CN104914554B - 摄像透镜及摄像装置 - Google Patents

摄像透镜及摄像装置 Download PDF

Info

Publication number
CN104914554B
CN104914554B CN201510098275.8A CN201510098275A CN104914554B CN 104914554 B CN104914554 B CN 104914554B CN 201510098275 A CN201510098275 A CN 201510098275A CN 104914554 B CN104914554 B CN 104914554B
Authority
CN
China
Prior art keywords
lens
lens system
imaging lens
imaging
focal length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510098275.8A
Other languages
English (en)
Other versions
CN104914554A (zh
Inventor
山川博充
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin OFilm Opto Electronics Co Ltd
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of CN104914554A publication Critical patent/CN104914554A/zh
Application granted granted Critical
Publication of CN104914554B publication Critical patent/CN104914554B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/04Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having two components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Abstract

本发明提供一种摄像透镜及摄像装置。在摄像透镜中,小型且低成本地构成,且实现高的光学性能。该摄像透镜由前组(G1)、光阑及正的后组(G2)构成,该前组(G1)由具有凸面朝向物侧的弯月形状的负的第一透镜(L1)、负的第二透镜(L2)及正的第三透镜(L3)构成,后组具有正的透镜(L4)及负的透镜(L5)。在整个系统的焦点距离为f、半视场角为ω、从第一透镜的物侧的面到像面的光轴上的距离为L时,满足下述条件式(1),0.25<2*f*tan(ω/2)/L<1.00…(1)。

