交换膜的制备方法
CN111607088A (zh) * 2020-06-01 2020-09-01 素水能源科技(上海)有限公司 可自交联型磺化聚酰亚胺共聚物、质子交换膜及其制备方法
CN113308004B (zh) * 2021-06-04 2022-03-04 西南科技大学 共价交联型多氟磺化聚酰亚胺质子交换膜的制备及应用
CN113480442A (zh) * 2021-08-20 2021-10-08 吉林大学 一种可交联二胺单体、制备方法及其在制备聚酰亚胺中的应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4588804A (en) * 1984-05-04 1986-05-13 E. I. Du Pont De Nemours And Company Polyimide compositions
JPS6390532A (ja) * 1986-10-03 1988-04-21 Matsushita Electric Ind Co Ltd 感光性ポリアミツク酸
JPH0977870A (ja) * 1995-09-14 1997-03-25 Mitsui Toatsu Chem Inc ポリイミド共重合体およびその製造方法
WO2002050165A1 (en) * 2000-12-19 2002-06-27 Elsicon, Inc. Photosensitive polyimides for optical alignment of liquid crystals
CN1557859A (zh) * 2004-01-14 2004-12-29 吉林大学 高性能、高韧性附加型树脂基复合材料基体及制备方法
DE69934253T2 (de) * 1998-08-06 2007-07-05 Mitsui Chemicals, Inc. Polyamid mit vernetzbarer gruppe und verfahren zur herstellung
CN101085833A (zh) * 2007-07-11 2007-12-12 吉林大学 可溶性含氟芳香聚酰亚胺及其合成方法
CN101225169A (zh) * 2008-01-29 2008-07-23 吉林大学 含硫氟代可自交联聚酰亚胺材料及其制备方法
CN101510615A (zh) * 2009-03-26 2009-08-19 同济大学 一种基于可交联聚酰亚胺的半互穿网络型复合质子交换膜及其制备方法
CA2717037A1 (en) * 2008-02-28 2009-09-03 Young Moo Lee Polyimide-co-polybenzoxazole copolymer, preparation method thereof, and gas separation membrane comprising the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4588804A (en) * 1984-05-04 1986-05-13 E. I. Du Pont De Nemours And Company Polyimide compositions
JPS6390532A (ja) * 1986-10-03 1988-04-21 Matsushita Electric Ind Co Ltd 感光性ポリアミツク酸
JPH0977870A (ja) * 1995-09-14 1997-03-25 Mitsui Toatsu Chem Inc ポリイミド共重合体およびその製造方法
DE69934253T2 (de) * 1998-08-06 2007-07-05 Mitsui Chemicals, Inc. Polyamid mit vernetzbarer gruppe und verfahren zur herstellung
WO2002050165A1 (en) * 2000-12-19 2002-06-27 Elsicon, Inc. Photosensitive polyimides for optical alignment of liquid crystals
CN1557859A (zh) * 2004-01-14 2004-12-29 吉林大学 高性能、高韧性附加型树脂基复合材料基体及制备方法
CN101085833A (zh) * 2007-07-11 2007-12-12 吉林大学 可溶性含氟芳香聚酰亚胺及其合成方法
CN101225169A (zh) * 2008-01-29 2008-07-23 吉林大学 含硫氟代可自交联聚酰亚胺材料及其制备方法
CA2717037A1 (en) * 2008-02-28 2009-09-03 Young Moo Lee Polyimide-co-polybenzoxazole copolymer, preparation method thereof, and gas separation membrane comprising the same
CN101510615A (zh) * 2009-03-26 2009-08-19 同济大学 一种基于可交联聚酰亚胺的半互穿网络型复合质子交换膜及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Pendant-group cross-linked highly sulfonated co-polyimides for proton exchange membranes;Yao Hongyan et al.;《Journal of Membrane Science》;20141223;第480卷;第84-92页 *
uorostyrol side-groups for proton exchange membranes.《Polymer Chemistry》.2015,第6卷(第14期),第2571-2784页. *
Yao Hongyan et al..Highly sulfonated co-polyimides containing cross-linkable hydrophobic tetra&#64258 *
侧链含氮原子磺化聚酰亚胺膜材料的制备;李玉邯等;《高分子学报》;20140831(第8期);第1097-1102页 *

