CN105324833B - 半导体装置的制造方法以及半导体装置 - Google Patents

半导体装置的制造方法以及半导体装置 Download PDF

Info

Publication number
CN105324833B
CN105324833B CN201380077346.5A CN201380077346A CN105324833B CN 105324833 B CN105324833 B CN 105324833B CN 201380077346 A CN201380077346 A CN 201380077346A CN 105324833 B CN105324833 B CN 105324833B
Authority
CN
China
Prior art keywords
interarea
semiconductor substrate
laser
semiconductor device
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380077346.5A
Other languages
English (en)
Other versions
CN105324833A (zh
Inventor
福田祐介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Publication of CN105324833A publication Critical patent/CN105324833A/zh
Application granted granted Critical
Publication of CN105324833B publication Critical patent/CN105324833B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/0485Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/42Bombardment with radiation
    • H01L21/423Bombardment with radiation with high-energy radiation
    • H01L21/428Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/6606Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Recrystallisation Techniques (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种半导体装置的制造方法,具有:在由具有宽带隙的结晶构成的半导体基板的第一主面上形成半导体层的工序;在与半导体基板的第一主面相反的第二主面侧生成晶格缺陷的工序;在生成晶格缺陷的工序之后,将相比于作为上述结晶所吸收的能量最低的光的波长的吸收端波长更长的波长的激光照射到半导体基板的下表面的工序;以及在照射工序之后,在上述半导体基板的第二主面形成电极的工序。

