CN105358610A - 利用微波能量固化热塑性塑料的方法 - Google Patents

利用微波能量固化热塑性塑料的方法 Download PDF

Info

Publication number
CN105358610A
CN105358610A CN201480024311.XA CN201480024311A CN105358610A CN 105358610 A CN105358610 A CN 105358610A CN 201480024311 A CN201480024311 A CN 201480024311A CN 105358610 A CN105358610 A CN 105358610A
Authority
CN
China
Prior art keywords
polyimide
thermoplastics
vfm
temperature
solidification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201480024311.XA
Other languages
English (en)
Inventor
罗伯特·L·哈伯德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Priority to CN202111330053.6A priority Critical patent/CN114038762A/zh
Publication of CN105358610A publication Critical patent/CN105358610A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/16Chemical modification with polymerisable compounds
    • C08J7/18Chemical modification with polymerisable compounds using wave energy or particle radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/562Protection against mechanical damage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

一种用于使热塑性塑料、尤其是聚酰亚胺致密化以用于与电子电路结合使用,同时产生改进的物理特性和高度的结晶度的方法,所述方法涉及在通常低于玻璃转变温度100℃或更低的温度持续约50至100分钟的时间的变频微波(VFM)处理。所述方法尤其适用于基于BPDA-PPD的聚合物,但是一般也可以适用于具有相同特征的其他有意设计的聚酰亚胺结构。本发明实现了涉及集成电路的分层结构的形成,所述分层结构具有较小特征尺寸以及高Tg且带有其他优良特性的聚合物外覆层。