Also Published As

Publication number Publication date
CN105418921A (zh) 2016-03-23

Similar Documents

Publication Publication Date Title
CN105418921B (zh) 一种高磺化度可交联聚酰亚胺、制备方法及其在质子交换膜方面的应用
Einsla et al. Sulfonated naphthalene dianhydride based polyimide copolymers for proton‐exchange‐membrane fuel cells. I. Monomer and copolymer synthesis
CN110224166B (zh) 一种磷酸掺杂交联型聚苯并咪唑高温质子交换膜及其制备方法
JP5740030B2 (ja) ヒドロキシ基を含有するスルホン化ポリエーテルスルホンの共重合体及びその製造方法、燃料電池用高分子電解質膜及びそれを含む膜電極接合体
JP3645558B2 (ja) 側鎖に酸基を有するプロトン伝導性高分子、その製造方法、前記プロトン伝導性高分子を用いた高分子膜及びこれを用いた燃料電池
JP5222687B2 (ja) 高分子鎖の内部に架橋構造を有するスルホン化したポリ(アリレンエーテル)共重合体、高分子鎖の内部および末端に架橋構造を有するスルホン化したポリ(アリレンエーテル)共重合体およびそれを用いた高分子電解質膜
CN101161639B (zh) 固体酸、包含它的聚合物电解质膜和使用该膜的燃料电池
CN107573501B (zh) 一种可交联含氟磺化聚芳醚化合物及其制备方法
CN103709379B (zh) 芳香磺化聚酮及其制备方法
CN109232881B (zh) 一种含有磺酸侧链的含氟聚芳醚化合物及其制备方法
Luo et al. Polybenzimidazole-based polymers of intrinsic microporosity membrane for high-temperature proton conduction
KR100760452B1 (ko) 폴리(아릴렌 에테르) 공중합체 및 이를 이용한 고분자전해질 막
CN107634248B (zh) 一种基于聚芴的质子交换膜的应用
Yu et al. Facile fabrication of sulfonated poly (aryl ether sulfone)/polybenzoxazine crosslinked membrane for vanadium flow battery application
KR101235167B1 (ko) 가교구조를 포함하는 술폰화된 폴리(아릴렌 에테르) 공중합체 및 이를 포함하는 고분자 전해질막
Li et al. Novel sulfonated poly (ether ether ketone ketone) derived from bisphenol S
KR100954060B1 (ko) 술폰화된 폴리(아릴렌 에테르) 공중합체, 이의 제조방법 및이를 이용한 가교된 고분자 전해질막
Krishnan et al. A functional monomer to synthesize sulfonated poly (ether ether ketone) with sulfonic acid group in the pendant side chain
CN1291973C (zh) 1,3-二(3-磺酸钠基-4-氟苯甲酰基)苯磺化单体、其合成方法及其用于制备磺化聚醚醚酮酮共聚物
CN106750301A (zh) 含吡啶基团的磺化聚芳醚砜共聚物、制备方法及应用
JP6028963B2 (ja) 高分子電解質の製造方法
Liu et al. Synthesis of new sulfonated polyimide and its photo-crosslinking for polymer electrolyte membrane fuel cells
ITMI20071034A1 (it) Sintesi e caratterizzazione di una nuova membrana a scambio protonico (pem) per applicazioni in celle a combustibile
KR101190913B1 (ko) 브랜치된 술폰화 멀티 블록 공중합체의 제조방법
CN113336936B (zh) 一种含双酚芴的磺化芳香氧膦聚合物及其制备方法与应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230313

Address after: 266000 North of Cangzhou Road and West of Guangdong Road, Jiaobei Street Office, Jiaozhou City, Qingdao, Shandong Province

Patentee after: Qingdao haoen New Material Technology Co.,Ltd.

Address before: 130012 No. 2699 Qianjin Street, Jilin, Changchun

Patentee before: Jilin University