Description

半导体装置的制造方法以及半导体装置
技术领域
本发明涉及一种半导体装置的制造方法以及一种半导体装置。
背景技术
以往,已知一种半导体装置的制造方法,能够对于宽带隙(Wide Bandgap)半导体基板取得欧姆(ohmic)接触。
例如,在专利文献一中,公开了:具有将n+型SiC层的露出面的状态破坏的工序;在被破坏了的n+型SiC层1的露出面上形成电极的工序,破坏工序是对露出面的研磨处理或者激光(Laser)照射。
然而,在上述以往的半导体装置的制造方法中,例如,在对具有4H的结晶结构的SiC基板照射激光的情况下,SiC基板的吸收端波长约为380nm,必须照射比380nm波长更短的激光。
这里,SiC基板的吸收端波长为SiC基板所吸收的能量最低的光的波长。在照射波长比380nm更短的激光的激光器中,有氦一镉激光器(Helium-cadmium laser)(He-Cd激光器:波长325nm)或者氮激光器(N2激光器:波长350nm)等。
而且,为了取得欧姆接触,必须在高输出功率(Power)下使用该激光器,波长比380nm更短且输出功率高的激光器价格很高。因此,在制造使用这样的激光器的半导体装置时,存在半导体装置的制造成本(Cost)很高这一问题。
先行技术文献
专利文献
专利文献一日本特开2006-41248号公报
发明内容
这里,鉴于上述问题,本发明的目的是提供一种能够降低制造成本,同时能够对于半导体基板取得欧姆接触的半导体装置的制造方法以及半导体装置。
本发明一形态涉及的实施方式的半导体装置的制造方法,具有:在由具有宽带隙的结晶所构成的半导体基板的第一主面上形成半导体层的工序,在与所述半导体基板的所述第一主面相反的第二主面侧生成晶格缺陷的工序,在所述生成晶格缺陷的工序之后,将波长比作为所述结晶所吸收的能量最低的光的波长的吸收端波长更长的激光照射到所述半导体基板的所述第二主面的工序,以及在所述照射工序之后,在所述半导体基板的所述第二主面形成电极的工序。
在本发明一形态的所述半导体装置的制造方法中,所述晶格缺陷为层积缺陷。
在本发明一形态的所述半导体装置的制造方法中,所述生成晶格缺陷的工序是对所述半导体基板的所述第二主面局部地外加力的工序。
在本发明一形态的所述半导体装置的制造方法中,所述生成晶格缺陷的工序是对所述半导体基板的所述第二主面进行磨削的工序。
在本发明一形态的所述半导体装置的制造方法中,所述生成晶格缺陷的工序是对所述半导体基板的所述第二主面进行溅射的工序。
在本发明一形态的所述半导体装置的制造方法中,所述照射工序是对平均每一平方厘米照射0.2J以上的能量的激光的照射工序。
在本发明一形态的所述半导体装置的制造方法中,所述半导体基板的第二主面中所述激光的形状为圆状或者线状。
在本发明一形态的所述半导体装置的制造方法中,所述激光是由氩离子激光照射出的激光。
在本发明一形态的所述半导体装置的制造方法中,所述激光是YAG激光,或者是由SHG绿色激光照射出的激光。
在本发明一形态的所述半导体装置的制造方法中,所述结晶为碳化硅或者氮化镓。
本发明一形态涉及的实施方式的半导体装置的制造装置,包括:由具有宽带隙的结晶构成的半导体基板,形成在所述半导体基板的第一主面上的半导体层,以及在与所述半导体基板的所述第一主面相反的第二主面上形成的电极,其中,所述半导体基板具有导电层,在所述半导体基板的所述第二主面侧形成晶格缺陷后,通过波长比作为所述结晶所吸收的能量最低的光的波长的吸收端波长更长的激光被照射到所述第二主面,从而在该半导体基板的所述第二主面侧形成所述导电层,所述电极在照射激光后被形成。
本发明的一形态涉及的一种半导体装置的制造方法,具有:在由具有宽带隙的结晶所构成的半导体基板的第一主面上形成半导体层的工序;在与半导体基板的第一主面相反的第二主面侧生成晶格缺陷的工序;在生成晶格缺陷的工序之后,将波长比作为上述结晶所吸收的能量最低的光的波长的吸收端波长更长的激光照射到上述半导体基板的第二主面的工序;以及在照射工序之后,在上述半导体基板的上述第二主面形成电极的工序。这样,通过生成晶格缺陷,波长比上述结晶的吸收端波长更长的激光在产生半导体基板的晶格缺陷的位置被吸收。另外,激光通过在产生半导体基板的晶格缺陷的位置被吸收,从而构成半导体基板的一部分的元素蒸发,在半导体基板的第二主面侧形成导电层。
在这样的导电层形成之后,通过在该半导体基板的第二主面形成电极,使得上述半导体基板与电极能够取得良好的欧姆接触。
另外,由于在形成导电层时所利用的波长比吸收端波长更长的激光价格低廉,因此能够降低半导体装置的制造成本。
因此,本发明的半导体装置的制造方法能够降低制造成本,同时能够对于宽带隙半导体基板取得欧姆接触。