Description

摄像透镜及摄像装置
技术领域
本发明涉及摄像透镜及摄像装置,更详细而言,涉及适合使用于车载用相机、监控相机等的广角的摄像透镜及具备该摄像透镜的摄像装置,其中,该车载用相机、监控相机使用了CCD(Charge Coupled Device)或CMOS(Complementary Metal Oxide Semiconductor)等摄像元件。
背景技术
CCD或CMOS等摄像元件近些年来小型化及高像素化迅速进展。因此,在摄像设备主体及搭载于该摄像设备主体的摄像透镜中也要求小型化、轻量化。另一方面,车载用相机、监控相机等所使用的摄像透镜被要求具有高的耐气候性,且为了能够在宽范围内能够确保良好的视野而被要求以宽视场角具有高的光学性能。
作为上述领域的摄像透镜,例如存在下述专利文献1~9所记载的摄像透镜。在专利文献1~9中记载有包括非球面透镜在内的5片结构的摄像透镜。
【在先技术文献】
【专利文献】
【专利文献1】日本特开2013-003544号公报
【专利文献2】日本特开2012-088702号公报
【专利文献3】日本特开2009-216956号公报
【专利文献4】日本特开2009-063877号公报
【专利文献5】日本特开2009-031762号公报
【专利文献6】日本特开2007-233152号公报
【专利文献7】日本特开2006-284620号公报
【专利文献8】国际公开2010/001713号
【专利文献9】中国专利申请公开第102289052号公报
发明内容
【发明要解决的课题】
然而,近些年,在车载用相机、监控相机等领域中,例如希望以全视场角计超过180度等、对广角化的期望增强。另外,伴随近些年的摄像元件的小型化及高像素化,要求有一种具有高的析像性且直至成像区域的宽的范围都能够得到良好的像那样的具有高的光学性能的摄像透镜。然而,在以往的透镜系统中,难以廉价且小型地构成,并且难以同时实现满足近些年的期望的程度的广角化和高的光学性能。
本发明鉴于上述情况,其目的在于提供一种小型且低成本、并且能够实现广角化和高的光学性能的摄像透镜及具备该摄像透镜的摄像装置。
【用于解决课题的方案】
本发明的摄像透镜的特征在于,所述摄像透镜从物侧起依次包括前组、孔径光阑及整体为正的后组,
该前组包括具有凸面朝向物侧的弯月形状的负的第一透镜、像侧的面的光轴上的点处于比面的有效径两端上的点更靠物侧的位置的负的第二透镜、及正的第三透镜,
后组包括1片正的透镜及1片负的透镜,
所述摄像透镜满足下述条件式(1),
0.25<2*f*tan(ω/2)/L<1.00…(1)
其中,
f:整个系统的焦点距离
ω:半视场角
L:从第一透镜的物侧的面到像面的在光轴上的距离(后焦距量为空气换算长度)。
本发明的摄像透镜除了前组及后组以外,实质上还可以包括不具有放大率的透镜、光阑、玻璃罩等透镜以外的光学要素、透镜凸缘、透镜镜筒、摄像元件、防抖修正机构等机构部分等。
另外,在本发明中,凸面、凹面、平面、双凹、凹凸、双凸、平凸及平凹等这样的透镜的面形状、正的透镜及负的透镜这样的透镜的光焦度的符号对于包含非球面的透镜而言,只要没有特别说明,就在近轴区域进行考虑。另外,在本发明中,曲率半径的符号以面形状向物侧凸出的情况为正,以面形状向像侧凸出的情况为负。
需要说明的是,在本发明的摄像透镜中,优选第三透镜具有向物侧凸出的凸形状。
另外,在本发明的摄像透镜中,优选满足下述条件式(2)~(5)。需要说明的是,作为优选的形态,可以具有下述条件式(2)~(5)中的任一个的结构,或者也可以具有将任意的2个以上组合的结构。另外,还可以形成为满足下述条件式(1-1)~(5-1)的结构。
-2.0<f2/f<-0.5…(2)
1.0<f3/f<3.0…(3)
d4/L<0.07…(4)
-20.0<fN/fP<-0.9…(5)
0.27<2*f*tan(ω/2)/L<1.00…(1-1)
-1.9<f2/f<-0.7…(2-1)
1.0<f3/f<2.7…(3-1)
d4/L<0.06…(4-1)
-9.0<fN/fP<-1.0…(5-1)
其中,
f2:第二透镜的焦点距离
f3:第三透镜的焦点距离
f:整个系统的焦点距离
d4:第二透镜与第三透镜的在光轴上的距离
L:从第一透镜的物侧的面到像面的在光轴上的距离(后焦距量为空气换算长度)
fN:后组的负的透镜的焦点距离
fP:后组的正的透镜的焦点距离。
本发明的摄像装置的特征在于,具备上述记载的本发明的摄像透镜。
【发明效果】
根据本发明的摄像透镜,在最少5片的透镜系统中,适当设定各透镜的形状及放大率,且满足条件式(1),因此能够廉价且小型地构成,并且能够实现充分的广角化及高的光学性能。
根据本发明的摄像装置,由于具备本发明的摄像透镜,因此能够廉价且小型地构成,能够进行宽的视场角下的摄像,且能够得到高画质的影像。
附图说明
图1是表示本发明的实施例1的摄像透镜的透镜结构及光路的剖视图。
图2是表示本发明的实施例2的摄像透镜的透镜结构及光路的剖视图。
图3是表示本发明的实施例3的摄像透镜的透镜结构及光路的剖视图。
图4是表示本发明的实施例4的摄像透镜的透镜结构及光路的剖视图。
图5是表示本发明的实施例5的摄像透镜的透镜结构及光路的剖视图。
图6是表示本发明的实施例6的摄像透镜的透镜结构及光路的剖视图。
图7是表示本发明的实施例7的摄像透镜的透镜结构及光路的剖视图。
图8是表示本发明的实施例8的摄像透镜的透镜结构及光路的剖视图。
图9是本发明的实施例1的摄像透镜的各像差图。
图10是本发明的实施例2的摄像透镜的各像差图。
图11是本发明的实施例3的摄像透镜的各像差图。
图12是本发明的实施例4的摄像透镜的各像差图。
图13是本发明的实施例5的摄像透镜的各像差图。
图14是本发明的实施例6的摄像透镜的各像差图。
图15是本发明的实施例7的摄像透镜的各像差图。
图16是本发明的实施例8的摄像透镜的各像差图。
图17是用于说明本发明的实施方式的车载用的摄像装置的配置的图。
具体实施方式
以下,参照附图,对本发明的摄像透镜的实施方式进行详细说明。图1~图8是表示本发明的实施方式的摄像透镜的结构例的剖视图,分别对应于后述的实施例1~8的摄像透镜。图1~图8所示的例子的基本的结构同样,图示方法也同样,因此在此主要参照图1,对本发明的实施方式的摄像透镜进行说明。
本发明的实施方式的摄像透镜是沿着光轴Z从物侧起依次配置由第一透镜L1、第二透镜L2及第三透镜L3构成的前组G1和由第四透镜L4及第五透镜L5构成的后组G2的5片结构的透镜系统。在第三透镜L3与第四透镜L4之间配置有孔径光阑St。通过将孔径光阑St配置在第三透镜L3与第四透镜L4之间,从而能够实现径向的小型化。
需要说明的是,在图1中,将左侧作为物侧,将右侧作为像侧,图示的孔径光阑St未必表征大小或形状,而表示光轴上的位置。图1中的符号Ri(i=1、2、3、…)表示各透镜面的曲率半径,符号Di(i=1、2、3、…)表示面间隔。另外,在图1中还一并示出来自处于无限远的距离的位置的物点的轴上光束2、最大视场角下的轴外光束3。
在图1中,考虑将摄像透镜适用于摄像装置的情况,还图示出配置于摄像透镜的像面Sim的摄像元件5。另外,在将摄像透镜适用于摄像装置时,优选根据装配透镜的相机侧的结构来设置玻璃罩、低通滤光片或红外线截止滤光片等,在图1中,示出将假定了上述结构的平行平板状的光学构件PP配置在第五透镜L5与摄像元件5(像面Sim)之间的例子。