Description

利用微波能量固化热塑性塑料的方法
发明背景
技术领域
本发明涉及用于使热塑性聚合物致密化的装置和方法,并且更具体地涉及用于在所选基板上产生具有提高的结晶度的致密热塑性膜的方法。
背景技术
相关技术描述
聚酰亚胺对于微电子行业而言是具有吸引力的材料,因为它们的机械、电气和化学特性极佳。常规热固化所用工艺时间通常在4至6小时范围;需要放慢温度升降速率以及在各种温度均延长的维持时间,以便实现缓慢的反应速率、反应副产物和溶剂的除气以及聚合物链的取向。减少固化这些聚合物所需的处理时间将会增加产量并且减少总体生产成本。
基于聚酰胺酸的聚酰亚胺(诸如3,3',4,4'-联苯四羧酸二酐(BPDA)与对苯二胺(PPD))对于电子封装应用是合乎需要的,在所述电子封装应用中,低残余应力电介质是必不可少的。这个聚合物的许多独特特性均归因于其主链(backbone)的刚性以及在固化期间发生的高度取向性。这种取向对于实现低热膨胀系数(CTE)、形成低应力膜是关键的。
这类聚合物体系的一个明显缺点是固化温度较高(通常为350℃),这阻碍了它在许多先进的半导体系统中的使用,其中较小特征尺寸以及对应地减少的扩散距离严重限制可提供给各种工艺步骤的热预算。例如,最近有篇论文已报道了这种聚合物体系优良的特性(表1),但是所有已报道的膜已经在310℃至350℃处理过(无论通过常规烘炉固化、快速热板固化还是微波固化)[K·D·法恩沃斯(K.D.Farnsworth)等人,VariableFrequencyMicrowaveCuringof3,3',4,4’-Biphenyltetracarboxylicaciddianhydride/P-Phenylenediamine(BPDA/PPD),Intl.JournalofMicrocircuitsandElectronicPackaging23:162-71(2002)]。虽然VFM固化明显更快,但是固化温度并未改变,并且在此范围内的固化温度大大超过许多感兴趣的应用所允许的最大温度。将这些聚合物体系应用于电子应用的需求可能因以下事实而遇到困难:市售型号BPDA/PPD已存在了30年以上,然而使用非常有限。
表1:通过现有技术方法而得到的典型固化PI2611特性
方法 热固 热板 VFM
特性
最终固化温度,℃ 350 350 350
总体固化时间,秒(s) 18,000 3600 1200
[100]Si上的残余应力,MPa 6 35.3 4.2
CTE,ppm/℃ 3 6.6 3.8
抗拉强度(Tensile strength),Gpa >0.374 >0.0841 >0.361
10KHz下的介电常数 3.06 3.09 3.34
10KHz下的损耗正切(Loss tangent) 0.0032 0.00426 0.0033
双折射率 0.2249 - 0.2237
固化程度 100% 87-108% 82-102%
降解温度,℃ 539 - 540
目标以及优点
本发明的目标包括以下内容:提供用于使热塑性膜致密化的改进方法;提供用于使半导体基板上的热塑性膜致密化的方法;提供用于利用具有改进特性的热塑性膜来涂布半导体晶片的方法;提供用于制造具有提高的结晶度的热塑性膜的低温工艺;以及,提供用于在所选基板上以受控取向来产生聚酰亚胺膜的方法。结合附图阅读以下说明,本发明的这些和其他目标及优点将会通过考虑以下说明变得明显。
发明内容
根据本发明的一个方面,一种用于使热塑性膜致密化的方法包括:
将热塑性塑料以可溶态(solubleform)沉积在所选基板上;
软烘(softbaking)所述膜以去除残余溶剂;以及
在不高于所述热塑性塑料的玻璃转变温度(glasstransitiontemperature)Tg以下100℃的温度,通过VFM将所述膜固化20至120分钟。
根据本发明的另一方面,一种用于制造微电子器件的方法包括:
制备半导体晶片,在所述半导体晶片上带有集成电路;
将热塑性膜以可溶态沉积在所述半导体晶片上;
软烘所述膜以去除残余溶剂;以及
在不高于所述热塑性塑料的玻璃转变温度Tg以下100℃的温度,通过VFM将所述膜固化20至120分钟。
根据本发明的另一方面,一种电子器件包括:
半导体,在所述半导体上具有功能集成电路;以及
在所述半导体上的基本致密的热塑涂层,所述涂层具有在300℃至400℃的范围内的Tg
附图说明
随附本说明书并形成为本说明书部分的附图被包括来图示本发明的某些方面。参考附图中示出的示例性的且因而非限制性的实施方式,将更容易清楚本发明的以及随本发明提供的系统的部件和操作的更清楚的概念,其中相同数字(如果所述数字在多于一个附图中出现)指示相同元件。附图中的特征不一定按比例绘制。
图1是BPDA-PPD的结构的示意图。
图2示出各种条件下固化的BPDA-PPD膜的模量(modulus)。
图3示出与图2相同的条件下固化的BPDA-PPD膜的硬度。
图4示出在各个时间上通过VFM在200℃固化的BPDA-PPD的亚胺化百分比。
图5示出聚酰亚胺PMDA-ODA的扭结链特性。
图6示出可为线性聚酰亚胺提供双官能聚酰胺酸段的分子的一些替代种类。
图7示出可为聚酰亚胺提供双官能胺的分子的一些替代种类。
具体实施方式
一般来说,本发明提供了用于在足够低的温度使热塑性塑料、尤其是聚酰亚胺致密化以用于与电子电路结合使用,同时产生改进物理特性和高度的结晶度的方法。本发明尤其适用于基于BPDA-PPD的聚合物,但是在本公开内容中随后将会清楚,这种方法一般也可以适用于具有相同的特征的其他有意设计的聚酰亚胺结构。
聚合物BPDA-PPD(3,3',4,4'-联苯四羧酸二酐/对苯二胺)是基于聚酰胺酸的聚酰亚胺,所述聚酰亚胺由HD微系统公司(HDMicrosystems)(新泽西州帕林市起司奎克大道250号,邮编00859-1241(250CheesequakeRoad,Parlin,NJ00859-1241))制造并以产品名称PI2611销售。在高温(>200℃)下,材料经历从其可溶的、聚酰胺酸形态(如从HD微系统公司获得)至不可溶的、完全亚胺化(imidized)聚合物的转变。所述聚合物的许多独特特性均归因于其主链的刚性以及在固化期间发生的高度取向性。
当通过常规烘炉方法在所推荐的350℃的温度固化时,显著线性BPDA-PPD的图1显示取向性和结晶度上的增加(如由模量增加证实)、热膨胀系数的降低以及红外(FTIR)峰值位移[J·C·科本(J.C.Coburn)、M·T·鲍狄埃(M.T.Pottiger)以及C·A·普莱德(C.A.Pryde),“StructureDevelopmentinPolyimideFilms”,Mat.Res.Soc.Symp.Proc,Vol.308,475-87(1993))]。这些高程度的取向/结晶度在250℃与350℃之间的固化温度,利用对流加热实现,如表2中所示。在350℃至400℃的温度(高于Tg(340℃))固化,实际降低CTE并且增加模量,这导致了膜中残余应力急剧增加。这实际上要归因于环至表面的面内取向的损耗。以高于Tg的温度固化典型非线性的聚酰亚胺(像BTDA/ODA/MPD,表3)并不影响残余应力,因为它们未对齐至表面。
表2:BPDA-PPD的特性与固化温度(数据来自科本(Coburn)等人,1993年)。
表3:BPDA-ODA-MPD的特性与固化温度
申请人展开了一系列的研究,以便确定微波固化是否在大体上较低温度进行,以在将有用于集成电路应用的范围内处理材料(诸如BPDA-PPD)。使用具有5.65GHz至7.0GHz的扫频范围、0.1秒的扫频速率和200W的功率的MicroCureTM2100VFM(北卡罗来纳州莫里斯维尔市Lambda科技公司(LambdaTechnologies,Morrisville,NC))进行实验。如以下实例将示出,结果不仅令人惊讶,而且从常规的聚合物理论观点看,实际上是反直觉的。
实例