另外,在与形成有半导体层的半导体基板的第一主面相反的第二主面的表面侧生成晶格缺陷后,照射波长比吸收端波长更长的激光。通过这样,由于照射的激光在晶格缺陷被吸收,且激光没有到达半导体层,因此能够防止由于激光使半导体层损坏的情况。
【简单附图说明】
[图1]图1是本发明的一样态的实施方式涉及的半导体装置10的模式截面图。
[图2]图2是显示半导体装置10的制造方法的一个示例的流程图(Flow Chart)。
[图3]图3是本发明的一样态的实施方式涉及的半导体装置10的第一制造工序的模式截面图。
[图4]图4是本发明的一样态的实施方式涉及的半导体装置10的第二制造工序的模式截面图。
[图5]图5是本发明的一样态的实施方式涉及的半导体装置10的第三制造工序的模式截面图。
[图6]图6是本发明的一样态的实施方式涉及的半导体装置10的第四制造工序的模式截面图。
发明实施方式
以下,参照附图对本发明涉及的实施方式进行说明。在本实施方式中,使用肖特基二极管(Schottky diode)作为含有宽带隙半导体基板的装置(Device)的一个示例进行说明。这里,宽带隙是指至少比硅的带隙1.12eV更大的带隙。在宽带隙半导体基板中,例如有由III-V族构成的基板,在III-V族半导体中,有SiC以及GaN等。
在本实施方式中,使用SiC基板作为宽带隙半导体基板的一个示例进行说明。
在图1的xz坐标系中,z轴的正侧为阳极(Anode)侧,z轴的负侧为阴极(Cathode)侧。如图1所示,本发明的一样态的实施方式涉及的半导体装置10包括:SiC基板1;被形成在该SiC基板1的阳极侧的表面(第一主面)上的n型SiC半导体层2。在该n型SiC半导体层2的阳极侧的表面上,形成有将与第一主面垂直的方向(z轴方向)作为中心轴的环(Ring)状p型SiC层5。
半导体装置10还包括:形成在被n型SiC半导体层2的p型SiC层5包围的阳极侧的表面上,以及形成在p型SiC层5的阳极侧的表面的一部分上的肖特基电极6。
半导体装置10还包括:被形成在肖特基电极6的阳极侧的引出电极7。
半导体装置10还包括:绝缘物8,在包含p型SiC层5的外周的表面的n型SiC半导体层2的表面上,将肖特基电极6以及引出电极7的侧面以及表面的外周覆盖,将与n型SiC半导体层2的阳极侧的面垂直的方向作为中心轴被形成为环状。
半导体装置10还包括:被形成在SiC基板1的阴极侧的表面(第二主面)的电极9。这里,上述第二主面是与第一主面相反的SiC基板1的面。
另外,所述SiC基板1是由具有宽带隙的SiC结晶构成的半导体基板。该SiC基板1是具有导电层的半导体基板,该导电层在第二主面侧形成晶格缺陷后,通过波长比作为上述结晶所吸收的能量最低的光的波长的吸收端波长更长的激光被照射到上述第二主面,从而被形成在上述第二主面侧。
该SiC基板1具有例如含有高浓度掺杂的n型的低阻抗的特性。
另外,n型SiC半导体层2具有例如含有低浓度掺杂的n型的高阻抗的特性。另外,n型SiC半导体层2具有例如用于确保预定耐压所必需的掺杂浓度与厚度。
图1的截面图中,p型SiC层5的截面被分为两部分显示,其实是一体形成。p型SiC层5在例如将铝(Al)或者硼(B)离子注入后,在1500℃以上被活性化从而形成。
另外,肖特基电极6例如是由钛(Ti),钼(Mo)或者镍(Nickel)Ni等任意一种或者它们的合金构成。
另外,引出电极7为任意的可以取得肖特基连接的材料。引出电极7例如是由铝(Al)或者金(Au)等任意一种或者它们的合金构成。
另外,在图1的截面图中,绝缘物8的截面被分为两部分显示,其实是一体形成。该绝缘物8例如是由氧化硅,氮化硅或者聚酰亚胺(Polyimide)构成。
该n型SiC半导体层2,p型SiC层5,肖特基电极6,引出电极7以及绝缘物8构成含有SiC基板1的装置(Device)(肖特基二极管)。
接着,将参照图2~图6对具有以上结构的本实施方式的半导体装置10的制造方法进行说明。
如图2的流程图所示,首先,在由具有宽带隙的结晶所构成的半导体基板上形成半导体层。在本实施方式中作为一个示例,在SiC基板1的第一主面上通过例如外延生长(Epitaxial)法形成n型SiC半导体层2(步骤(Step)S101)。
接着,在n型SiC半导体层2的表面侧形成p型SiC层5,肖特基电极6,引出电极7以及绝缘物8(步骤S102)。
接着,在SiC基板1的第二主面侧形成晶格缺陷。在该晶格缺陷中存在点缺陷,线缺陷以及面缺陷,在面缺陷中有层积缺陷。该晶格缺陷例如是由于向SiC基板1的上述第二主面局部地外加力所形成的。在本实施方式中作为一个示例,晶格缺陷是通过将SiC基板1的第二主面磨削从而形成的。磨削后的第二主面的表面粗糙度为5nm以上较为理想。通过这样,如图4的半导体装置10的模式截面图所示,在SiC基板1的第二主面形成有晶格缺陷。另外,晶格缺陷是点缺陷或者线缺陷亦可。