第一透镜L1是具有负的放大率且凸面朝向物侧的凹凸透镜。这样,通过使第一透镜L1为具有负的放大率且凸面朝向物侧的凹凸透镜,从而对视场角超过180度的广角化及歪曲像差的修正有利。最靠物侧配置的第一透镜L1假定暴露在风雨或清洗用的溶剂下,但由于第一透镜L1的物侧的面成为凸面,因此还具有在上述的状况下担心的杂质、灰尘、水滴等不易残留这样的优点。
另外,第二透镜L2及第三透镜L3以分别具有负及正的放大率的方式构成。另外,后组G2的第四透镜L4及第五透镜L5分别具有负及正的放大率,后组G2整体具有正的放大率。需要说明的是,第四透镜L4及第五透镜L5也可以分别具有正的放大率及负的放大率。
第二透镜L2以具有像侧的面的光轴上的点处于比像侧的面的有效径两端上的点更靠物侧的位置的形状的方式构成。“像侧的面的光轴上的点处于比像侧的面的有效径两端上的点更靠物侧的位置”是指虽然第二透镜L2的像侧的面在近轴区域既可以为向物侧凸出的凸形状,也可以为向物侧凹陷的凹形状,但光轴上的点处于比有效径两端上的点更靠物侧的位置。通过使第二透镜L2的像侧的面具有这样的形状,由此能够适当减小周边光线向第三透镜L3之后入射的角度,从而容易取得中心与周边的像差平衡。
使第三透镜L3具有正的放大率,由此歪曲像差及倍率色差的修正变得容易。
另外,通过在光阑St的后方配置正的放大率的后组G2,由此能够由第三透镜L3和后组G2分担正的光焦度,能够维持反远距的放大率配置且抑制球面像差的产生。另外,使后组G2的第四透镜L4及第五透镜L5分别由正的透镜及负的透镜构成,由此能够对轴上色差及倍率色差适当地进行修正。
另外,本实施方式的摄像透镜以满足下述条件式(1)的方式构成。
0.25<2*f*tan(ω/2)/L<1.00…(1)
其中,
f:整个系统的焦点距离
ω:半视场角
L:从第一透镜L1的物侧的面到像面的在光轴上的距离(后焦距量为空气换算长度)
通过满足条件式(1)的上限,能够防止构成本实施方式的摄像透镜的透镜部件的最薄部变得过薄的情况,且能够确保充分的精度及强度。另外,由于能够在相邻的透镜间的间隙中设置富余度,因此组装性变得良好,能够实现低成本化,且容易确保从透镜后端到像面的距离而适当地配置透镜。另外,能够充分增强构成本实施方式的摄像透镜的各透镜的放大率,因此能够对色差、像面弯曲及歪曲像差良好地进行修正。通过满足条件式(1)的下限,能够使透镜系统小型化,进而能够使搭载有本实施方式的摄像透镜的摄像装置小型化,能够将摄像装置收纳在有限的空间内,且能够实现低成本化。
本实施方式的摄像透镜如上述那样适当地设定第一透镜L1~第五透镜L5这各透镜的放大率及形状,且满足条件式(1),由此能够以少的透镜片数及短的全长来小型且低成本地构成透镜系统,且能够实现充分的广角化,进而能够对包括球面像差、像面弯曲及歪曲像差(失真)在内的各像差良好地进行修正。另外,根据本实施方式的摄像透镜,能够在成像区域的宽范围内实现高析像,因此还能够应对近些年的高像素化进展的摄像元件。
优选本实施方式的摄像透镜还具有以下所述的结构。需要说明的是,作为优选的形态,可以具有以下的任一个的结构,或者可以具有将任意的2个以上组合的结构。
在本实施方式的摄像透镜中,优选第二透镜L2、第三透镜L3、第四透镜L4及第五透镜L5全部是至少一方的面为非球面形状。通过使第二透镜L2、第三透镜L3、第四透镜L4及第五透镜L5中的至少一方的面为非球面形状,由此即便使光学系统的光轴方向的全长缩短,也能够得到高的析像性。另外,通过少的透镜片数,能够对球面像差、像面弯曲及失真等各像差良好地进行修正。为了进行更良好的像差修正,优选第二透镜L2、第三透镜L3、第四透镜L4及第五透镜L5的两面为非球面形状。
优选第二透镜L2为双凹形状。由此,不减小第二透镜L2的物侧的面及像侧的面的曲率半径的绝对值,就能够向第二透镜L2赋予大的负的光焦度,因此对后焦距的确保有利。
第二透镜L2也可以为凹面朝向像侧的负的弯月形状。由此,对透镜系统的全长的缩短有利。
优选使第三透镜L3的物侧的面为凸形状。由此,能够抑制像散的产生,且能够对轴上色差及倍率色差进行修正。
也可以使第三透镜L3为双凸形状。由此,对歪曲像差及倍率色差的修正有利。
也可以使第三透镜L3为凸面朝向物侧的正的弯月形状。由此,能够抑制像散的产生,且能够对轴上色差、倍率色差及歪曲像差进行修正。
另外,后组G2的第四透镜L4及第五透镜L5既可以为接合的结构,也可以为未接合的结构。在提高设计自由度这一点上,未接合的情况有利。另一方面,为了实现色差的良好的修正及光轴方向的小型化,优选形成为将第四透镜L4及第五透镜L5接合的结构。另外,通过将第四透镜L4及第五透镜L5形成为接合透镜,不需要保持上述2个透镜的间隔环,并且,能够防止第四透镜L4及第五透镜L5的相对的偏心成为主要原因的性能的劣化,因此组装性提高,能够抑制性能的不均,从而在成本方面有利。
优选第四透镜L4为曲率半径的绝对值小的面朝向像侧的双凹形状,且第五透镜L5为双凸形状。由此,第四透镜L4及第五透镜L5的接合面在近轴区域成为向物侧凸出的凸形状,因此对倍率色差的修正有利。需要说明的是,第四透镜L4也可以为凸面朝向物侧的负的弯月形状。由此,对球面像差的修正有利。
还可以是,第四透镜L4为凸面朝向像侧的正的弯月形状,第五透镜L5为凹面朝向像侧的负的弯月形状。由此,对透镜系统的全长的缩短有利。需要说明的是,第五透镜L5也可以为双凹形状。由此,可缩短透镜系统的全长,且对抑制像散的产生有利。
在将第四透镜L4及第五透镜L5接合时,优选其接合面为随着远离光轴而光焦度变弱的非球面形状。由此,能够减小接合面的近轴区域处的曲率半径的绝对值,因此能够良好地修正轴上色差。
优选本实施方式的摄像透镜满足下述条件式(2)~(5)。
-2.0<f2/f<-0.5…(2)
1.0<f3/f<3.0…(3)
d4/L<0.07…(4)
-20.0<fN/fP<-0.9…(5)
其中,
f2:第二透镜L2的焦点距离
f3:第三透镜L3的焦点距离
f:整个系统的焦点距离
d4:第二透镜L2与第三透镜L3的在光轴上的距离
L:从第一透镜L1的物侧的面到像面的在光轴上的距离(后焦距量为空气换算长度)
fN:后组G2的负的透镜的焦点距离
fP:后组G2的正的透镜的焦点距离
通过满足条件式(2)的上限,能够防止第二透镜的负的放大率变得过大的情况,从而容易对歪曲像差进行修正。另外,能够防止形状及位置精度引起的成像性能变化的灵敏度变得过高的情况,从而能够提高制造性。通过满足条件式(2)的下限,能够防止第二透镜L2的负的放大率变得过小的情况,容易实现视场角超过180°的超广角,且能够良好地修正像散。另外,不需要为了能够获得必要的负的放大率而增大第一透镜L1的负的放大率,能够将第一透镜L1形成为容易加工的形状,从而能够提高制造性。
通过满足条件式(3)的上限,由此防止第三透镜L3的正的放大率变得过小的情况,从而像面弯曲的修正变得容易。通过满足条件式(3)的下限,由此防止第三透镜L3的正的放大率变得过强的情况,从而能够形成为容易加工的形状,且能够防止形状及位置精度引起的成像性能变化的灵敏度变得过高的情况,能够提高制造性。
通过满足条件式(4)的上限,由此容易良好地保持像差,且容易将透镜系统的全长抑制得较小。