PI2611膜在175℃和200℃的温度进行VFM固化达范围从5分钟至120分钟的时间。以4000rpm将树脂旋涂到硅晶片上,以便获得7μm厚的膜,所述膜随后在130℃软烘2分钟,以在固化之前移除残余溶剂。图2示出这些样本与烘炉固化样本(350℃和400℃)相比的杨氏模量。令人惊讶的观察结果是,当在200℃固化60分钟后具有模量突升,此时,模量实际高于常规烘炉中固化的材料模量。注意,模量在100nm至200nm的厚度上通过纳米压痕方法测量,以最小化基板影响。
实例
图3呈现先前实例中描述的BPDA-PPD膜的硬度。同样,可以看到在约60分钟的固化时间上出现急剧增加,此时,硬度是相当于350℃烘炉固化所产生的硬度。
实例
图4呈现在200℃通过VFM固化时的亚胺化百分比随时间的变化,如通过FTIR测得。可以看出,亚胺化在20分钟后完成约80%,在60分钟后基本完成,其中从60分钟至120分钟改变极小。
当BPDA-PPD通过微波(VFM)在仅200℃完全固化(Tg=350℃)时,从90%至100%的固化程度的增加以及取向在60分钟至75分钟之间急剧转变至如模量(图2)、硬度(图3)以及FTIR(图4)所示工艺时发生。这种取向非预期地作为利用MW的实时急剧相变而发生,但是模量未增加至更高水平,如在对流烘炉固化的情况下所示,同时CTE保持在3.1ppm/℃。这代表了平均较低残余应力水平,而且不必加热至高于Tg。因此,硅晶片上BPDA/PPD膜的VFM固化显示没有发生另外翘曲。
这种高取向表示聚合物链更紧密的对齐,其类似于液晶相的高度取向的“杆状”堆积。这种特定热塑结构的电子性质是源自使芳香环和酰亚胺杂环(如图1所示)中的sp2轨道沿这个非常线性且刚性的结构非常好地对齐。相比之下,更常见的市售聚酰亚胺结构更为扭结且更易弯曲,如膜中的常见聚酰亚胺的结构(PMDA-ODA),图5中所示。
形态上各向同性的PMDA-ODA具有面外CTE,所述面外CTE仅为面内CTE的1.2倍,然而,取向的BPDA-PPD是各向异性的,面外CTE比面内CTE高25倍。这种各向异性以及低CTE密切匹配硅的各向异性以及CTE(3.1ppm/℃),这允许涂布在硅晶片上的聚合物膜在冷却后几乎没有诱导应力。这对电子器件行业来说是非常重要的,它增加了对涂布有聚酰亚胺电介质膜的堆叠薄硅晶片的使用,以提供非常高密度的功能性。在聚合物电介质膜(约60ppm/℃)与硅晶片之间,当前的CTE失配通常在直径为300nm的晶片中形成300μm至800μm的翘曲。这已成为难以控制的问题,因为BPDA-PPD固化的350℃至400℃的常规烘炉固化温度远远超过用于寻求与先进设备和封装结构相兼容的低于250℃的固化温度的电子器件行业的晶片处理的可行极限。例如,一些高级存储设备(诸如聚合物或陶瓷RAM器件)在比250℃高得多的温度不可操作。在仅200℃的固化温度利用微波形成高度取向、低CTE聚酰亚胺膜的能力是一个显著的技术突破。
数十年来,聚酰亚胺膜早已是微电子行业的有机电介质的选择,因为这种材料对于高于300℃的温度具有高热、化学和机械稳定性。近来在电子器件技术方面的进展通常形成对高于250℃的高温工艺的敏感性。这种限制已迫使行业寻求其它化学种类,诸如具有低于250℃的固化温度的聚苯并恶唑(polybenzoxazoles)和环氧树脂。在所有情况下,这些聚酰亚胺的替代物都会折损稳定性和介电特性或是降低制造的稳健性。在低于300℃的温度通过常规烘炉不完全固化的聚酰亚胺对微电子器件而言,化学和介电特性不可接受。
在如200℃那样低的温度形成高度取向、低CTE聚酰亚胺膜的能力允许在大多数的封装工艺流程中包括稳健的聚酰亚胺膜固化步骤,所述封装工艺流程主要在250℃或低于250℃的温度,以便避免晶圆附接、晶圆包封、模制、晶圆底部填充以及晶圆堆叠应用中常用的环氧树脂粘合剂的分解。
另外,在低于Tg的较低微波固化温度与封装或组装中使用的任何其他工艺步骤中出现的最高温度之间的差异现在为50℃或更小。这种较低温度范围偏移几乎消除用常规烘炉固化发现的时间和温度对模量和CTE的强烈影响(如由M·T·鲍狄埃(M.T.Pottger)和J·C·科本(J.C.Coburn),“ModelingStressesinPolyimideFilms”,Mat.Res.Soc.Symp.Proc.,Vol308,527-534(1993)所述)。
利用临界反应性偶极子在整个材料块上的均匀微波激励,聚酰亚胺链的固化反应(亚胺化/环化)变得非常有效,同时维持块体中低得多的温度(200℃)。聚合物的低温固化已经在各种系统中得到证实。随着反应接近完成(几乎完成90%,如图4所示),链的刚性变得越来越高,并且链变得不太可活动。在旋转的偶极子(此时主要是羰基)中的微波能量的延续效应有助于将这些刚性杆取向/结晶至较低能量的堆叠位置。相似的情况可以在非常接近0℃的小水分子的同步结晶(冻结)点中发生。这种同步在聚合物的标准对流加热情况下不会发生,因为所述工艺涉及链通过与其他链碰撞的随机碰撞,所述碰撞扰乱次序的程度几乎与增强次序的程度差不多,因此需要更高温度。
申请人已示出,在出乎意料低的温度的微波引起的取向对于线性BTDA-PPD结构而言是可能的。基于这种观察结果,申请人预期了这种现象可扩展至具有相同的特征的其他有意设计的聚酰亚胺结构。
实例
充分利用本发明工艺的其他聚合物的设计可将如图6的一般种类所建议的双官能聚酰胺酸段与如图7中建议的具有R1和R2的双官能胺组合。存在当固化时将会产生具有高取向概率的线性、缀合(conjugated)且刚性的聚酰亚胺膜的许多其他的可能性。
另外示出[Y·仓本(Y.Kuramoto),ChemicalOscillations,Waves,andTurbulence.Springer,Berlin(1984)]的是,化学和生物学中的突然相变可随处于临界分布水平的分子之间的相互作用发生。在接近固化结束时以降低速率移动的极化聚合物链的微波引起的相互作用在这些链的长度分布更窄的情况下,可能变得更有效地同步且高度地取向。
实例
由于BTDA-PPD的观察到的取向和结晶度呈现为以相变(参见图2至图4)方式大幅同步,因此应当可能通过减少起始材料中的链长分布,在MW辐射中引起其他聚酰亚胺以及其他热塑性塑料的高度取向。减少热塑性塑料的多分散性指数(PDI)可以通过使用分离技术(诸如体积排阻色谱法(sizeexclusionchromatography))或是通过限制在初始材料成型过程中热塑性塑料封端反应的初始形成而完成。通过这些方法,应当可能增强聚酰亚胺以及将受益于可调节的硬度和CTE的其他热塑性塑料(诸如聚烯烃、聚乙烯、聚碳酸酯和丙烯腈)中更宽泛的选出物质的机械特性。这种可选设计能力在使用标准热固技术时明显并不可能实现。
基于先前的实例和论述,应当了解,存在工艺变量范围,所述工艺变量范围将会产生可接受的结果,并且最佳参数可随特定应用而变。技术人员可容易地通过日常实验来优化用于特定系统的工艺。对于BPDA-PPD系统,申请人偏向于在从175℃至225℃的温度范围内进行约20至120分钟的工艺。对于专门设计的聚合物配方(诸如结合图6和图7论述的那些),应当了解,Tg值将有可能发生一定程度变化,但许多情况下,将在约300℃至400℃的范围内。对于这些系统,通过对BPDA-PPD的模拟,申请人偏向于针对特定配方在不高于所述热塑性塑料的玻璃转变温度Tg以下100℃的温度进行微波处理。所需处理温度的上限还将在一定程度上是由最终用途决定。对于电子器件,行业通常是偏向于保持处于约250℃以下,且许多情况下,低于200℃(如果可能)。
技术人员将会清楚,本发明允许了制造此前无法构建出的结构。具体来说,可以构建复合结构,其中具有250℃或更小的温度上限的功能性硅集成电路被涂布有具有350℃或更大的Tg的致密热塑性塑料层。集成电路可以包括在100nm至15nm的范围内的特征。通过所有现有技术方法,使此类聚合物致密化所需的处理温度将会损毁底层电路元件的功能性。
应当理解,VFM处理是本质上灵活的方法,其中技术人员可以基于如空腔和工件的尺寸和形状、基板类型等的变量选择特定频率范围、扫描速率等等。众所周知的是,一些所选带宽(通常中心频率的±5%或±10%)上的扫频不仅提高了均匀性,还防止了电弧放电以及对工件中的电子部件的其他有害影响。因此,申请人偏向于在至少5%且更优选地是±10%的中心频率的带宽上扫频。

Claims (18)

1.一种用于使热塑性膜致密化的方法,所述方法包括:
将所述热塑性塑料以可溶态(solubleform)沉积到所选基板上;
软烘(softbaking)所述膜以去除残余溶剂;以及
在不高于所述热塑性塑料的玻璃转变温度Tg以下100℃的温度,通过VFM将所述膜固化20至120分钟。
2.如权利要求1所述的方法,其特征在于,所述热塑性塑料包含具有双官能聚酰胺酸段和双官能胺段的聚酰亚胺,并且所述聚酰亚胺具有在300℃至400℃的范围内的Tg
3.如权利要求2所述的方法,其特征在于,所述聚酰亚胺包含BPDA-PPD并且所述VFM固化在约175℃至225℃的温度进行。
4.如权利要求1所述的方法,其特征在于,所述VFM固化包括在至少±5%的所选中心频率的带宽上以扫描的方式施加微波功率。
5.如权利要求1所述的方法,其特征在于,所述基板包括半导体晶片,所述半导体晶片上具有集成电路。
6.如权利要求1所述的方法,其特征在于,所述热塑性塑料包含从以下各项组成的群组中选择的聚合物:聚酰亚胺、聚烯烃、聚乙烯、聚碳酸酯和丙烯腈。
7.如权利要求6所述的方法,其进一步包括以下步骤:减少所述热塑性塑料的多分散性指数(PDI)。
8.如权利要求7所述的方法,其特征在于,所述PDI是通过从以下各项组成的群组中选择的方法来降低:使用包括体积排阻色谱法的分离技术;以及通过限制在用于所述热塑性塑料的初始材料成型过程中所述热塑性塑料封端反应的初始形成。
9.一种制造微电子器件的方法,所述方法包括:
制备半导体晶片,在所述半导体晶片上带有集成电路;
将热塑性膜以可溶态沉积在所述半导体晶片上;
软烘所述膜以去除残余溶剂;以及
在不超过所述热塑性塑料的玻璃转变温度Tg以下100℃的温度,通过VFM将所述膜固化20至120分钟。
10.如权利要求9所述的方法,其特征在于,所述热塑性塑料包含具有双官能聚酰胺酸段和双官能胺段的聚酰亚胺,并且所述聚酰亚胺具有在300℃至400℃的范围内的Tg
11.如权利要求10所述的方法,其特征在于,所述聚酰亚胺包含BPDA-PPD并且所述VFM固化是在约175℃至225℃的温度进行。
12.如权利要求9所述的方法,其特征在于,所述VFM固化包括在至少±5%的所选中心频率的带宽上以扫描的方式施加微波功率。
13.如权利要求9所述的方法,其特征在于,所述集成电路包括宽度在100nm至10nm的范围内的功能电路特征,并且所述热塑性塑料具有在300℃至400℃的范围内的Tg
14.一种电子器件,所述电子器件包括:
半导体,在所述半导体上具有功能集成电路;以及
在所述半导体上的基本致密热塑涂层,所述涂层具有在300℃至400℃的范围内的Tg
15.如权利要求14所述的器件,其中所述集成电路包括宽度在100nm至10nm的范围内的功能电路特征。
16.如权利要求14所述的器件,其特征在于,所述热塑性塑料包含从以下各项组成的群组中选择的聚合物:聚酰亚胺、聚烯烃、聚乙烯、聚碳酸酯和丙烯腈。
17.如权利要求16所述的器件,其特征在于,所述热塑性塑料包含具有双官能聚酰胺酸段和双官能胺段的聚酰亚胺。
18.如权利要求17所述的器件,其特征在于,所述聚酰亚胺包含BPDA-PPD。
CN201480024311.XA 2013-03-22 2014-03-18 利用微波能量固化热塑性塑料的方法 Pending CN105358610A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111330053.6A CN114038762A (zh) 2013-03-22 2014-03-18 利用微波能量固化热塑性塑料的方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/986,012 US10224258B2 (en) 2013-03-22 2013-03-22 Method of curing thermoplastics with microwave energy
US13/986,012 2013-03-22
PCT/US2014/031015 WO2014153336A1 (en) 2013-03-22 2014-03-18 Method of curing thermoplastics with microwave energy

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202111330053.6A Division CN114038762A (zh) 2013-03-22 2014-03-18 利用微波能量固化热塑性塑料的方法

Publications (1)

Publication Number Publication Date
CN105358610A true CN105358610A (zh) 2016-02-24

Family

ID=51568590

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201480024311.XA Pending CN105358610A (zh) 2013-03-22 2014-03-18 利用微波能量固化热塑性塑料的方法
CN202111330053.6A Pending CN114038762A (zh) 2013-03-22 2014-03-18 利用微波能量固化热塑性塑料的方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202111330053.6A Pending CN114038762A (zh) 2013-03-22 2014-03-18 利用微波能量固化热塑性塑料的方法

Country Status (6)

Country Link
US (2) US10224258B2 (zh)
JP (1) JP6660875B2 (zh)
KR (2) KR102291979B1 (zh)
CN (2) CN105358610A (zh)
SG (2) SG11201507904YA (zh)
WO (1) WO2014153336A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109314060A (zh) * 2016-06-19 2019-02-05 应用材料公司 用于由微波固化调整聚合物的热膨胀系数(cte)的方法
CN112840436A (zh) * 2018-12-26 2021-05-25 应用材料公司 用于形成微波可调谐复合薄膜介电层的方法
CN114038762A (zh) * 2013-03-22 2022-02-11 应用材料公司 利用微波能量固化热塑性塑料的方法

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160086960A1 (en) * 2014-09-22 2016-03-24 Texas Instruments Incorporated Low-Temperature Passivation of Ferroelectric Integrated Circuits for Enhanced Polarization Performance
RU2692367C2 (ru) * 2014-10-24 2019-06-24 Юнайтед Текнолоджиз Корпорэйшн Полимер с улучшенными характеристиками и способ его получения
AT517146A2 (de) * 2015-05-13 2016-11-15 Technische Universität Wien Verfahren zur Herstellung von kristallinen Polyimiden
KR102271573B1 (ko) * 2015-06-11 2021-06-30 연세대학교 원주산학협력단 마이크로파를 이용한 폴리이미드 필름 제조방법
US10224224B2 (en) 2017-03-10 2019-03-05 Micromaterials, LLC High pressure wafer processing systems and related methods
US10847360B2 (en) 2017-05-25 2020-11-24 Applied Materials, Inc. High pressure treatment of silicon nitride film
US10622214B2 (en) 2017-05-25 2020-04-14 Applied Materials, Inc. Tungsten defluorination by high pressure treatment
JP7190450B2 (ja) 2017-06-02 2022-12-15 アプライド マテリアルズ インコーポレイテッド 炭化ホウ素ハードマスクのドライストリッピング
US10234630B2 (en) 2017-07-12 2019-03-19 Applied Materials, Inc. Method for creating a high refractive index wave guide
US10269571B2 (en) 2017-07-12 2019-04-23 Applied Materials, Inc. Methods for fabricating nanowire for semiconductor applications
US10179941B1 (en) 2017-07-14 2019-01-15 Applied Materials, Inc. Gas delivery system for high pressure processing chamber
US10276411B2 (en) 2017-08-18 2019-04-30 Applied Materials, Inc. High pressure and high temperature anneal chamber
JP6947914B2 (ja) 2017-08-18 2021-10-13 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 高圧高温下のアニールチャンバ
US10096516B1 (en) 2017-08-18 2018-10-09 Applied Materials, Inc. Method of forming a barrier layer for through via applications
CN111095524B (zh) 2017-09-12 2023-10-03 应用材料公司 用于使用保护阻挡物层制造半导体结构的设备和方法
US10643867B2 (en) 2017-11-03 2020-05-05 Applied Materials, Inc. Annealing system and method
JP7112490B2 (ja) 2017-11-11 2022-08-03 マイクロマテリアルズ エルエルシー 高圧処理チャンバのためのガス供給システム
KR102622303B1 (ko) 2017-11-16 2024-01-05 어플라이드 머티어리얼스, 인코포레이티드 고압 스팀 어닐링 프로세싱 장치
JP2021503714A (ja) 2017-11-17 2021-02-12 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 高圧処理システムのためのコンデンサシステム
KR102649241B1 (ko) 2018-01-24 2024-03-18 어플라이드 머티어리얼스, 인코포레이티드 고압 어닐링을 사용한 심 힐링
EP3762962A4 (en) 2018-03-09 2021-12-08 Applied Materials, Inc. HIGH PRESSURE ANNEALING PROCESS FOR METAL-BASED MATERIALS
US10714331B2 (en) 2018-04-04 2020-07-14 Applied Materials, Inc. Method to fabricate thermally stable low K-FinFET spacer
US10950429B2 (en) 2018-05-08 2021-03-16 Applied Materials, Inc. Methods of forming amorphous carbon hard mask layers and hard mask layers formed therefrom
US10566188B2 (en) 2018-05-17 2020-02-18 Applied Materials, Inc. Method to improve film stability
US10704141B2 (en) 2018-06-01 2020-07-07 Applied Materials, Inc. In-situ CVD and ALD coating of chamber to control metal contamination
US10748783B2 (en) 2018-07-25 2020-08-18 Applied Materials, Inc. Gas delivery module
US10675581B2 (en) 2018-08-06 2020-06-09 Applied Materials, Inc. Gas abatement apparatus
WO2020092002A1 (en) 2018-10-30 2020-05-07 Applied Materials, Inc. Methods for etching a structure for semiconductor applications
KR20210077779A (ko) 2018-11-16 2021-06-25 어플라이드 머티어리얼스, 인코포레이티드 강화된 확산 프로세스를 사용한 막 증착
WO2020117462A1 (en) 2018-12-07 2020-06-11 Applied Materials, Inc. Semiconductor processing system
US11901222B2 (en) 2020-02-17 2024-02-13 Applied Materials, Inc. Multi-step process for flowable gap-fill film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5279739A (en) * 1991-08-19 1994-01-18 Koch Membrane Systems, Inc. Durable filtration membrane having optimized molecular weight
US5470693A (en) * 1992-02-18 1995-11-28 International Business Machines Corporation Method of forming patterned polyimide films
US5477360A (en) * 1993-04-23 1995-12-19 Kabushiki Kaisha Toshiba Liquid crystal display device
US5738915A (en) * 1996-09-19 1998-04-14 Lambda Technologies, Inc. Curing polymer layers on semiconductor substrates using variable frequency microwave energy
US6275277B1 (en) * 1999-05-17 2001-08-14 Colorado Microdisplay, Inc. Micro liquid crystal displays having a circular cover glass and a viewing area free of spacers
CN102282196A (zh) * 2008-12-30 2011-12-14 可隆股份有限公司 聚酰亚胺薄膜

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4590258A (en) * 1983-12-30 1986-05-20 International Business Machines Corporation Polyamic acid copolymer system for improved semiconductor manufacturing
US5144407A (en) * 1989-07-03 1992-09-01 General Electric Company Semiconductor chip protection layer and protected chip
JPH0721868B2 (ja) * 1989-08-04 1995-03-08 キヤノン株式会社 光情報処理装置
US5108819A (en) * 1990-02-14 1992-04-28 Eli Lilly And Company Thin film electrical component
US5241040A (en) * 1990-07-11 1993-08-31 International Business Machines Corporation Microwave processing
DE69522494T2 (de) * 1994-04-14 2002-04-25 Canon K.K., Tokio/Tokyo Flüssigkristallzusammensetzung, Anzeigevorrichtung und Verfahren diese verwendend
US5932345A (en) * 1995-01-11 1999-08-03 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Thermally fusible adhesive copolymer, articles made therefrom, and method for producing the same
JPH08335653A (ja) * 1995-04-07 1996-12-17 Nitto Denko Corp 半導体装置およびその製法並びに上記半導体装置の製造に用いる半導体装置用テープキャリア
US5644837A (en) * 1995-06-30 1997-07-08 Lambda Technologies, Inc. Process for assembling electronics using microwave irradiation
US5745984A (en) * 1995-07-10 1998-05-05 Martin Marietta Corporation Method for making an electronic module
TW378345B (en) * 1997-01-22 2000-01-01 Hitachi Ltd Resin package type semiconductor device and manufacturing method thereof
US6143423A (en) * 1997-04-07 2000-11-07 Shin-Etsu Chemical Co., Ltd. Flame retardant epoxy resin compositions
US5998876A (en) * 1997-12-30 1999-12-07 International Business Machines Corporation Reworkable thermoplastic hyper-branched encapsulant
US6166433A (en) * 1998-03-26 2000-12-26 Fujitsu Limited Resin molded semiconductor device and method of manufacturing semiconductor package
JP2001156321A (ja) * 1999-03-09 2001-06-08 Fuji Xerox Co Ltd 半導体装置およびその製造方法
KR100430203B1 (ko) * 1999-10-29 2004-05-03 가부시키가이샤 히타치세이사쿠쇼 반도체 장치 및 그 제조 방법
US6624501B2 (en) * 2001-01-26 2003-09-23 Fujitsu Limited Capacitor and semiconductor device
TWI281924B (en) * 2003-04-07 2007-06-01 Hitachi Chemical Co Ltd Epoxy resin molding material for sealing use and semiconductor device
JP4273904B2 (ja) 2003-09-29 2009-06-03 住友ベークライト株式会社 ポリイミド前駆体およびポリイミド樹脂の製造方法
US20050152773A1 (en) * 2003-12-12 2005-07-14 Shin-Etsu Chemical Co., Ltd. Liquid epoxy resin composition and semiconductor device
US7557035B1 (en) * 2004-04-06 2009-07-07 Advanced Micro Devices, Inc. Method of forming semiconductor devices by microwave curing of low-k dielectric films
GB0409877D0 (en) * 2004-04-30 2004-06-09 Univ Manchester Preparation of nanoparticle materials
US7250121B2 (en) * 2004-05-13 2007-07-31 Nitto Denko Corporation Non-linear optical device material composition
JPWO2005111165A1 (ja) * 2004-05-18 2008-03-27 株式会社カネカ 接着フィルムの製造方法
JP5121115B2 (ja) 2004-07-13 2013-01-16 日立化成デュポンマイクロシステムズ株式会社 硬化膜の製造方法、および電子デバイスの製造方法
US7335608B2 (en) * 2004-09-22 2008-02-26 Intel Corporation Materials, structures and methods for microelectronic packaging
TW200619843A (en) * 2004-10-20 2006-06-16 Sumitomo Bakelite Co Semiconductor wafer and semiconductor device
JP4793565B2 (ja) * 2005-03-24 2011-10-12 信越化学工業株式会社 半導体封止用エポキシ樹脂組成物及び半導体装置
US8237140B2 (en) * 2005-06-17 2012-08-07 Macronix International Co., Ltd. Self-aligned, embedded phase change RAM
JP4900244B2 (ja) * 2005-07-20 2012-03-21 日立化成工業株式会社 半導体用熱可塑性樹脂組成物、これを用いた接着フィルム、リードフレーム、半導体装置および半導体装置の製造方法
US7901536B2 (en) * 2006-05-30 2011-03-08 Lambda Technologies, Inc. Resonating conductive traces and methods of using same for bonding components
KR100796643B1 (ko) * 2006-10-02 2008-01-22 삼성전자주식회사 폴리머 메모리 소자 및 그 형성 방법
EP1911579A1 (en) * 2006-10-04 2008-04-16 Shin-Etsu Chemical Co., Ltd. Epoxy resin composition for encapsulating semiconductor device and thin semicondutor device
EP1917971A1 (en) * 2006-10-27 2008-05-07 Société de Conseils de Recherches et d'Applications Scientifiques ( S.C.R.A.S.) Substained release formulations comprising very low molecular weight polymers
US20080277652A1 (en) * 2007-02-22 2008-11-13 Nitto Denko Corporation Carbon-containing semiconducting devices and methods of making thereof
WO2008109701A1 (en) * 2007-03-07 2008-09-12 Nitto Denko Corporation Nonlinear optical material composition and method of manufacture
US8710682B2 (en) * 2009-09-03 2014-04-29 Designer Molecules Inc, Inc. Materials and methods for stress reduction in semiconductor wafer passivation layers
US20110122590A1 (en) * 2009-11-23 2011-05-26 Dow Global Technologies Inc. Epoxy resin formulations for underfill applications
WO2011126076A1 (ja) * 2010-04-09 2011-10-13 大日本印刷株式会社 薄膜トランジスタ基板
US8450726B2 (en) * 2010-05-27 2013-05-28 Eastman Kodak Company Articles containing coatings of amic acid salts
US8431433B2 (en) * 2010-05-27 2013-04-30 Eastman Kodak Company Methods of providing semiconductor layers from amic acid salts
WO2012005079A1 (ja) * 2010-07-09 2012-01-12 東レ株式会社 感光性接着剤組成物、感光性接着剤フィルムおよびこれらを用いた半導体装置
KR20120041568A (ko) * 2010-10-21 2012-05-02 삼성전자주식회사 막 구조물 제조 방법
FR2966474B1 (fr) * 2010-10-25 2013-12-20 Solarwell Procede de fabrication d'un materiau nanocristallin
KR101503189B1 (ko) * 2011-07-08 2015-03-16 미쓰이 가가쿠 가부시키가이샤 폴리이미드 수지 조성물 및 그것을 포함하는 적층체
US10155835B2 (en) * 2011-08-09 2018-12-18 Mitsubishi Gas Chemical Company, Inc. Cyanate ester compound and method for producing the same, and curable resin composition comprising the compound, and cured product thereof composition
US20150299550A1 (en) * 2011-12-27 2015-10-22 Panasonic Corporation Thermally conductive resin composition
US20130299953A1 (en) * 2012-05-11 2013-11-14 Robert L. Hubbard Method for lower thermal budget multiple cures in semiconductor packaging
US9576830B2 (en) * 2012-05-18 2017-02-21 Taiwan Semiconductor Manufacturing Company, Ltd. Method and apparatus for adjusting wafer warpage
US10224258B2 (en) * 2013-03-22 2019-03-05 Applied Materials, Inc. Method of curing thermoplastics with microwave energy
KR102510370B1 (ko) * 2014-10-06 2023-03-17 도레이 카부시키가이샤 수지 조성물, 내열성 수지막의 제조 방법, 및 표시 장치
WO2017131406A1 (ko) * 2016-01-28 2017-08-03 한양대학교 산학협력단 유기 화합물, 이 유기 화합물을 사용하여 형성된 3차원 유기 구조체, 이 유기 구조체를 구비하는 분리체 및 광학층, 및 이 광학층을 광증폭층으로 구비하는 광학소자

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5279739A (en) * 1991-08-19 1994-01-18 Koch Membrane Systems, Inc. Durable filtration membrane having optimized molecular weight
US5470693A (en) * 1992-02-18 1995-11-28 International Business Machines Corporation Method of forming patterned polyimide films
US5477360A (en) * 1993-04-23 1995-12-19 Kabushiki Kaisha Toshiba Liquid crystal display device
US5738915A (en) * 1996-09-19 1998-04-14 Lambda Technologies, Inc. Curing polymer layers on semiconductor substrates using variable frequency microwave energy
US6275277B1 (en) * 1999-05-17 2001-08-14 Colorado Microdisplay, Inc. Micro liquid crystal displays having a circular cover glass and a viewing area free of spacers
CN102282196A (zh) * 2008-12-30 2011-12-14 可隆股份有限公司 聚酰亚胺薄膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MATSUTANI,H ET AL: "Low temperature Curing of Polyimide Precursors by Variable Frequency Microwave", 《JOURNAL OF PHOTOPOLYMER SCIENCE AND TECHNOLOGY》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114038762A (zh) * 2013-03-22 2022-02-11 应用材料公司 利用微波能量固化热塑性塑料的方法
CN109314060A (zh) * 2016-06-19 2019-02-05 应用材料公司 用于由微波固化调整聚合物的热膨胀系数(cte)的方法
CN109314060B (zh) * 2016-06-19 2023-08-25 应用材料公司 用于由微波固化调整聚合物的热膨胀系数(cte)的方法
CN112840436A (zh) * 2018-12-26 2021-05-25 应用材料公司 用于形成微波可调谐复合薄膜介电层的方法

Also Published As

Publication number Publication date
CN114038762A (zh) 2022-02-11
KR102291979B1 (ko) 2021-08-19
KR20150134392A (ko) 2015-12-01
US20140284821A1 (en) 2014-09-25
SG10201707843VA (en) 2017-11-29
JP2016520417A (ja) 2016-07-14
KR20210102502A (ko) 2021-08-19
US20190148252A1 (en) 2019-05-16
WO2014153336A1 (en) 2014-09-25
US10224258B2 (en) 2019-03-05
KR102421004B1 (ko) 2022-07-13
US10854525B2 (en) 2020-12-01
JP6660875B2 (ja) 2020-03-11
SG11201507904YA (en) 2015-11-27

Similar Documents

Publication Publication Date Title
CN105358610A (zh) 利用微波能量固化热塑性塑料的方法
Wu et al. Progress in aromatic polyimide films for electronic applications: preparation, structure and properties
US10834854B2 (en) Methods for the manufacture of thermal interfaces, thermal interfaces, and articles comprising the same
JP2016520417A5 (zh)
KR101506611B1 (ko) 폴리이미드 필름
CN103874733A (zh) 具有抗静电特性的全芳香族液晶聚酯树脂化合物以及产品
Kuo et al. Thermal conductive performance of organosoluble polyimide/BN and polyimide/(BN+ ALN) composite films fabricated by a solution‐cast method
CN111527152A (zh) 热固化性组合物、热固化性树脂改性剂、其固化物、半导体密封材料、预浸料、电路基板和增层膜
CN102774008B (zh) 制造基于形状记忆聚合物的三维装置的方法
KR20200069912A (ko) 고열전도성 고분자 복합 소재 및 그 제조 방법
JP6747440B2 (ja) フィルム形成用樹脂組成物及びこれを用いた封止フィルム、支持体付き封止フィルム、半導体装置
US9832869B2 (en) Polyamide films and process for preparation
KR101830523B1 (ko) 필름용 고분자 화합물 및 이를 이용한 상온자기치유성 방열필름
Qu et al. Residual stress and thermal properties of rubber‐modified epoxy systems for semiconductor package
JP7238301B2 (ja) 材料の選定方法及びパネルの製造方法
JP3531719B2 (ja) ポリイミド樹脂成形体の製造法
CN103724624A (zh) 高介电常数聚酰亚胺薄膜及其制备方法和应用
CN102687244A (zh) 使用溶液法制作柔性板的方法
KR20160146113A (ko) 마이크로파를 이용한 폴리이미드 필름 제조방법
JP2014201740A (ja) イミドオリゴマー及びこれを加熱硬化させてなるポリイミド樹脂
EP0338736A2 (en) Shaped aromatic imide polymer article and method of producing same
CN106046320B (zh) 一种高温介频稳定的氰酸酯-环氧共聚树脂的制备方法
WO2024143073A1 (ja) コンパウンド、タブレット、成形体、及び異方性ボンド磁石
KR102047345B1 (ko) 폴리이미드 필름 및 그 제조방법
WO2024142174A1 (ja) 磁性成形体の製造方法、及び異方性ボンド磁石の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160224

RJ01 Rejection of invention patent application after publication