这里,在本实施方式中作为一个示例,SiC结晶的结晶构造为4H,吸收端波长约为380nm。在形成有该晶格缺陷的地方,通过吸收波长波段偏移(Shift)至长波长侧,波长比结晶构造4H的SiC结晶的吸收端波长(在这里作为一个示例约为380nm)更长的激光被吸收。另外,晶格缺陷通过将SiC基板1的上述第二主面溅射(Spatter)从而形成亦可。
接着,如图5所示,将波长比结晶构造4H的SiC结晶的吸收端波长更长的激光照射到SiC基板1的第二主面(步骤S104)。在所述的本实施方式中作为一个示例,由于SiC结晶的结晶构造为4H,因此将从波长比吸收端波长380nm更长的激光被射出的激光照射到SiC基板1的第二主面。在波长比吸收端波长380nm更长的激光中,例如,有绿色激光(Green Laser)(波长约为532nm),波长488.0nm的氩离子(Argon Ion)激光,波长514.5nm的氩离子激光,波长532nm的YAG激光,另外,SHG(Second Harmonic Generation(二阶非线性光学效应))绿色激光等。在激光照射时,平均每一平方厘米(Centimeter)有0.2J以上的能量的激光被照射到上述第二主面较为理想。
另外,在本实施方式中作为一个示例,激光的照射面形状为圆状,截面的长径为50μm,将激光的照射位置每位移50μm便将激光照射到第二主面。这里圆状不仅指正圆也包含椭圆。通过这样,激光被照射到整个SiC基板1的第二主面。
被照射到SiC基板1的第二主面的激光在生成晶格缺陷的位置被吸收,从而被包含在构成SiC基板1的SiC结晶中的硅(Silicon)蒸发,在SiC基板1的第二主面的表面侧形成石墨(Graphite)导电层。
另外,在本实施方式中作为一个示例,第二主面的激光的照射面形状为圆状。但不仅限于此,激光的照射面形状为线状亦可。另外,SiC结晶中的结晶构造没有被限定为4H,亦可为6H。
接着,在SiC基板1的第二主面形成电极9。通过这样,如图6的半导体装置10的模式截面图所示,在SiC基板1的第二主面形成形成电极9(步骤S105)。
如上所述,本发明的一形态涉及的一种半导体装置的制造方法,具有:在由具有宽带隙的结晶所构成的半导体基板的第一主面上形成半导体层的工序;在与半导体基板的第一主面相反的第二主面侧生成晶格缺陷的工序;在生成晶格缺陷的工序之后,将波长比作为上述结晶所吸收的能量最低的光的波长的吸收端波长更长的激光照射到上述半导体基板的第二主面的工序;以及在照射工序之后,在上述半导体基板的上述第二主面形成电极的工序。
这样,通过生成晶格缺陷,波长比上述结晶的吸收端波长更长的激光在产生半导体基板的晶格缺陷的位置被吸收。另外,激光通过在产生半导体基板的晶格缺陷的位置被吸收,构成半导体基板的一部分的元素蒸发,从而导电层被形成在半导体基板的第二主面侧。像本实施方式这样,在具有宽带隙的结晶为碳化硅(SiC)的情况下,上述波长比吸收端波长更长的激光通过在生成晶格缺陷处被吸收,从而硅蒸发,在半导体基板的第二主面的表面侧形成石墨导电层。
在这样的导电层被形成之后,通过在该半导体基板的第二主面上形成电极,从而上述半导体基板与电极能够取得良好的欧姆接触。另外,在形成导电层时所利用的波长比吸收端波长更长的激光(例如,波长488.0nm或者波长514.5nm的氩离子激光,波长532nm的YAG激光等),或者SHG绿色激光比波长短于380nm的激光(例如,氦一镉激光器或者氮激光)更廉价。因此,通过使用该激光制造半导体装置时,能够降低半导体装置的制造成本。因此,本发明的半导体装置的制造方法能够降低制造成本,同时能够对于宽带隙半导体基板取得欧姆接触。
另外,本发明的一形态涉及的一种半导体装置的制造方法,具有:在与半导体基板的第一主面相反的第二主面侧生成晶格缺陷后,将波长比吸收端波长更长的激光照射到第二主面的工序。通过这样,由于激光在晶格缺陷被吸收,激光没有到达半导体层,因此能够防止由于激光使半导体层损坏的情况。
另外,在本实施方式中作为一个示例对肖特基二极管进行了说明,但不仅限于此,亦可适用于各种二极管。另外除了二极管以外,亦可适用于场效应晶体管(Transistor)(例如,MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)金属-氧化物半导体场效应晶体管)或者IGBT((Insulated Gate Bipolar Transistor)绝缘栅双极型功率管)。
另外,实施方式仅为示例,发明的范围并不被其所限定。
符号说明
1 SiC基板
2 n型SiC半导体层
5 5-1,5-2p型SiC层
6 肖特基电极
7 引出电极
8 8-1,8-2绝缘物
9 电极
10 半导体装置