通过满足条件式(5)的上限,由此防止后组G2中的负的透镜的放大率变得过大的情况,从而能够形成为容易加工的形状,且能够防止形状及位置精度引起的成像性能变化的灵敏度变得过高的情况,从而能够提高制造性。另外,在负的透镜及正的透镜接合的情况下,能够缓和灵敏度的问题,并同时防止接合面成为在光轴方向上深的形状,且与负的透镜接合的正的透镜也能够形成为容易加工的形状,因此能够实现低成本化。通过满足条件式(5)的下限,能够防止后组G2中的负的透镜的放大率变得过小的情况,从而容易得到必要的色差的修正效果。
并且,优选满足下述条件式(1-1)~(5-1)。通过满足条件式(1-1)~(5-1),能够得到与满足条件式(1)~(5)所得到的效果同样的效果,或使效果进一步提高。
0.27<2*f*tan(ω/2)/L<1.00…(1-1)
-1.9<f2/f<-0.7…(2-1)
1.0<f3/f<2.7…(3-1)
d4/L<0.06…(4-1)
-9.0<fN/fP<-1.0…(5-1)
优选第一透镜L1的阿贝数vd1、第二透镜L2的阿贝数vd2、第三透镜L3的阿贝数vd3、后组G2的正透镜的阿贝数vdP及后组G2的负透镜的阿贝数vdN分别为vd1>40、vd2>50、vd3<40、vdP>50、vdN<40。由此,能够良好地修正轴上色差及倍率色差。
优选本实施方式的摄像透镜的全视场角比200度大。全视场角是最大视场角下的轴外光束3的主光线与光轴Z所成的角的2倍。通过形成为全视场角比200度大的广角的透镜系统,从而能够应对近些年的广角化的期望。
本实施方式的摄像透镜例如在车载用相机、监控用相机等的苛刻的环境中使用的情况下,期望最靠物侧配置的第一透镜L1使用抗风雨引起的表面劣化、直射日光引起的温度变化强且抗油脂·洗涤剂等化学药品强的材质、即期望使用耐水性、耐气候性、耐酸性、耐药品性等高的材质。例如,优选使用日本光学硝子工业会确定的粉末法耐水性为1的材质。另外,有时期望第一透镜L1使用坚固、难以破裂的材质。通过使材质为玻璃,能够满足上述期望。或者,作为第一透镜L1的材质,也可以使用透明的陶瓷。
需要说明的是,也可以在第一透镜L1的物侧的面上施加用于提高强度、耐损伤性、耐药品性的保护手段,在该情况下,可以使第一透镜L1的材质为塑料。这样的保护手段既可以为硬涂层,也可以为防水涂层。
作为第二透镜L2、第三透镜L3、第四透镜L4及第五透镜L5的材质,优选使用塑料,在该情况下,能够高精度地制作非球面形状,并且能够实现轻量化及低成本化。
在材质使用塑料的情况下,为了能够极力抑制吸水引起的性能变化,优选选择吸水性小且成为析像性降低的原因的双折射性低的材质。作为满足该条件的材质,优选第二透镜L2及第四透镜L4选择环烯系或环状烯系的塑料,且第三透镜L3及第五透镜L5选择聚碳酸酯系的塑料或聚酯系的塑料。
在第二透镜L2、第三透镜L3、第四透镜L4及第五透镜L5中的至少任一个透镜的材质使用塑料的情况下,作为其材质,可以使用在塑料中混合有比光的波长小的粒子的所谓纳米复合材料。
在本实施方式的摄像透镜中,为了减少重影光等,也可以在各透镜上施加反射防止膜。此时,在例如图1所示那样的摄像透镜中,在第一透镜L1的像侧的面、第二透镜L2的像侧的面、第三透镜L3的物侧的面中,为了使周边部的各面的切线与光轴所成的角小,而使周边部的反射防止膜的厚度比透镜中央部薄。因此,在上述3个面中的包括第一透镜L1的像侧的面在内的一个面以上的面上,施加使中央附近的反射率变得最小的波长为600nm以上且900nm以下的反射防止膜,由此在有效径整体能够平均地减少反射率,且能够减少重影光。另外,也可以使用从可见光到900nm左右为止抑制了反射率的多层膜涂层。另外,还可以使用通过使膜厚容易变得均匀的湿式工艺得到的反射防止膜。
需要说明的是,当使中央附近的反射率变得最小的波长比600nm短时,周边部的反射率变得最小的波长变得过短,长波长侧的反射率变高,因此容易产生带有红色的重影。另外,当中央附近的反射率变得最小的波长比900nm长时,中央部的反射率变得最小的波长变得过长,短波长侧的反射率变高,因此容易产生像的色调显著带有红色且带有蓝色的重影。这样,中央附近的反射率变得最小的波长在比600nm短或比900nm长的情况下,通过使用从可见光到900nm左右为止抑制了反射率的多层膜涂层,都能够防止产生像的色调带有红色或带有蓝色的重影的情况。另外,使用通过使膜厚容易变得均匀的湿式工艺得到的反射防止膜,也能够得到同样的效果。
另外,在本实施方式的摄像透镜中,在各透镜间的有效径外通过的光束可能成为杂散光而到达像面,成为重影,因此优选根据需要而设置对该杂散光进行遮挡的遮光手段。作为该遮光手段,例如可以在透镜的像侧的有效径外的部分施加不透明的涂料,或设置不透明的板材。或者,也可以在成为杂散光的光束的光路上设置不透明的板材来作为遮光手段。
需要说明的是,根据摄像透镜的用途,还可以在透镜系统与摄像元件5之间插入将紫外光至蓝色光截止那样的滤光片、或者将红外光截止那样的IR(InfraRed)截止滤光片。或者,也可以在透镜面上施加与上述滤光片具有同样的特性的涂层。
在图1中,示出了在透镜系统与摄像元件5之间配置了假定有各种滤光片的光学构件PP的例子,但也可以取代于此,在各透镜之间配置上述的各种滤光片。或者,也可以在摄像透镜具有的任一个透镜的透镜面上施加与各种滤光片具有同样的作用的涂层。
【实施例】
接着,对本发明的摄像透镜的数值实施例进行说明。
[实施例1]
在图1中示出实施例1的摄像透镜的透镜组的配置。如图1所示,实施例1的摄像透镜从物侧起依次由前组G1、孔径光阑St及后组G2构成,该前组G1由具有凸面朝向物侧的弯月形状的负的第一透镜L1、双凹形状的第二透镜L2及具有凸面朝向物侧的弯月形状的正的第三透镜L3构成,该后组G2由曲率半径的绝对值小的凹面朝向像侧的双凹形状的第四透镜L4及双凸形状的第五透镜L5构成。第四透镜L4与第五透镜L5接合,它们的合成焦点距离为正。另外,第二透镜L2及第三透镜L3的两面、第四透镜L4的物侧的面及第五透镜L5的像侧的面为非球面。通过使第二透镜L2的两面为非球面,由此对歪曲像差及像散的修正有利。通过使第三透镜L3的两面及第五透镜L5的像侧的面为非球面,由此对球面像差的修正有利。
表1、表2及表3示出与实施例1的摄像透镜的结构对应的具体的透镜数据。在表1中示出摄像透镜的基本的透镜数据,在表2中示出各种因素的数据,在表3中示出非球面系数的数据。
在表1的透镜数据中,Si一栏表示将最靠物侧的构成要素的面作为第一个而随着朝向像侧依次增加的第i个(i=1、2、3、…)面编号,Ri一栏表示第i个面的曲率半径,Di一栏表示第i个面与第i+1个面的在光轴Z上的面间隔。需要说明的是,在此,也包含并示出光学构件PP。另外,曲率半径的符号以向物侧凸出的情况为正,以向像侧凸出的情况为负。在各实施例中,透镜数据的表的Ri、Di(i=1、2、3、…)与透镜剖视图的符号Ri、Di对应。另外,在表1的透镜数据中,Ndj一栏表示将最靠物侧的透镜作为第一个而随着朝向像侧依次增加的第j个(j=1、2、3、…)透镜的相对于d线(波长为587.6nm)的折射率,vdj一栏表示第j个光学要素的相对于d线(波长为587.6nm)的阿贝数。需要说明的是,在透镜数据中还包含且示出孔径光阑St,在相当于孔径光阑St的面的曲率半径一栏中记载为∞。
另外,在表1的透镜数据中,在面编号的左侧标注的标记“*”表示该透镜面为非球面形状的情况。在表1的基本透镜数据中示出近轴的曲率半径的数值来作为上述的非球面的曲率半径。
在表2中示出d线的近轴焦点距离f′(mm)、后焦距Bf′、F值(FNo.)及视场角(2ω)的值来作为实施例1的摄像透镜中的各种因素的数据。
在表3中示出实施例1的摄像透镜中的非球面系数的数据。在此,示出非球面的面编号和与该非球面相关的非球面系数。在此,非球面系数的数值的“E-n”(n:整数)是指“×10-n”。需要说明的是,非球面系数是下述非球面式中的各系数KA、Am(m=3、4、5、…20)的值。
Zd=C·h2/{1+(1-KA·C2·h2)1/2}+∑Am·hm
其中,
Zd:非球面深度(从高度h的非球面上的点向非球面顶点相接的垂直于光轴的平面引出的垂线的长度)
h:高度(从光轴到透镜面的距离)
C:近轴曲率半径的倒数
KA、Am:非球面系数
基于上述非球面式,并对于非球面系数Am而言,有效使用A3~A20的次数来表示实施例1的摄像透镜的非球面。
以上叙述的表1~表3的记载的方法在后述的表4~表24中也同样。
在以下记载的表中,全部如上述那样使用mm作为长度的单位,且使用度(°)作为角度的单位,但光学系统也可以进行比例放大或比例缩小而使用,因此也可以使用其他的适当的单位。
【表1】
实施例1·透镜数据
Si Ri Di Ndj vdj
1 8.84828 0.83197 1.77250 49.60
2 2.60000 1.86717
*3 -1.23984 0.59999 1.53391 55.89
*4 1.42952 0.23039
*5 0.90010 1.10579 1.61399 25.53
*6 67.86493 0.18104
7(光阑) 0.24778
*8 -58.12845 0.40001 1.61399 25.53
9 4.00000 1.27210 1.53391 55.89
*10 -0.94922 1.43723
11 0.80000 1.51680 64.20
12 0.02849
【表2】
实施例1·各种因素(d线)
f′ 0.931
Bf′ 1.993
FNo. 2.42
2ω[°] 201.6
【表3】
[实施例2]
图2是表示本发明的实施例2的摄像透镜的结构的图。实施例2的摄像透镜形成为与实施例1的摄像透镜大致同样的结构,但在第四透镜L4为具有凹面朝向像侧的弯月形状的负的透镜且第四透镜L4的像侧的面及第五透镜L5的物侧的面为非球面这一点上与实施例1不同。
在表4中示出实施例2的摄像透镜的基本透镜数据,在表5中示出实施例2的摄像透镜的各种因素的数据,在表6中示出实施例2的摄像透镜的非球面系数的数据。
【表4】
实施例2·透镜数据
Si Ri Di Ndj vdj
1 8.45367 0.82253 1.77250 49.60
2 2.60000 1.36450
*3 -28.48387 0.74546 1.53391 55.89
*4 0.80053 0.50001
*5 1.11787 1.12792 1.61399 25.53
*6 11.03378 0.14697
7(光阑) 0.06055
*8 2.04821 0.29999 1.61399 25.53
*9 0.75000 1.79999 1.53391 55.89
*10 -1.79076 1.77071
11 0.80000 1.51680 64.20
12 0.04857
【表5】
实施例2·各种因素(d线)
f′ 1.432
Bf′ 2.347
FNo. 2.39
2ω[°] 215.0
【表6】
[实施例3]
图3是表示本发明的实施例3的摄像透镜的结构的图。实施例3的摄像透镜形成为与实施例2的摄像透镜大致同样的结构。在表7中示出实施例3的摄像透镜的基本透镜数据,在表8中示出实施例3的摄像透镜的各种因素的数据,在表9中示出实施例3的摄像透镜的非球面系数的数据。
【表7】
实施例3·透镜数据
Si Ri Di Ndj vdj
1 8.62697 0.79999 1.77250 49.60
2 2.60000 1.34130
*3 -8.77389 0.59999 1.53391 55.89
*4 0.85236 0.50001
*5 1.52619 1.34321 1.61399 25.53
*6 10989.01099 0.10244
7(光阑) 0.14946
*8 2.28988 0.40001 1.61399 25.53
*9 0.75000 1.79999 1.53391 55.89
*10 -1.39575 2.00001
11 0.80000 1.51680 64.20
12 0.01160
【表8】
实施例3·各种因素(d线)
f′ 1.175
Bf′ 2.539
FNo. 2.43
2ω[°] 211.6
【表9】
[实施例4]
图4是表示本发明的实施例4的摄像透镜的结构的图。实施例4的摄像透镜形成为与实施例2的摄像透镜大致同样的结构,但在第三透镜L3为双凸形状这一点上与实施例2不同。
在表10中示出实施例4的摄像透镜的基本透镜数据,在表11中示出实施例4的摄像透镜的各种因素的数据,在表12中示出实施例4的摄像透镜的非球面系数的数据。
【表10】
实施例4·透镜数据
Si Ri Di Ndj vdj
1 9.50000 0.79999 1.77250 49.60
2 2.50000 1.20513
*3 -3.22282 0.59999 1.53391 55.89
*4 1.39303 0.45033
*5 2.73559 1.00299 1.61399 25.53
*6 -2.33538 0.35001
7(光阑) 0.11961
*8 3.87391 0.30188 1.61399 25.53
*9 0.75000 1.79999 1.53391 55.89
*10 -1.57114 1.87894
11 0.80000 1.51680 64.20
12 0.01127
【表11】
实施例4·各种因素(d线)
f′ 1.266
Bf′ 2.418
FNo. 2.41
2ω[°] 203.6
【表12】
[实施例5]
图5是表示本发明的实施例5的摄像透镜的结构的图。实施例5的摄像透镜形成为与实施例1的摄像透镜大致同样的结构,但在第四透镜L4为具有凸面朝向像侧的弯月形状的正的透镜、第五透镜L5为具有凹面朝向物侧的弯月形状的负的透镜、第四透镜L4的两面为非球面、第五透镜L5的两面为球面且第四透镜L4与第五透镜L5未接合这一点上与实施例1不同。
在表13中示出实施例5的摄像透镜的基本透镜数据,在表14中示出实施例5的摄像透镜的各种因素的数据,在表15中示出实施例5的摄像透镜的非球面系数的数据。
【表13】
实施例5·透镜数据
Si Ri Di Ndj vdj
1 10.42525 0.79999 1.77250 49.60
2 2.60000 1.61201
*3 -1.85939 0.59999 1.53391 55.89
*4 1.35415 0.50001
*5 1.09982 1.43438 1.61399 25.53
*6 10854.61951 0.05602
7(光阑) 0.21808
*8 -11108.38560 1.45105 1.53391 55.89
*9 -0.95256 0.15000
10 -2.00000 0.30000 1.61399 25.53
11 -3.00000 1.35861
12 0.80000 1.51680 64.20
13 0.01444
【表14】
实施例5·各种因素(d线)
f′ 1.025
Bf′ 1.900
FNo. 2.41
2ω[°] 203.2
【表15】
[实施例6]
图6是表示本发明的实施例6的摄像透镜的结构的图。实施例6的摄像透镜从物侧依次由具有凸面朝向物侧的弯月形状的负的第一透镜L1、具有凹面朝向像侧的弯月形状的负的第二透镜L2、具有凸面朝向物侧的弯月形状的正的第三透镜L3、孔径光阑St、具有凸面朝向像侧的弯月形状的正的第四透镜L4、具有凹面朝向像侧的弯月形状的负的第五透镜L5构成。在实施例6的摄像透镜中,第一透镜L1至第四透镜L4的全部的面都使其曲率半径的中心朝向孔径光阑St侧,由此,对像散的修正有利。在实施例6的摄像透镜中,第二透镜L2至第五透镜L5的全部的面为非球面。尤其是第二透镜L2的物侧的面及第五透镜L5的两面在其有效径内具有拐点,由此,能够主要对周边视场角的各像差进行有利地调整。
在表16中示出实施例6的摄像透镜的基本透镜数据,在表17中示出实施例6的摄像透镜的各种因素的数据,在表18中示出实施例6的摄像透镜的非球面系数的数据。
【表16】
实施例6·透镜数据
Si Ri Di Ndj vdj
1 9.87884 1.00001 1.77250 49.60
2 2.60000 2.23677
*3 315.43226 0.59999 1.53391 55.89
*4 0.95921 0.37230
*5 1.04714 1.51365 1.61399 25.53
*6 18.60974 0.05444
7(光阑) 0.21089
*8 -4.72552 1.22263 1.53391 55.89
*9 -0.82256 0.15000
*10 1.48972 0.30000 1.61399 25.53
*11 1.10909 0.89999
12 0.80000 1.51680 64.20
13 0.02167
【表17】
实施例6·各种因素(d线)
f′ 0.985
Bf′ 1.449
FNo. 2.38
2ω[°] 203.6
【表18】
[实施例7]
图7是表示本发明的实施例7的摄像透镜的结构的图。实施例7的摄像透镜形成为与实施例1的摄像透镜大致同样的结构,但在第四透镜L4为具有凸面朝向像侧的弯月形状的正的透镜、第五透镜L5具有双凹形状、第四透镜L4及第五透镜的两面为非球面且第四透镜L4与第五透镜L5未接合这一点上与实施例1不同。在实施例7的摄像透镜中,第二透镜L2至第五透镜L5的全部的面为非球面。尤其是第二透镜L2的物侧的面及第五透镜L5的两面在其有效径内具有拐点,由此,能够主要对周边视场角的各像差进行有利地调整。
在表19中示出实施例7的摄像透镜的基本透镜数据,在表20中示出实施例7的摄像透镜的各种因素的数据,在表21中示出实施例7的摄像透镜的非球面系数的数据。
【表19】
实施例7·透镜数据
【表20】
实施例7·各种因素(d线)
f′ 0.915
Bf′ 1.650
FNo. 2.42
2ω[°] 203.2
【表21】
[实施例8]
图8是表示本发明的实施例8的摄像透镜的结构的图。实施例8的摄像透镜形成为与实施例7的摄像透镜大致同样的结构。在表22中示出实施例8的摄像透镜的基本透镜数据,在表23中示出实施例8的摄像透镜的各种因素的数据,在表24中示出实施例8的摄像透镜的非球面系数的数据。
【表22】
实施例8·透镜数据
Si Ri Di Ndj vdj
1 9.30273 1.00001 1.77250 49.60
2 3.51374 2.06202
*3 -5.92768 0.59999 1.53391 55.89
*4 0.77504 0.39880
*5 0.87645 1.21171 1.61399 25.53
*6 4.48479 0.11799
7(光阑) 0.23404
*8 -23.43620 1.39684 1.53391 55.89
*9 -0.70725 0.10000
*10 -6.18544 0.30000 1.61399 25.53
*11 111170.922 0.89999
12 0.80000 1.51680 64.20
13 0.02354
【表23】
实施例8·各种因素(d线)
f′ 0.927
Bf′ 1.451
FNo. 2.39
2ω[°] 210.2
【表24】
另外,在表25中示出实施例1~8的条件式(1)~(5)的对应值。由表25可知,对于条件式(1)~(5)而言,各实施例的值成为该数值范围内。
【表25】
[像差性能]
图9从左侧依次示出实施例1的摄像透镜中的球面像差、像散、歪曲像差及倍率色差。歪曲像差的图使用整个系统的焦点距离f、视场角φ(作为变量处理,0≤φ≤ω),并将理想像高作为而示出从该理想像高的偏离量。在各像差图中示出以d线(波长为587.6nm)为基准波长的像差,但在球面像差图中还示出关于g线(波长为436nm)、F线(波长为481.6nm)及C线(波长为656.27nm)的像差。另外,在倍率色差图中示出关于g线、F线及C线的像差。球面像差图的FNo.是指F值,其他的像差图的ω是指半视场角。
另外,同样地在图10~图16中示出上述实施例2~8的摄像透镜各自的球面像差、像散、歪曲像差及倍率色差的像差图。在图10~图16中,也从左侧依次示出球面像差、像散、歪曲像差及倍率色差。
需要说明的是,本发明没有限定为上述实施方式及各实施例,能够进行各种变形实施。例如,各透镜成分的曲率半径、面间隔及折射率的值等没有限定为上述各数值实施例所示的值,能够采取其他的值。
根据以上的数据可知,实施例1~8的摄像透镜以5片这样少的透镜结构实现了小型化及低成本化,并且实现了201.6~215.0度这样的超过200度的非常宽的全视场角以及各像差被良好地修正的高析像的良好的光学性能。上述的摄像透镜能够适合使用于监控相机、用于拍摄机动车的前方、侧方、后方等的影像的车载用相机等。
在图17中作为使用例,示出在机动车100上搭载有具备本实施方式的摄像透镜的摄像装置的情况。在图17中,机动车100具备;用于拍摄其副驾驶席侧的侧面的死角范围的车外相机101;用于拍摄机动车100的后侧的死角范围的车外相机102;以及安装于室内后视镜的背面,且用于拍摄与驾驶员相同的视野范围的车内相机103。车外相机101、车外相机102及车内相机103为本发明的实施方式的摄像装置,具备本发明的实施例的摄像透镜和将通过该摄像透镜形成的光学像转换为电信号的摄像元件。
本发明的实施例的摄像透镜具有上述的优点,因此车外相机101、102及车内相机103能够小型且廉价地构成,且具有宽的视场角而得到析像度高的良好的影像。
以上,举出实施方式及实施例而说明了本发明,但本发明没有限定为上述实施方式及实施例,能够进行各种变形。例如,各透镜成分的曲率半径、面间隔、折射率、阿贝数、非球面系数的值没有限定为上述各数值实施例所示的值,能够采取其他的值。另外,透镜的材质也没有限定为上述各数值实施例中使用的材质,也可以使用其他的材质。
另外,在摄像装置的实施方式中,图示并说明了将本发明适用于车载用相机的例子,但本发明没有限定于该用途,例如还能够适用于便携式终端用相机或监控相机等。

Claims (10)

1.一种摄像透镜,其特征在于,
所述摄像透镜从物侧依次包括前组、孔径光阑及整体为正的后组,
该前组包括具有凸面朝向物侧的弯月形状的负的第一透镜、像侧的面的光轴上的点处于比该面的有效径两端上的点更靠物侧的位置的负的第二透镜、及正的第三透镜,
所述后组包括1片正的透镜及1片负的透镜,
所述摄像透镜满足下述条件式(1-1)以及(4),
0.27<2*f*tan(ω/2)/L<1.00…(1-1)
d4/L<0.07…(4)
其中,
f:整个系统的焦点距离
ω:半视场角
L:从所述第一透镜的物侧的面到像面的在光轴上的距离,后焦距量为空气换算长度
d4:所述第二透镜与所述第三透镜的在光轴上的距离。
2.根据权利要求1所述的摄像透镜,其特征在于,
所述摄像透镜满足下述条件式(2),
-2.0<f2/f<-0.5…(2)
其中,
f2:所述第二透镜的焦点距离。
3.根据权利要求1或2所述的摄像透镜,其特征在于,
所述摄像透镜满足下述条件式(3),
1.0<f3/f<3.0…(3)
其中,
f3:所述第三透镜的焦点距离。
4.根据权利要求1或2所述的摄像透镜,其特征在于,
所述摄像透镜满足下述条件式(5),
-20.0<fN/fP<-0.9…(5)
其中,
fN:所述后组的所述负的透镜的焦点距离
fP:所述后组的所述正的透镜的焦点距离。
5.根据权利要求1或2所述的摄像透镜,其特征在于,
所述摄像透镜满足下述条件式(2-1),
-1.9<f2/f<-0.7…(2-1)
其中,
f2:所述第二透镜的焦点距离。
6.根据权利要求1或2所述的摄像透镜,其特征在于,
所述摄像透镜满足下述条件式(3-1),
1.0<f3/f<2.7…(3-1)
其中,
f3:所述第三透镜的焦点距离。
7.根据权利要求1或2所述的摄像透镜,其特征在于,
所述摄像透镜满足下述条件式(4-1),
d4/L<0.06…(4-1)。
8.根据权利要求1或2所述的摄像透镜,其特征在于,
所述摄像透镜满足下述条件式(5-1),
-9.0<fN/fP<-1.0…(5-1)
其中,
fN:所述后组的所述负的透镜的焦点距离
fP:所述后组的所述正的透镜的焦点距离。
9.根据权利要求1或2所述的摄像透镜,其特征在于,
所述第三透镜具有向物侧凸出的凸形状。
10.一种摄像装置,其特征在于,
所述摄像装置搭载有权利要求1至9中任一项所述的摄像透镜。
CN201510098275.8A 2014-03-12 2015-03-05 摄像透镜及摄像装置 Expired - Fee Related CN104914554B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014048376A JP6145887B2 (ja) 2014-03-12 2014-03-12 撮像レンズおよび撮像装置
JP2014-048376 2014-03-12

Publications (2)

Publication Number Publication Date
CN104914554A CN104914554A (zh) 2015-09-16
CN104914554B true CN104914554B (zh) 2018-10-16

Family

ID=54010318

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510098275.8A Expired - Fee Related CN104914554B (zh) 2014-03-12 2015-03-05 摄像透镜及摄像装置

Country Status (4)

Country Link
US (2) US9519121B2 (zh)
JP (1) JP6145887B2 (zh)
CN (1) CN104914554B (zh)
DE (1) DE102015103150A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102458661B1 (ko) * 2015-03-18 2022-10-25 삼성전자주식회사 초광각 렌즈 및 이를 포함한 촬영 장치
JP2017068164A (ja) * 2015-10-01 2017-04-06 オリンパス株式会社 広角光学系及びそれを備えた撮像装置
CN105572847B (zh) * 2016-03-02 2018-08-17 浙江舜宇光学有限公司 超广角摄像镜头
WO2017154229A1 (ja) * 2016-03-09 2017-09-14 淳 市原 非球面接合レンズ
JP6824618B2 (ja) * 2016-03-31 2021-02-03 日本電産サンキョー株式会社 広角レンズ
CN115268030A (zh) * 2017-11-10 2022-11-01 麦克赛尔株式会社 摄像透镜系统以及摄像装置
JP7029974B2 (ja) * 2018-02-19 2022-03-04 日本電産サンキョー株式会社 広角レンズ
CN110412717B (zh) * 2018-04-28 2021-11-12 宁波舜宇车载光学技术有限公司 光学镜头
CN109975960A (zh) * 2019-04-25 2019-07-05 协益电子(苏州)有限公司 一种环视广角无热化镜头及汽车全景环视系统
WO2020262553A1 (ja) * 2019-06-26 2020-12-30 京セラ株式会社 撮像レンズ及び撮像装置
TWI736246B (zh) * 2020-05-04 2021-08-11 大立光電股份有限公司 成像用光學鏡頭組、取像裝置及電子裝置
CN112255773B (zh) * 2020-10-16 2022-08-23 福建福光股份有限公司 一种制冷型大视场中波红外光学系统
CN117930468A (zh) * 2021-04-27 2024-04-26 玉晶光电(厦门)有限公司 光学成像镜头
CN113296237B (zh) * 2021-05-14 2023-09-05 江西晶超光学有限公司 光学系统、取像模组及电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102298195A (zh) * 2010-06-24 2011-12-28 株式会社理光 成像镜头、和利用该成像镜头的成像设备和信息装置
TW201213844A (en) * 2010-09-20 2012-04-01 Largan Precision Co Ltd Wide-angle imaging lens assembly
CN104423022A (zh) * 2013-08-28 2015-03-18 扬明光学股份有限公司 定焦镜头

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4625711B2 (ja) 2005-03-31 2011-02-02 日本電産ニッシン株式会社 広角レンズ
JP4866630B2 (ja) 2006-03-02 2012-02-01 アルプス電気株式会社 光学装置
US7684127B2 (en) 2007-07-05 2010-03-23 Fujinon Corporation Imaging lens and imaging device
JP5065159B2 (ja) 2007-07-05 2012-10-31 富士フイルム株式会社 撮像レンズおよび撮像装置
JP5064154B2 (ja) 2007-09-07 2012-10-31 日本電産ニッシン株式会社 超広角レンズ
JP5102077B2 (ja) 2008-03-11 2012-12-19 富士フイルム株式会社 撮像レンズおよびこの撮像レンズを用いた撮像装置
US8654457B2 (en) 2008-06-30 2014-02-18 Konica Minolta Opto, Inc. Wide-angle optical system, and imaging device
JP2010243711A (ja) * 2009-04-03 2010-10-28 Ricoh Co Ltd 広角レンズ及び撮像装置
CN102455486B (zh) 2010-10-20 2014-04-30 鸿富锦精密工业(深圳)有限公司 超广角镜头
JP5654954B2 (ja) 2011-06-22 2015-01-14 富士フイルム株式会社 撮像レンズおよび撮像装置
CN102289052B (zh) 2011-08-22 2013-12-04 宁波舜宇车载光学技术有限公司 一种超广角镜头
KR101290516B1 (ko) * 2011-09-14 2013-07-26 삼성테크윈 주식회사 고정 초점 렌즈 시스템 및 이를 채용한 감시 카메라
JP6128673B2 (ja) * 2012-10-29 2017-05-17 株式会社オプトロジック 撮像レンズ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102298195A (zh) * 2010-06-24 2011-12-28 株式会社理光 成像镜头、和利用该成像镜头的成像设备和信息装置
TW201213844A (en) * 2010-09-20 2012-04-01 Largan Precision Co Ltd Wide-angle imaging lens assembly
CN104423022A (zh) * 2013-08-28 2015-03-18 扬明光学股份有限公司 定焦镜头

Also Published As

Publication number Publication date
DE102015103150A1 (de) 2015-09-17
JP6145887B2 (ja) 2017-06-14
US20150260962A1 (en) 2015-09-17
CN104914554A (zh) 2015-09-16
US9519121B2 (en) 2016-12-13
JP2015172654A (ja) 2015-10-01
US20150260963A1 (en) 2015-09-17

Similar Documents

Publication Publication Date Title
CN104914554B (zh) 摄像透镜及摄像装置
CN104914553B (zh) 摄像透镜及摄像装置
CN201716459U (zh) 摄像透镜及摄像装置
JP5462466B2 (ja) 撮像レンズおよび撮像装置
CN103984079B (zh) 广视角摄像镜片组
CN103217780B (zh) 摄像镜头组
CN201796177U (zh) 摄像透镜及摄像装置
JP6353756B2 (ja) 撮像レンズ系及び撮像装置
CN201837767U (zh) 摄像透镜及摄像装置
CN107229102B (zh) 光学成像系统
CN107272145B (zh) 光学成像系统
CN103529539A (zh) 光学影像拾取系统组
JP2009092798A (ja) 撮像レンズおよび撮像装置
KR101355782B1 (ko) 어안 렌즈
CN103257430A (zh) 光学镜头
CN104914552B (zh) 摄像透镜及摄像装置
JP6571840B2 (ja) 撮像レンズ系及び撮像装置
CN106154492B (zh) 光学成像系统
JP2015011050A (ja) 撮像レンズおよび撮像装置
KR101070991B1 (ko) 어안 렌즈
CN107272146B (zh) 光学成像系统
JP2010091697A (ja) 撮像レンズおよび撮像装置
CN106556917B (zh) 光学成像系统
CN108351494A (zh) 成像镜头
JP2006126494A (ja) 撮像レンズ

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20190121

Address after: East of Liuxue Road and North of Longtan Canal in Nanchang Economic and Technological Development Zone, Jiangxi Province

Patentee after: NANCHANG OFILM OPTICAL-ELECTRONIC TECH Co.,Ltd.

Address before: Tokyo, Japan

Patentee before: FUJIFILM Corp.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200427

Address after: 300385 No.2, Hongyuan Road, Xiqing Economic Development Zone, Xiqing District, Tianjin

Patentee after: Tianjin Oufei photoelectric Co.,Ltd.

Address before: 330013 east of lilac road in Nanchang economic and Technological Development Zone, Jiangxi Province, north of Longtan water canal

Patentee before: NANCHANG OFILM OPTICAL-ELECTRONIC TECH Co.,Ltd.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181016