Claims (7)

1.一种半导体装置的制造方法,其特征在于,具有:
在碳化硅结晶所构成的半导体基板的第一主面上形成半导体层的工序;
在与所述半导体基板的所述第一主面相反的第二主面侧生成晶格缺陷的工序;
在所述生成晶格缺陷的工序之后,通过将波长比作为所述结晶所吸收的能量最低的光的波长的吸收端波长更长的激光照射到所述半导体基板的所述第二主面,使硅从所述半导体基板中蒸发,从而在所述第二主面侧形成石墨烯导电层的工序;以及
在所述照射工序之后,在所述半导体基板的所述第二主面形成电极的工序,
其中,所述晶格缺陷为层积缺陷,
所述生成晶格缺陷的工序是对所述半导体基板的所述第二主面进行局部地外加力的工序。
2.根据权利要求1所述的半导体装置的制造方法,其特征在于:
其中,所述生成晶格缺陷的工序是对所述半导体基板的所述第二主面进行磨削的工序。
3.根据权利要求1所述的半导体装置的制造方法,其特征在于:
其中,所述照射工序是对平均每一平方厘米照射0.2J以上的能量的激光的照射工序。
4.根据权利要求1所述的半导体装置的制造方法,其特征在于:
其中,所述半导体基板的第二主面中所述激光的形状为圆状或者线状。
5.根据权利要求1所述的半导体装置的制造方法,其特征在于:
其中,所述激光是由氩离子激光照射出的激光。
6.根据权利要求1所述的半导体装置的制造方法,其特征在于:
其中,所述激光是YAG激光,或者是由SHG绿色激光照射出的激光。
7.一种半导体装置,其特征在于,包括:
由碳化硅结晶构成的半导体基板;
形成在所述半导体基板的第一主面上的半导体层;以及
在与所述半导体基板的所述第一主面相反的第二主面上形成的电极;
其中,所述半导体基板具有石墨导电层,在所述半导体基板的所述第二主面侧形成晶格缺陷后,通过波长比作为所述结晶所吸收的能量最低的光的波长的吸收端波长更长的激光被照射到所述第二主面,使硅从所述半导体基板中蒸发,从而在该半导体基板的所述第二主面侧形成所述导电层,
所述电极在照射激光从而形成所述石墨导电层后被形成,
所述晶格缺陷为层积缺陷,
生成所述晶格缺陷的工序是对所述半导体基板的所述第二主面进行局部地外加力的工序。
CN201380077346.5A 2013-06-14 2013-06-14 半导体装置的制造方法以及半导体装置 Active CN105324833B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/066453 WO2014199510A1 (ja) 2013-06-14 2013-06-14 半導体装置の製造方法および半導体装置

Publications (2)

Publication Number Publication Date
CN105324833A CN105324833A (zh) 2016-02-10
CN105324833B true CN105324833B (zh) 2018-02-02

Family

ID=52021840

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380077346.5A Active CN105324833B (zh) 2013-06-14 2013-06-14 半导体装置的制造方法以及半导体装置

Country Status (6)

Country Link
US (1) US9245753B2 (zh)
EP (1) EP3010036B1 (zh)
JP (1) JP5802333B2 (zh)
CN (1) CN105324833B (zh)
MY (1) MY183542A (zh)
WO (1) WO2014199510A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3076431B1 (en) 2013-11-28 2020-07-08 Rohm Co., Ltd. Semiconductor device
EP3134914B1 (en) * 2014-04-23 2019-04-10 United Silicon Carbide Inc. Formation of ohmic contacts on wide band gap semiconductors
DE102018204376B4 (de) * 2018-03-22 2022-07-07 Infineon Technologies Ag Siliziumcarbidvorrichtungen und Verfahren zur Herstellung derselben
CN111954924A (zh) * 2018-03-30 2020-11-17 罗姆股份有限公司 半导体装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6815323B1 (en) * 2003-01-10 2004-11-09 The United States Of America As Represented By The Secretary Of The Air Force Ohmic contacts on n-type silicon carbide using carbon films
JP4506100B2 (ja) 2003-05-09 2010-07-21 三菱電機株式会社 炭化珪素ショットキーバリアダイオードの製造方法
US8617965B1 (en) * 2004-02-19 2013-12-31 Partial Assignment to University of Central Florida Apparatus and method of forming high crystalline quality layer
JP2006041248A (ja) * 2004-07-28 2006-02-09 Shindengen Electric Mfg Co Ltd 半導体装置および半導体装置の製造方法
US8617669B1 (en) * 2006-04-20 2013-12-31 Partial Assignment to University of Central Florida Laser formation of graphene
US7811914B1 (en) * 2006-04-20 2010-10-12 Quick Nathaniel R Apparatus and method for increasing thermal conductivity of a substrate
DE102006050360B4 (de) * 2006-10-25 2014-05-15 Infineon Technologies Austria Ag Verfahren zum Erzeugen eines elektrischen Kontakts auf SiC
JP5482107B2 (ja) * 2009-10-30 2014-04-23 株式会社デンソー 炭化珪素半導体装置の製造方法
JP2011096906A (ja) * 2009-10-30 2011-05-12 Oji Tokushushi Kk 太陽電池モジュール用ガラス繊維不織布及び太陽電池モジュール
JP5304713B2 (ja) * 2010-04-07 2013-10-02 新日鐵住金株式会社 炭化珪素単結晶基板、炭化珪素エピタキシャルウェハ、及び薄膜エピタキシャルウェハ
JP2012004185A (ja) 2010-06-14 2012-01-05 Denso Corp 炭化珪素半導体装置の製造方法
JP5708550B2 (ja) * 2012-04-03 2015-04-30 株式会社デンソー 炭化珪素半導体装置およびその製造方法

Also Published As

Publication number Publication date
WO2014199510A1 (ja) 2014-12-18
EP3010036A4 (en) 2017-03-01
US9245753B2 (en) 2016-01-26
US20150348783A1 (en) 2015-12-03
EP3010036A1 (en) 2016-04-20
EP3010036B1 (en) 2019-10-23
MY183542A (en) 2021-02-25
JP5802333B2 (ja) 2015-10-28
CN105324833A (zh) 2016-02-10
JPWO2014199510A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
US10991821B2 (en) Semiconductor device and method of manufacturing semiconductor device
US7728409B2 (en) Semiconductor device and method of manufacturing the same
JP6803232B2 (ja) 新規な積層体
JP6291981B2 (ja) 半導体装置の製造方法
US8679882B2 (en) Method of manufacturing semiconductor device, semiconductor device, and semiconductor apparatus
JP6880669B2 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
CN105324833B (zh) 半导体装置的制造方法以及半导体装置
US9786740B2 (en) Semiconductor device and method for producing the same
WO2013146444A1 (ja) 炭化珪素半導体素子およびその製造方法
JP2012151177A (ja) 化合物半導体基板およびその製造方法
US11062907B2 (en) Nitride semiconductor device
US8835935B2 (en) Trench MOS transistor having a trench doped region formed deeper than the trench gate
KR20130014849A (ko) 쇼트키 배리어 다이오드 및 이의 제조방법
CN101908591A (zh) 一种SiC衬底LED的欧姆接触电极制备方法
JP2016015392A (ja) 半導体装置およびそれを用いた電力変換システム
WO2019013170A1 (ja) 半導体基板、半導体素子、及び半導体基板の製造方法
CN105814693B (zh) 半导体装置以及半导体装置的制造方法
US10355142B2 (en) Semiconductor device
JP2010258327A (ja) 逆耐圧を有する縦型窒化ガリウム半導体装置
CN115394833A (zh) 一种基于异质外延衬底的完全垂直型GaN功率二极管的器件结构及其制备方法
US11557506B2 (en) Methods for processing a semiconductor substrate
JP2009054659A (ja) 窒化ガリウム半導体装置の製造方法
CN110808292B (zh) 一种基于金属檐结构的GaN基完全垂直肖特基变容管及其制备方法
CN110808212A (zh) 氧化镓场效应晶体管及其制备方法
JPWO2019224913A1 (ja) 半導体装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant