CN104813472B - 具有增强稳定性的垂直自旋转移扭矩存储器(sttm)器件以及其形成方法 - Google Patents

具有增强稳定性的垂直自旋转移扭矩存储器(sttm)器件以及其形成方法 Download PDF

Info

Publication number
CN104813472B
CN104813472B CN201380060955.XA CN201380060955A CN104813472B CN 104813472 B CN104813472 B CN 104813472B CN 201380060955 A CN201380060955 A CN 201380060955A CN 104813472 B CN104813472 B CN 104813472B
Authority
CN
China
Prior art keywords
layer
conductive oxide
material layer
oxide material
free magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380060955.XA
Other languages
English (en)
Other versions
CN104813472A (zh
Inventor
B·S·多伊尔
C·C·郭
K·奥乌兹
U·沙阿
E·V·卡尔波夫
R·G·莫亚拉德
M·L·多齐
R·S·周
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Publication of CN104813472A publication Critical patent/CN104813472A/zh
Application granted granted Critical
Publication of CN104813472B publication Critical patent/CN104813472B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/18Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using Hall-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/14Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing iron or nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/16Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3286Spin-exchange coupled multilayers having at least one layer with perpendicular magnetic anisotropy
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/193Magnetic semiconductor compounds
    • H01F10/1936Half-metallic, e.g. epitaxial CrO2 or NiMnSb films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/3227Exchange coupling via one or more magnetisable ultrathin or granular films
    • H01F10/3231Exchange coupling via one or more magnetisable ultrathin or granular films via a non-magnetic spacer
    • H01F10/3236Exchange coupling via one or more magnetisable ultrathin or granular films via a non-magnetic spacer made of a noble metal, e.g.(Co/Pt) n multilayers having perpendicular anisotropy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/329Spin-exchange coupled multilayers wherein the magnetisation of the free layer is switched by a spin-polarised current, e.g. spin torque effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

描述了具有增强稳定性的垂直自旋转移扭矩存储器(STTM)器件和制造具有增强稳定性的垂直STTM器件的方法。例如,用于磁性隧穿结的材料层叠置体包括固定磁性层。电介质层设置于所述固定磁性层上方。自由磁性层设置于所述电介质层上方。导电氧化物材料层设置于所述自由磁性层上。

Description

具有增强稳定性的垂直自旋转移扭矩存储器(STTM)器件以及 其形成方法
技术领域
本发明的实施例属于存储器器件领域,具体而言,属于具有增强稳定性的垂直自旋转移扭矩存储器(STTM)器件和制造具有增强稳定性的垂直STTM器件的方法。
背景技术
过去几十年间,集成电路中特征的缩放已经是不断增长的半导体产业的驱动力。缩放到越来越小的特征能够实现半导体芯片有限的面积上功能单元的增大的密度。例如,缩放晶体管尺寸容许在芯片上并入增加数量的存储器器件,导致制造具有更大能力的产品。然而,对越来越大能力的驱动并非没有问题。优化每个器件的性能的必要性变得越来越重要。
自旋扭矩器件的工作基于自旋转移扭矩现象。如果使电流通过被称为固定磁性层的磁化层,其在离开时会发生自旋极化。在每个电子通过时,其自旋(角动量)将被转移为被称为自由磁性层的下一磁性层中的磁化,并将导致其磁化发生小的变化。实际上,这是一种扭矩导致的磁化的进动。由于电子的反射,扭矩还被施加到相关联的固定磁性层的磁化上。最后,如果电流超过一定临界值(由磁性材料及其环境导致的阻尼给出),则将由通常为大约1-10纳秒的电流脉冲切换自由磁性层的磁化。固定磁性层的磁化可以保持不变,因为由于几何结构或由于相邻反铁磁性层,相关联的电流在其阈值以下。
自旋转移扭矩可以用于翻转(flip)磁性随机存取存储器中的有源元件。自旋转移扭矩存储器或STTM相对于使用磁场翻转有源元件的常规磁性随机存取存储器(MRAM)具有更低的功率消耗和更好的可缩放性的优点。然而,在STTM器件的制造和使用领域中仍然需要显著的改进。
附图说明
图1示出了常规自旋转移扭矩存储器(STTM)器件的材料层叠置体的截面图。
图2示出了根据本发明的实施例的垂直STTM器件的材料层叠置体的截面图。
图3为根据本发明的实施例的对于比较的STTM器件的作为磁场(mT)函数的归一化异常霍尔效应(EHE)(任意单位)的曲线图。
图4示出了根据本发明的另一个实施例的垂直STTM器件的另一个材料层叠置体的截面图。
图5示出了根据本发明的实施例的包括自旋转移扭矩元件的自旋转移扭矩存储器位单元的示意图。
图6示出了根据本发明的实施例的电子系统的框图。
图7示出了根据本发明的一种实施方式的计算装置。
具体实施方式
描述了具有增强稳定性的垂直自旋转移扭矩存储器(STTM)器件和制造具有增强稳定性的垂直STTM器件的方法。在以下描述中,阐述了很多特定细节,诸如特定的磁性层集成和材料域(regime),以便提供对本发明的实施例的透彻理解。对于本领域技术人员而言显而易见的是,可以无需这些特定细节来实施本发明的实施例。在其它情况下,未详细描述公知的特征,诸如集成电路设计布局,以免不必要地使本发明的实施例模糊不清。此外,应当理解的是,图中所示的各个实施例是示例性表示,未必是按比例绘制的。
一个或多个实施例针对用于提高垂直STTM系统的稳定性的方法。申请人可以包括在嵌入式存储器、嵌入式非易失性存储器(NVM)、磁性随机存取存储器(MRAM)、磁性隧穿结(MTJ)器件、NVM、垂直MTJ、STTM和非嵌入式存储器或独立存储器中使用。在实施例中,垂直STTM器件的稳定性是通过并入与自由磁性层相邻的导电氧化层来实现的,如下文更详细地描述的。导电氧化层可以具有充当电极的一部分和氧化自由磁性层的组分中包括的铁/钴(Fe/Co)的一部分的双重作用。
稳定性是对基于STTM器件及由其制造的存储器阵列进行缩放所面对的最重要问题之一。随着缩放的持续,需要更小存储器元件来适应缩放单元尺寸已经驱动垂直STTM的方向上的产业,对于小存储元件尺寸而言,垂直STTM具有更高的稳定性。常见的垂直STTM通过三种方式实现,该三种方式全部依赖于界面调谐,以从包括磁性层的材料叠置体中获得最大量的垂直强度,因此,获得最大量的稳定性。
作为示出本文所述核心概念的基础,图1示出了常规自旋转移扭矩存储器(STTM)器件的材料层叠置体的截面图。参考图1,面内(in-plane)STTM器件的材料层叠置体100包括底部电极102、固定磁性层106、电介质层108、自由磁性层110和顶部电极112。材料层叠置体100的磁性隧穿结(MTJ)部分包括固定磁性层106、电介质层108和自由磁性层110。材料叠置体100是用于制造STTM的基础材料叠置体,并且可以制造成具有更大的复杂性。例如,尽管叠置体100中未示出,但反铁磁性层也可以包括在位置104中,即,底部电极102与固定磁性层106之间。另外,电极102和电极112自身可以包括具有不同属性的材料的多个层。图1中所示的材料叠置体在其最基本形式中可以是面内系统,其中磁性层106和110的自旋在层自身相同的平面中,如图1中的120所示。
在没有进一步加工(engineer)的情况下,图1中的材料叠置体100通常是面内自旋系统。然而,在层或界面加工的情况下,可以制造材料叠置体以提供垂直自旋系统。在第一个例子中,再次参考作为平台的材料叠置体100的特征,从用于面内STTM器件的常规厚度减薄自由磁性层110,例如,由CoFeB构成的自由磁性层。减薄的程度可以充分大,以使得从层110中的与电介质层108中的氧相互作用(例如,与图1的界面处的氧化镁(MgO)层108相互作用)的铁/钴(Fe/Co)获得的垂直分量相对于自由CoFeB层110的面内分量占支配地位。此例子提供了基于耦合到自由层的一个界面(即,CoFeB-MgO界面)的单层系统的垂直系统。来自MgO层的氧对CoFeB层中表面铁/钴原子(Fe/Co)的氧化程度为自由层提供了强度(稳定性),以具有垂直支配的自旋态。在此例子中,电极102和电极112由诸如钽(Ta)的单种金属构成。
在第二个例子中,再次参考作为平台的材料叠置体100的特征,利用交替的磁性层(例如,钴(Co))和非磁性层(例如,钯(Pd))的多层叠置体电极来替代顶部电极112。这种多层方案提供了每个磁性薄膜层(Co)都具有在自旋方向上垂直的界面。此叠置体中的最后(底部)Co层(例如在自由层110上并且形成界面2的Co层)磁性耦合到下方的CoFeB自由层110。替代地,可以在叠置体中的最后(底部)Co层与自由层110之间包括钽(Ta)的薄层。在完整的自由层中(并且可能除界面1之外),具有交替的磁性层和非磁性层的电极112中的所有界面(从界面2开始)的总和为待是垂直的自由层110的材料提供了稳定性。即,对于此第二个例子,垂直自旋器件的稳定性驱动机制包括前述第一个例子(即,来自界面1)的MgO耦合加上自由层110到上方垂直磁体的另外的耦合界面2的组合。
在第三例子中,再次参考作为平台的材料叠置体100的特征,提供了与第一个例子类似的结构。然而,如图1所示,向位置130处的叠置体添加了另外的隧穿阻挡过滤层(例如,第二MgO层)。包括第二MgO层容许来自这种顶部MgO层的氧与CoFeB自由层110的顶部处中的Fe/Co相互作用(例如,氧化),实际上相对于第一个例子使单元的稳定性加倍。然而,如同此方式一样的引人注目的是,在将第二MgO层添加到叠置体100的情况下存在一个基本问题。即,这种第二MgO层实际上是能够相当大程度增大所得叠置体的电阻的薄的电介质膜。电阻可能会增大到干扰检测“1”状态和“0”状态之间的差异的能力的程度,下文更详细地描述该检测。
在另一方面,通过使用叠置体内的导电氧化层增强了STTM单元的垂直性质或支配的稳定性。例如,图2示出了根据本发明的实施例的垂直STTM器件的材料层叠置体的截面图。
参考图2,用于垂直STTM器件的材料层叠置体200包括底部电极202、固定磁性层206、电介质层208、自由磁性层210和顶部电极。顶部电极由导电氧化物层214(和可能另外的金属帽层216)构成。材料层叠置体200的磁性隧穿结(MTJ)部分包括固定磁性层206、电介质层208和自由磁性层210。材料叠置体200是用于制造垂直STTM的基础材料叠置体,并且可以制造成具有更大的复杂性。例如,尽管在叠置体200中未示出,但也可以在位置204中(即,底部电极202与固定磁性层206之间)包括反铁磁性层。另外,电极202自身可以包括具有不同属性的材料的多个层。在实施例中,图2中所示的材料叠置体为垂直系统,其中,磁性层206和磁性层210的自旋垂直于该层自身的平面,如图2中220所示。
再次参考图2,从层210(例如,CoFeB的层)中的与电介质层208中的氧相互作用(例如,与图2中的界面1处的氧化镁(MgO)层208相互作用)的铁/钴(Fe/Co)获得的垂直分量相对于自由CoFeB层210的面内分量占支配地位。另外,从CoFeB层210中的与导电氧化物层214中的氧相互作用(例如,与图2中的界面2处的氧相互作用)的铁/钴(Fe/Co)获得第二垂直分量。然而,与其中第二MgO层用于氧化CoFeB自由层的顶部表面的上述第三例子不同的是,导电氧化物层214对叠置体200的总电阻贡献不可测量到或不显著。如此,除了界面1处的Fe/Co的氧化之外,通过氧化在界面2处的Fe/Co进一步增强了垂直支配性。该氧化在没有添加电阻的情况下实现,并且因此,负责在界面2处的氧化的导电氧化物材料层214是用于自由磁性层210的电极中的第一层。如上所述,可以在导电氧化物材料层214上包括另外的金属层216(例如,非磁性和无氧金属层)以完成用于自由层210的电极。因此,在实施例中,两个垂直分量用于支配例如在界面1和界面2处的自由CoFeB层210的面内分量。
作为常规STTM叠置体(诸如叠置体100)和包括导电氧化物层的STTM叠置体(例如,叠置体200)中垂直稳定性程度之间的对比,图3是根据本发明的实施例的对于比较的STTM器件的作为磁场(mT)函数的归一化EHE(任意单位)的曲线图300。
参考曲线图300,第一曲线图302针对具有与自由磁性层相邻的氧化钽层(例如,导电氧化物材料层)的STTM器件。第二曲线图304针对具有与自由磁性层相邻且覆盖钌(Ru)层以确保不发生Ta氧化的无氧钽(Ta)层的STTM器件。所指示的矫顽力(相对应的磁滞回线的宽度)是自由磁性层的垂直自旋态的(即,垂直磁体的)稳定性的测量。如曲线图300所示,对于包括导电氧化物层(曲线图302)的器件,与更常规的材料叠置体(曲线图304)相比,矫顽力增大了大约3-4倍。另外,应当理解的是,曲线图302的叠置体未达到最小的另外电阻,因为钽的氧化导致导电氧化物材料层而不是电介质层。通过针对导电氧化物层保持相对薄的厚度(例如,用于曲线图302的导电氧化物层的大约1纳米厚度的氧化钽),可以进一步将此保持在最小限度。对于特定于曲线图300的数据,下方的MgO层用于厚度大约为2纳米的两种情况,并且具有厚度大约为1.4纳米的Co20Fe60B20的自由层用于两种情况。
在包括导电氧化物材料层的材料叠置体的第二个例子中,图4示出了根据本发明的另一个实施例的用于垂直STTM器件的另一个材料层叠置体的截面图。
参考图4,材料叠置体400包括以上联系图2所述的材料叠置体200的层,连同在导电氧化物材料层214与帽电极层216之间的交替的磁性金属层419和非磁性金属层421的对。例如,在一个实施例中,磁性金属层419为钴(Co)层,以及非磁性层421为钯(Pd)层。在具体实施例中,包括了四对418A、418B、418C和418D交替的层419和421,尽管可以包括更少或更多对。这种多层顶部电极方式提供了每个磁性薄膜层(Co层419)都具有在自旋方向上垂直的界面。此叠置体中的最后的(底部)Co层(例如,在导电氧化物层214上的Co层419)磁性耦合到下方的CoFeB自由层210。具有交替的磁性层419和非磁性层421的对418A、418B、418C和418D中的所有界面的总和可以用于为待垂直的自由层210的材料提供稳定性。在一个这种实施例中,对于导电氧化物层214的充分薄的层,维持底部Co层419与自由层210之间的磁耦合。因此,材料叠置体400包括三个垂直分量:CoFeB层210(界面1处)的氧化底部层、从导电氧化物层214获得的CoFeB层210(界面2处)的氧化的顶层,以及Co/Pd垂直叠置体与CoFeB自由层210之间通过充分薄的导电氧化物材料层214的耦合。可以包括诸如纯Ru层或Ta层之类的帽层,以作为层216,如图4所示。
再次参考图2和图4,在实施例中,导电氧化物层214是钽的氧化物,如图3的例子那样。然而,在另一个实施例中,导电氧化物层214由诸如但不限于如下材料构成:In2O3-x(在大致1-10mOhm·cm范围中的可调谐电阻率)、VO2或V2O3(低于大约1mOhm·cm的电阻率)、WO2(低于大约1mOhm·cm的电阻率)、Sn掺杂的In2O3(ITO)和掺杂有例如In或Ga的ZnO(低于大约0.1mOhm·cm的电阻率)或RuO(低于大约0.1mOhm·cm的电阻率)。在实施例中,导电氧化物层214(无论是之后被氧化的金属或导电金属氧化物)的导电性比具有大约为1Ohm·cm的电阻率的MgO导电性高100-1000倍。在实施例中,通过沉积金属膜并且然后利用氧消耗金属膜、在有氧的情况下沉积金属膜以原地消耗金属或者通过以化学计量方式来沉积导电氧化物膜,形成了导电氧化物层214。在实施例中,如上所述,可以在导电氧化物层214上设置帽金属层216。在一个这种实施例中,金属层216由钌(Ru)、铜或铝构成。
再次参考图2和图4,在实施例中,固定磁性层206由适用于维持固定多数自旋的材料或材料的叠置体构成。因此,固定磁性层206(或参考层)可以被称为铁磁性层。在一个实施例中,固定磁性层206由单层钴铁硼(CoFeB)构成。然而,在另一个实施例中,固定磁性层206由钴铁硼(CoFeB)层、钌(Ru)层、钴铁硼(CoFeB)层叠置体构成。在具体的这种实施例中,固定磁性层以合成的反铁磁体(SAF)的形式。从上到下的角度,该叠置体为CoFeB/Ru/CoFe叠置体(例如,底部层中没有硼,但在其它实施例中可能有)。应当理解的是,Ru的厚度非常特定,例如8-9埃,以使得CoFeB与CoFe之间的耦合是反铁磁的;它们指向相反方向。
再次参考图2和图4,在实施例中,电介质层208由适用于容许多数自旋的电流通过该层而同时至少阻碍一定程度的少数自旋的电流通过改层的材料构成。因此,电介质层208(或自旋过滤层)可以被称为隧穿层。在一个实施例中,电介质层208由诸如但不限于氧化镁(MgO)或氧化铝(Al2O3)之类的材料构成。在一个实施例中,电介质层208具有大约为1纳米的厚度。
再次参考图2和图4,在实施例中,自由磁性层210由适用于根据应用在多数自旋于少数自旋之间过渡的材料构成。因此,自由磁性层210(或存储器层)可以被称为铁磁存储器层。在一个实施例中,自由磁性层210由钴铁(CoFe)或钴铁硼(CoFeB)的层构成。
再次参考图2和图4,在实施例中,底部电极202由适用于电接触STTM器件的固定磁性层侧的材料或材料叠置体构成。在实施例中,底部电极202是形貌平滑的电极。在一个这种实施例中,底部电极202具有适合于良好导电率的厚度,但很少或没有本来会导致粗糙顶部表面的柱状结构形成。这种形貌平滑的电极可以被称为结构的无定形。在具体实施例中,底部电极由交错的Ru层和Ta层构成。实际上,根据本发明的实施例,底部电极202可以不是不是(may not be not)诸如Ru电极的常规的厚的单一金属电极,而是Ru/Ta交错的材料叠置体。然而,在替代实施例中,底部电极202是常规的厚的单金属电极,诸如Ru电极。
再次参考图2和图4,在实施例中,铁磁性层204由适用于方便锁定相邻固定磁性层(诸如,固定磁性层206)中的自旋的材料构成,该固定磁性层自身可以由诸如但不限于如下一系列材料叠置体中的任一种构成:与一个实施例中的418类似的Co/Pd多层、或另一个实施例中的合成反铁磁系统(SAF),其由诸如被间隔体分隔的多层叠置体418且接着是另一个多层叠置体418的叠置体构成,其中改变多层的数目,间隔体为Ta或一些其它材料,选择其厚度以诱发反铁磁耦合。
在实施例中,如稍后联系图5以另外的细节所描述的,非易失性存储器器件包括第一电极和设置于第一电极上方的固定磁性层。自由磁性层设置于固定磁性层上方,并且第二电极设置于自由磁性层上方。电介质层设置于自由磁性层与固定磁性层之间。第二电极包括与自由磁性层相邻的导电氧化物层。非易失性存储器器件还包括电连接到自由磁性层电极、源极线和字线的晶体管。在一个实施例中,非易失性存储器器件还包括设置于固定磁性层与第一电极之间的反铁磁性层。
在本发明的特定方面和至少一些实施例中,特定术语具有特定的可定义含义。例如,“自由”磁性层是存储可计算变量的磁性层。“固定”磁性层是具有固定磁化(比自由磁性层磁性更强)的磁性层。诸如隧穿电介质或隧穿氧化物的隧穿势垒是位于自由磁性层与固定磁性层之间的势垒。可以对固定磁性层进行图形化以生成输入和到相关联电路的输出。可以通过自旋转移扭矩效应写入磁化,同时使电流通过输入电极。可以在向输出电极施加电压的同时,经由隧穿磁电阻效应读取磁化。在实施例中,电介质层208的作用是导致大的磁电阻比。磁电阻是当两个铁磁性层具有反平行磁化时的电阻与具有平行磁化的状态的电阻之间的差异的比。
再次参考图2和图4,自旋转移扭矩元件200或400中包括自由磁性层210、隧穿势垒层208和固定磁性层206的部分被称为磁性隧穿结。自由磁性层210和固定磁性层206可以是铁磁性层。分隔自由磁性层210和固定磁性层206的隧穿势垒层208可以具有大约1纳米或更小的厚度(例如自由磁性层210与固定磁性层206之间的距离),以使得在自由磁性层电极214/216与固定磁性层电极202之间施加偏压时,电子可以在那里隧穿。
在实施例中,MTJ实质上充当电阻器,其中,根据自由磁性层210中和固定磁性层206中的磁化的方向或取向,通过MTJ的电气路径的电阻可以存在于两种电阻状态(“高”或“低”)中状态。参考图2和图4,在自旋方向在自由磁性层210中向下(少数)的情况下,存在高电阻状态,其中自由磁性层210和固定磁性层206中的磁化的方向基本彼此相反或反平行。再次参考图2和图4,在自旋方向在自由磁性层210中向上(多数)的情况下,存在低电阻状态,其中自由磁性层210和固定磁性层206中的磁化的方向基本彼此对齐或平行。应当理解的是,关于MTJ的电阻状态的术语“低”和“高”是彼此相对的。话句话说,高电阻状态仅仅是可检测到的比低电阻状态更高的电阻,反之亦然。因此,利用可检测到的电阻差异,高电阻状态和低电阻状态可以代表不同的信息位(即,“0”或“1”)。
可以通过使用自旋极化电流的过程呼叫自旋转移扭矩(“STT”)来切换自由磁性层210中的磁化的方向。电流一般是非极化的(例如,由大约50%的自旋向上和大约50%的自旋向下电子构成)。自旋极化电流是具有更大数量的自旋向上或自旋向下的电子的电流,该自旋极化电流可以通过使电流通过固定磁性层206来生成。来自固定磁性层206的自旋极化电流的电子隧穿通过隧穿势垒或电介质层208,并且将其自旋角动量转移到自由磁性层210,其中,自由磁性层210将其磁性方向从反平行取向为固定磁性层206的磁性方向或平行。可以通过反转电流使自由磁性层210返回到其原始取向。
因此,MTJ可以通过其磁化的状态来存储单个信息位(“0”或“1”)。通过驱动电流通过MTJ来感测MTJ中存储的信息。自由磁性层210不需要功率来保持其磁性取向。如此,在去除到器件的电力时维持了MTJ的状态。因此,在实施例中,分别由图2或图4的叠置体200或400构成的自旋转移扭矩存储器位单元是非易失性的。
尽管本文未完全详细地描述制造用于例如自旋转移扭矩存储位单元的层200或400的叠置体的方法,但应当理解的是,制造步骤可以包括标准微电子制造工艺,诸如,光刻、蚀刻、薄膜沉积、平坦化(诸如化学机械抛光(CMP))、扩散、度量、牺牲层的使用、蚀刻停止层的使用、平滑化停止层的使用和/或与微电子分量制造相关联的任何其它工艺。
根据本发明的另一个实施例,固定磁性层206、自由磁性层210中的一个或两者包括半金属材料层。在第一个例子中,在一个实施例中,在固定磁性层206和电介质层208的界面处包括半金属材料层。在具体的这种实施例中,固定磁性层206是由半金属材料构成的单层。然而,在另一个特定实施例中,固定磁性层206中的仅仅一部分由半金属材料构成。在第二个例子中,在另一个实施例中,在自由磁性层210和电介质层208的界面处包括半金属材料层。在具体的这种实施例中,自由磁性层210是由半金属材料构成的单层。然而,在另一个特定实施例中,自由磁性层210中的仅仅一部分(例如,作为与电介质层208的界面处的子层)由半金属材料构成。在第三例子中,在又一实施例中,在固定磁性层206和电介质层208的界面处包括第一半金属材料层,并且在自由磁性层210和电介质层208的界面处包括第二半金属材料层。在实施例中,包括半金属(例如,霍斯勒(Heusler)合金)以增大磁性隧穿结(MTJ)器件中反并联电阻(RAP)和并联电阻(RP)(即,△R)之间的差异。
在实施例中,上述半金属材料层被称为霍斯勒合金,其是一种基于霍斯勒相的铁磁金属合金。霍斯勒相可以是具有特定组分的金属互化物(intermetallic)和面心立方晶体结构。即使构成元素不是铁磁性的,由于相邻磁性离子之间的双交换机制,材料也是铁磁性的。该材料通常包括锰离子,锰离子位于立方体结构的体心并且承载着合金磁矩的大部分。在具体实施例中,固定磁性层206、自由磁性层210的任一个或两个中包括的半金属材料层是诸如但不限于Cu2MnAl、Cu2MnIn、Cu2MnSn、Ni2MnAl、Ni2MnIn、Ni2MnSn、Ni2MnSb、Ni2MnGa、Co2MnAl、Co2MnSi、Co2MnGa、Co2MnGe、Pd2MnAl、Pd2MnIn、Pd2MnSn、Pd2MnSb、Co2FeSi、Fe3Si、Fe2Val、Mn2VGa或Co2FeGe的材料层。
再次参考与图2和图4相关联的描述,包括例如用于磁性隧穿结中的磁性材料层和导电氧化物材料层的层的叠置体可以用于制造为存储器位单元。例如,图5示出了根据本发明的实施例包括自旋转移扭矩元件510的自旋转移扭矩存储器位单元500的示意图。
参考图5,自旋转移扭矩元件510可以包括自由磁性层电极512(其中,自由磁性层514与自由磁性层电极512相邻)、与固定磁性层518相邻的固定磁性层电极516以及设置于自由磁性层514与固定磁性层518之间的隧穿势垒或电介质层522。在实施例中,自由磁性层电极512包括与自由磁性层514相邻的导电氧化物层。在实施例中,自旋转移扭矩元件510基于垂直磁性。
可以将第一电介质元件523和第二电介质元件524形成为与固定磁性层电极516、固定磁性层518和隧穿势垒或电介质层522相邻。固定磁性层电极516可以电连接到位线532。自由磁性层电极512可以与晶体管534耦合。晶体管534可以以本领域技术人员理解的方式与字线536和源极线538耦合。如本领域技术人员所理解的,自旋转移扭矩存储器位单元500还可以包括另外的读和写电路(未示出)、感测放大器(未示出)、位线参考(未示出)等,以用于操作自旋转移扭矩存储器位单元500。应当理解的是,可以将多个自旋转移扭矩存储器位单元500可操作地彼此连接,以形成存储器阵列(未示出),其中,可以将存储器阵列并入非易失性存储器器件中。应当理解的是,晶体管534可以连接到固定磁性层电极516或自由磁性层电极512,尽管仅示出了后者。
图6示出了根据本发明的实施例的电子系统600的框图。电子系统600可以与例如便携式系统、计算机系统、过程控制系统或利用处理器和相关联的存储器的任何其它系统相对应。电子系统600可以包括微处理器602(具有处理器604和控制单元606)、存储器器件608和输入/输出装置610(应当理解的是,在各个实施例中,电子系统600可以具有多个处理器、控制单元、存储器器件单元和/或输入/输出装置)。在一个实施例中,电子系统600具有指令集,其定义由处理器604对数据执行的操作以及处理器604、存储器器件608和输入/输出装置610之间的其它事务。控制单元606通过循环进行导致从存储器器件608检索指令并执行该指令的一组操作来协调处理器604、存储器器件608和输入/输出装置610的操作。存储器器件608可以包括如本说明书中所述的自旋转移扭矩元件。在实施例中,存储器器件608嵌入于微处理器602中,如图6中所示。
图7示出了根据本发明一种实施方式的计算装置700。计算装置700容纳电路板702。电路板702可以包括若干部件,包括但不限于处理器704和至少一个通信芯片706。处理器704物理和电耦合到板702。在一些实施方式中,至少一个通信芯片706还物理和电耦合到板702。在其它实施方式中,通信芯片706是处理器704的一部分。
根据其应用,计算装置700可以包括可以或可以不物理和电耦合到电路板702的其它部件。这些其它部件包括但不限于易失性存储器(例如,DRAM)、非易失性存储器(例如,ROM)、闪速存储器、图形处理器、数字信号处理器、密码处理器、芯片组、天线、显示器、触摸屏显示器、触摸屏控制器、电池、音频编码解码器、视频编码解码器、功率放大器、全球定位系统(GPS)装置、指南针、加速度计、陀螺仪、扬声器、相机和大容量存储装置(诸如硬盘驱动器、压缩盘(CD)、数字多用盘(DVD)等)。
通信芯片706实现了用于往返于计算装置700进行数据传输的无线通信。术语“无线”及其派生词可以用于描述可以通过非固态介质借助使用调制电磁辐射传送数据的电路、装置、系统、方法、技术、通信信道等。该术语不暗示相关联的装置不包含任何导线,尽管在一些实施例中它们可能不包含。通信芯片706可以实施若干无线标准或协议的任一种,包括但不限于Wi-Fi(IEEE 802.11族)、WiMAX(IEEE 802.16族)、IEEE 802.20、长期演进(LTE)、Ev-DO、HSPA+、HSDPA+、HSUPA+、EDGE、GSM、GPRS、CDMA、TDMA、DECT、蓝牙、其衍生物、以及被指定为3G、4G、5G和以上的任何其它无线协议。计算装置700可以包括多个通信芯片706。例如,第一通信芯片706可以专用于较短距离的无线通信,诸如Wi-Fi和蓝牙,而第二通信芯片706可以专用于更长距离的无线通信,诸如GPS、EDGE、GPRS、CDMA、WiMAX、LTE、Ev-DO等。
计算装置700的处理器704包括处理器704内封装的集成电路管芯。在本发明的一些实施方式中,处理器的集成电路管芯包括一个或多个器件,诸如根据本发明的实施方式构建的自旋转移扭矩存储器。术语“处理器”可以指处理来自寄存器和/或存储器的电子数据以将该电子数据转换为可以存储于寄存器和/或存储器中的其它电子数据的任何器件或器件的一部分。
通信芯片706还包括封装于通信芯片706内的集成电路管芯。根据本发明的另一个实施方式,通信芯片的集成电路管芯包括一个或多个器件,诸如根据本发明的实施方式构建的自旋转移扭矩存储器。
在进一步实施方式中,计算装置700内容纳的另一个部件可以包含集成电路管芯,该集成电路管芯包括一个或多个器件,诸如根据本发明的实施方式构建的自旋转移扭矩存储器。
在各种实施方式中,计算装置700可以是膝上型计算机、上网本、笔记本、超级本、智能电话、平板计算机、个人数字助理(PDA)、超级移动PC、移动电话、台式计算机、服务器、打印机、扫描仪、监视器、机顶盒、娱乐控制单元、数字相机、便携式音乐播放器或数字视频录像机。在其它实施方式中,计算装置700可以是处理数据的任何其它电子装置。
因此,本发明的一个或多个实施例总体上涉及微电子存储器的制造。微电子存储器可以是非易失性的,其中即使不加电,存储器也可以保持存储的信息。本发明的一个或多个实施例涉及用于非易失性微电子存储器器件的垂直自旋转移扭矩存储器元件的制造。这种元件可以用于嵌入式非易失性存储器中,以用于其非易失性或作为嵌入式动态随机存取存储器(eDRAM)的替代。例如,这种元件用于给定技术节点内的竞争性单元尺寸(competitive cell size)下的1T-1X存储器(X=电容器或电阻器)。
因此,本发明的实施例包括具有增强稳定性的垂直自旋转移扭矩存储器(STTM)器件以及制造具有增强稳定性的垂直STTM器件的方法。
在实施例中,用于磁性隧穿结的材料层叠置体包括固定磁性层。电介质层设置于固定磁性层上方。自由磁性层设置于电介质层上方。导电氧化物材料层设置于自由磁性层上。
在一个实施例中,自由磁性层包括铁/钴(Fe/Co)原子,并且导电氧化物材料层与自由磁性层之间的界面处的Fe/Co原子的至少一部分被氧化。
在一个实施例中,自由磁性层由CoFeB构成,并且导电氧化物材料层与自由磁性层之间的界面为磁性隧穿结提供垂直磁性分量。
在一个实施例中,电介质层由氧化镁(MgO)构成,自由磁性层设置于电介质层上,电介质层与自由磁性层之间的界面处的Fe/Co原子的至少一部分被氧化,并且电介质层与自由磁性层之间的界面为磁性隧穿结提供第二垂直磁性分量。
在一个实施例中,材料层叠置体还包括设置于导电氧化物材料层上的一对或多对交替的磁性层和非磁性层。
在一个实施例中,交替的磁性层和非磁性层分别由钴(Co)和钯(Pd)构成,Co层设置于导电氧化物材料层上,并且导电氧化物材料层与Co层之间的界面为磁性隧穿结提供第三垂直磁性分量。
在一个实施例中,材料层叠置体还包括设置于导电氧化物材料层上的一对或多对交替的磁性层和非磁性层,磁性层设置于导电氧化物材料层上,并且导电氧化物材料层与磁性层之间的界面为磁性隧穿结提供垂直磁性分量。
在一个实施例中,导电氧化物材料层由诸如但不限于钽的氧化物、In2O3-x、VO2、V2O3、WO2、Sn掺杂的In2O3(ITO)和例如In掺杂或Ga掺杂的ZnO、或RuO的材料构成。
在一个实施例中,导电氧化物材料层的导电性比电介质层的导电性高大致10-1000倍。
在一个实施例中,磁性隧穿结是垂直磁性隧穿结。
在实施例中,非易失性存储器器件包括底部电极。固定磁性层设置于底部电极上方。电介质层设置于固定磁性层上方。自由磁性层设置于电介质层上方。导电氧化物材料层设置于自由磁性层上。顶部电极设置于导电氧化物材料层上方。晶体管电连接到顶部电极或底部电极、源极线和字线。
在一个实施例中,自由磁性层包括铁/钴(Fe/Co)原子,并且导电氧化物材料层与自由磁性层之间的界面处的Fe/Co原子的至少一部分被氧化。
在一个实施例中,自由磁性层由CoFeB构成,并且导电氧化物材料层与自由磁性层之间的界面为非易失性存储器器件提供垂直磁性分量。
在一个实施例中,电介质层由氧化镁(MgO)构成,自由磁性层设置于电介质层上,电介质层与自由磁性层之间的界面处的Fe原子的至少一部分被氧化,并且电介质层与自由磁性层之间的界面为非易失性存储器器件提供第二垂直磁性分量。
在一个实施例中,非易失性存储器器件还包括设置于导电氧化物材料层上、顶部电极下方的一对或多对交替的磁性层和非磁性层。
在一个实施例中,交替的磁性层和非磁性层分别由钴(Co)和钯(Pd)构成,Co层设置于导电氧化物材料层上,并且所述导电氧化物材料层与Co层之间的界面为非易失性存储器器件提供第三垂直磁性分量。
在一个实施例中,非易失性存储器器件还包括设置于导电氧化物材料层上、顶部电极下方的一对或多对交替的磁性层和非磁性层,磁性层设置于导电氧化物材料层上,并且导电氧化物材料层与磁性层之间的界面为所述非易失性存储器器件提供垂直磁性分量。
在一个实施例中,导电氧化物材料层由诸如但不限于钽的氧化物、In2O3-x、VO2、V2O3、WO2、Sn掺杂的In2O3(ITO)和例如In掺杂或Ga掺杂的ZnO、或RuO的材料构成。
在一个实施例中,导电氧化物材料层的导电性比电介质层的导电性高大致10-1000倍。
在一个实施例中,非易失性存储器器件是垂直自旋扭矩转移存储器(STTM)器件。
在一个实施例中,非易失性存储器器件还包括设置于底部电极与固定磁性层之间的反铁磁性层。
在实施例中,制造用于磁性隧穿结的材料层叠置体的方法包括:在电介质层上形成自由磁性层,以及在自由磁性层上形成导电氧化物材料层。
在一个实施例中,形成导电氧化物材料层包括沉积金属膜,并且然后利用氧消耗所述金属膜。
在一个实施例中,形成导电氧化物材料层包括在存在氧的情况下沉积金属膜,以原地消耗所述金属。
在一个实施例中,形成导电氧化物材料层包括通过化学计量方式沉积导电氧化物膜。
在一个实施例中,形成导电氧化物材料层包括形成诸如但不限于钽的氧化物、In2O3-x、VO2、V2O3、WO2、Sn掺杂的In2O3(ITO)和例如In掺杂或Ga掺杂的ZnO、或RuO的材料的层。
在一个实施例中,形成导电氧化物材料层包括氧化自由磁性层的一部分。

Claims (19)

1.一种用于磁性隧穿结的材料层叠置体,所述材料层叠置体包括:
固定磁性层;
电介质层,所述电介质层设置于所述固定磁性层上方;
自由磁性层,所述自由磁性层设置于所述电介质层上方;以及
导电氧化物材料层,所述导电氧化物材料层设置于所述自由磁性层上,其中,所述自由磁性层包括铁/钴(Fe/Co)原子,其中,所述导电氧化物材料层与所述自由磁性层之间的界面处的所述Fe/Co原子的至少一部分被氧化,其中,所述自由磁性层包括CoFeB,并且其中,所述导电氧化物材料层与所述自由磁性层之间的所述界面为所述磁性隧穿结提供垂直磁性分量。
2.根据权利要求1所述的材料层叠置体,其中,所述电介质层包括氧化镁(MgO),所述自由磁性层设置于所述电介质层上,所述电介质层与所述自由磁性层之间的界面处的Fe原子的至少一部分被氧化,以及所述电介质层与所述自由磁性层之间的所述界面为所述磁性隧穿结提供第二垂直磁性分量。
3.根据权利要求2所述的材料层叠置体,还包括:
一对或多对交替的磁性层和非磁性层,所述一对或多对交替的磁性层和非磁性层设置于所述导电氧化物材料层上。
4.根据权利要求3所述的材料层叠置体,其中,所述交替的磁性层和非磁性层分别包括钴(Co)和钯(Pd),其中,Co层设置于所述导电氧化物材料层上,并且其中,所述导电氧化物材料层与所述Co层之间的界面为所述磁性隧穿结提供第三垂直磁性分量。
5.根据权利要求1所述的材料层叠置体,还包括:
一对或多对交替的磁性层和非磁性层,所述一对或多对交替的磁性层和非磁性层设置于所述导电氧化物材料层上,其中,磁性层设置于所述导电氧化物材料层上,其中,所述导电氧化物材料层与所述磁性层之间的界面为所述磁性隧穿结提供垂直磁性分量。
6.根据权利要求1所述的材料层叠置体,其中,所述导电氧化物材料层包括从由钽的氧化物、In2O3-x、VO2、V2O3、WO2、Sn掺杂的In2O3(ITO)、In掺杂或Ga掺杂的ZnO、以及RuO构成的组中选择的材料。
7.根据权利要求1所述的材料层叠置体,其中,所述导电氧化物材料层的导电性比所述电介质层的导电性高10-1000倍。
8.根据权利要求1所述的材料层叠置体,其中,所述磁性隧穿结是垂直磁性隧穿结。
9.一种非易失性存储器器件,包括:
底部电极;
固定磁性层,所述固定磁性层设置于所述底部电极上方;
电介质层,所述电介质层设置于所述固定磁性层上方;
自由磁性层,所述自由磁性层设置于所述电介质层上方;
导电氧化物材料层,所述导电氧化物材料层设置于所述自由磁性层上,其中,所述自由磁性层包括铁/钴(Fe/Co)原子,其中,所述导电氧化物材料层与所述自由磁性层之间的界面处的所述Fe/Co原子的至少一部分被氧化,其中,所述自由磁性层包括CoFeB,并且其中,所述导电氧化物材料层与所述自由磁性层之间的所述界面为所述磁性隧穿结提供垂直磁性分量;
顶部电极,所述顶部电极设置于所述导电氧化物材料层上方;以及
晶体管,所述晶体管电连接到所述顶部电极或底部电极、源极线和字线。
10.根据权利要求9所述的非易失性存储器器件,其中,所述电介质层包括氧化镁(MgO),所述自由磁性层设置于所述电介质层上,所述电介质层与所述自由磁性层之间的界面处的所述Fe/Co原子的至少一部分被氧化,所述电介质层与所述自由磁性层之间的所述界面为所述非易失性存储器器件提供第二垂直磁性分量。
11.根据权利要求10所述的非易失性存储器器件,还包括:
一对或多对交替的磁性层和非磁性层,所述一对或多对交替的磁性层和非磁性层设置于所述导电氧化物材料层上、所述顶部电极下方。
12.根据权利要求11所述的非易失性存储器器件,其中,所述交替的磁性层和非磁性层分别包括钴(Co)和钯(Pd),其中,Co层设置于所述导电氧化物材料层上,并且其中,所述导电氧化物材料层与所述Co层之间的界面为所述非易失性存储器器件提供第三垂直磁性分量。
13.根据权利要求9所述的非易失性存储器器件,还包括:
一对或多对交替的磁性层和非磁性层,所述一对或多对交替的磁性层和非磁性层设置于所述导电氧化物材料层上、所述顶部电极下方,其中,磁性层设置于所述导电氧化物材料层上,其中,所述导电氧化物材料层与所述磁性层之间的界面为所述非易失性存储器器件提供垂直磁性分量。
14.根据权利要求9所述的非易失性存储器器件,其中,所述导电氧化物材料层包括从由钽的氧化物、In2O3-x、VO2、V2O3、WO2、Sn掺杂的In2O3(ITO)、In掺杂或Ga掺杂的ZnO、以及RuO构成的组中选择的材料。
15.根据权利要求9所述的非易失性存储器器件,其中,所述导电氧化物材料层的导电性比所述电介质层的导电性高10-1000倍。
16.根据权利要求9所述的非易失性存储器器件,其中,所述非易失性存储器器件是垂直自旋扭矩转移存储器(STTM)器件。
17.根据权利要求9所述的非易失性存储器器件,还包括:
反铁磁性层,所述反铁磁性层设置于所述底部电极与所述固定磁性层之间。
18.一种制造用于磁性隧穿结的材料层叠置体的方法,所述方法包括:
在电介质层上形成自由磁性层;以及
在所述自由磁性层上形成导电氧化物材料层,其中,所述自由磁性层包括铁/钴(Fe/Co)原子,其中,所述导电氧化物材料层与所述自由磁性层之间的界面处的所述Fe/Co原子的至少一部分被氧化,其中,所述自由磁性层包括CoFeB,并且其中,所述导电氧化物材料层与所述自由磁性层之间的所述界面为所述磁性隧穿结提供垂直磁性分量。
19.根据权利要求18所述的方法,其中,形成所述导电氧化物材料层包括:沉积金属膜并且然后利用氧消耗所述金属膜,或者在存在氧的情况下沉积金属膜以便原地消耗金属,或者通过以化学计量方式来沉积导电氧化物膜,或者氧化所述自由磁性层的一部分。
CN201380060955.XA 2012-12-21 2013-06-12 具有增强稳定性的垂直自旋转移扭矩存储器(sttm)器件以及其形成方法 Active CN104813472B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/723,893 US8796797B2 (en) 2012-12-21 2012-12-21 Perpendicular spin transfer torque memory (STTM) device with enhanced stability and method to form same
US13/723,893 2012-12-21
PCT/US2013/045498 WO2014098969A1 (en) 2012-12-21 2013-06-12 Perpendicular spin transfer torque memory (sttm) device with enhanced stability and method to form same

Publications (2)

Publication Number Publication Date
CN104813472A CN104813472A (zh) 2015-07-29
CN104813472B true CN104813472B (zh) 2017-11-28

Family

ID=50973698

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380060955.XA Active CN104813472B (zh) 2012-12-21 2013-06-12 具有增强稳定性的垂直自旋转移扭矩存储器(sttm)器件以及其形成方法

Country Status (6)

Country Link
US (4) US8796797B2 (zh)
KR (1) KR101708844B1 (zh)
CN (1) CN104813472B (zh)
DE (1) DE112013005561B4 (zh)
GB (1) GB2523934B (zh)
WO (1) WO2014098969A1 (zh)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8796797B2 (en) * 2012-12-21 2014-08-05 Intel Corporation Perpendicular spin transfer torque memory (STTM) device with enhanced stability and method to form same
GB2526958B (en) * 2013-03-28 2020-11-18 Intel Corp High stability spintronic memory
US20140339661A1 (en) * 2013-05-20 2014-11-20 T3Memory, Inc. Method to make mram using oxygen ion implantation
US20150137286A1 (en) * 2013-05-31 2015-05-21 T3Memory, Inc. Method to form mram by dual ion implantation
JP2015060970A (ja) * 2013-09-19 2015-03-30 株式会社東芝 磁気抵抗素子および磁気メモリ
US9306063B2 (en) 2013-09-27 2016-04-05 Intel Corporation Vertical transistor devices for embedded memory and logic technologies
US9634237B2 (en) 2014-12-23 2017-04-25 Qualcomm Incorporated Ultrathin perpendicular pinned layer structure for magnetic tunneling junction devices
KR102384258B1 (ko) 2015-06-26 2022-04-07 인텔 코포레이션 감소된 스위칭 전류를 갖는 수직 자기 메모리
EP3350850A4 (en) 2015-09-18 2019-05-08 INTEL Corporation SPIN TRANSFER TORQUE STORAGE (STTM), METHOD FOR THE PRODUCTION THEREOF WITH A NON-CONFORMITY ISOLATOR AND DEVICES THEREWITH
WO2017111851A1 (en) * 2015-12-24 2017-06-29 Intel Corporation Memory cells with enhanced tunneling magnetoresistance ratio, memory devices and systems including the same
KR102511828B1 (ko) 2016-06-29 2023-03-21 삼성전자주식회사 자기 메모리 소자의 제조 방법
US10804460B2 (en) * 2016-07-01 2020-10-13 Intel Corporation Device, system and method for improved magnetic anisotropy of a magnetic tunnel junction
KR102511914B1 (ko) 2016-08-04 2023-03-21 삼성전자주식회사 자기 기억 소자 및 이의 제조 방법
WO2018063159A1 (en) * 2016-09-27 2018-04-05 Intel Corporation Spin transfer torque memory devices having heusler magnetic tunnel junctions
WO2018063177A1 (en) * 2016-09-28 2018-04-05 Intel Corporation Spin transfer torque memory device having a pmos transistor coupled to a spin transfer torque element
US20180151210A1 (en) * 2016-11-30 2018-05-31 Western Digital Technologies, Inc. Shared source line architectures of perpendicular hybrid spin-torque transfer (stt) and spin-orbit torque (sot) magnetic random access memory
WO2018125244A1 (en) * 2016-12-30 2018-07-05 Intel Corporation Perpendicular magnetic tunnel junction (pmtj) devices having thermally resistive layers
WO2018125196A1 (en) * 2016-12-30 2018-07-05 Intel Corporation Spin transfer torque memory devices having heusler magnetic tunnel junctions
WO2018125210A1 (en) * 2016-12-30 2018-07-05 Intel Corporation Diffusion insensitive heusler spin transfer torque memory devices
US10177305B2 (en) * 2017-01-19 2019-01-08 International Business Machines Corporation Templating layers for perpendicularly magnetized heusler films
CN106816529B (zh) * 2017-01-22 2019-01-29 北京航空航天大学 一种应用相变材料作为隧穿层的自旋电子器件
WO2018182645A1 (en) * 2017-03-30 2018-10-04 Intel Corporation Spintronic memory with perforated cap layer
WO2018182651A1 (en) * 2017-03-30 2018-10-04 Intel Corporation Perpendicular spin transfer torque memory (psttm) devices with enhanced anisotropy and methods to form the same
US10896690B1 (en) 2017-06-07 2021-01-19 Sandisk Technologies Llc Magnetic head with current assisted magnetic recording and method of making thereof
US10891974B1 (en) 2017-06-07 2021-01-12 Sandisk Technologies Llc Magnetic head with current assisted magnetic recording and method of making thereof
WO2019005157A1 (en) * 2017-06-30 2019-01-03 Intel Corporation PERPENDICULAR SPIN TRANSFER TORQUE MEMORY DEVICES (PSTTM) WITH IMPROVED STABILITY AND HIGH TUNNEL MAGNEORESISTANCE RATES, AND METHODS OF FORMING THE SAME
WO2019005158A1 (en) * 2017-06-30 2019-01-03 Intel Corporation SPIN ORBIT TORQUE MEMORY DEVICES WITH ENHANCED THERMAL STABILITY AND METHODS OF FORMING THE SAME
US10396123B2 (en) 2017-07-26 2019-08-27 International Business Machines Corporation Templating layers for perpendicularly magnetized Heusler films
JP6832818B2 (ja) * 2017-09-21 2021-02-24 キオクシア株式会社 磁気記憶装置
US10672832B2 (en) 2017-11-08 2020-06-02 Taiwan Semiconductor Manufacturing Co., Ltd. Magnetic detection circuit, MRAM and operation method thereof
WO2019135743A1 (en) * 2018-01-03 2019-07-11 Intel Corporation Filter layer for an in-plane top synthetic antiferromagnet (saf) stack for a spin orbit torque (sot) memory
WO2019172928A1 (en) 2018-03-09 2019-09-12 Intel Corporation Perpendicular spin transfer torque memory (psttm) devices with enhanced thermal stability and methods to form the same
US10516096B2 (en) * 2018-03-28 2019-12-24 Globalfoundries Singapore Pte. Ltd. Magnetic random access memory structures, integrated circuits, and methods for fabricating the same
US10839844B1 (en) 2018-06-18 2020-11-17 Western Digital Technologies, Inc. Current-assisted magnetic recording write head with wide conductive element in the write gap
US11430943B2 (en) 2018-06-28 2022-08-30 Intel Corporation Magnetic tunnel junction (MTJ) devices with a synthetic antiferromagnet (SAF) structure including a magnetic skyrmion
US11386951B2 (en) * 2018-06-28 2022-07-12 Intel Corporation Multi-level magnetic tunnel junction (MTJ) devices including mobile magnetic skyrmions or ferromagnetic domains
US10891975B1 (en) 2018-10-09 2021-01-12 SanDiskTechnologies LLC. Magnetic head with assisted magnetic recording and method of making thereof
US11017801B1 (en) 2018-10-09 2021-05-25 Western Digital Technologies, Inc. Magnetic head with assisted magnetic recording and method of making thereof
US10726892B2 (en) 2018-12-06 2020-07-28 Sandisk Technologies Llc Metallic magnetic memory devices for cryogenic operation and methods of operating the same
US11062752B2 (en) * 2019-01-11 2021-07-13 Intel Corporation Spin orbit torque memory devices and methods of fabrication
KR102702693B1 (ko) 2019-12-13 2024-09-05 에스케이하이닉스 주식회사 전자 장치
JP2022049499A (ja) * 2020-09-16 2022-03-29 キオクシア株式会社 磁気記憶装置
CN114689090B (zh) * 2022-03-28 2024-04-09 杭州电子科技大学 一种霍尔条阵列输出偏置的自适应补偿方法及电路

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7345855B2 (en) * 2005-09-07 2008-03-18 International Business Machines Corporation Tunnel barriers based on rare earth element oxides
JP2007299880A (ja) 2006-04-28 2007-11-15 Toshiba Corp 磁気抵抗効果素子,および磁気抵抗効果素子の製造方法
US8623452B2 (en) 2010-12-10 2014-01-07 Avalanche Technology, Inc. Magnetic random access memory (MRAM) with enhanced magnetic stiffness and method of making same
US7573736B2 (en) * 2007-05-22 2009-08-11 Taiwan Semiconductor Manufacturing Company Spin torque transfer MRAM device
JP4835614B2 (ja) 2008-03-05 2011-12-14 ソニー株式会社 不揮発性磁気メモリ装置
JP5360774B2 (ja) * 2008-05-02 2013-12-04 国立大学法人大阪大学 磁化制御方法、情報記憶方法、情報記憶素子及び磁気機能素子
US8217478B2 (en) 2008-10-10 2012-07-10 Seagate Technology Llc Magnetic stack with oxide to reduce switching current
US9165625B2 (en) 2008-10-30 2015-10-20 Seagate Technology Llc ST-RAM cells with perpendicular anisotropy
US7944738B2 (en) 2008-11-05 2011-05-17 Micron Technology, Inc. Spin torque transfer cell structure utilizing field-induced antiferromagnetic or ferromagnetic coupling
WO2010080542A1 (en) 2008-12-17 2010-07-15 Yadav Technology, Inc. Spin-transfer torque magnetic random access memory having magnetic tunnel junction with perpendicular magnetic anisotropy
KR101532752B1 (ko) 2009-01-21 2015-07-02 삼성전자주식회사 자기 메모리 소자
US8363459B2 (en) 2009-06-11 2013-01-29 Qualcomm Incorporated Magnetic tunnel junction device and fabrication
US8913350B2 (en) * 2009-08-10 2014-12-16 Grandis, Inc. Method and system for providing magnetic tunneling junction elements having improved performance through capping layer induced perpendicular anisotropy and memories using such magnetic elements
US10446209B2 (en) * 2009-08-10 2019-10-15 Samsung Semiconductor Inc. Method and system for providing magnetic tunneling junction elements having improved performance through capping layer induced perpendicular anisotropy and memories using such magnetic elements
US9450177B2 (en) * 2010-03-10 2016-09-20 Tohoku University Magnetoresistive element and magnetic memory
JP5010702B2 (ja) * 2010-03-19 2012-08-29 株式会社東芝 磁気抵抗効果素子、磁気ヘッドアセンブリ、及び磁気記録再生装置
US9385308B2 (en) 2010-03-26 2016-07-05 Qualcomm Incorporated Perpendicular magnetic tunnel junction structure
US8546896B2 (en) 2010-07-16 2013-10-01 Grandis, Inc. Magnetic tunneling junction elements having magnetic substructures(s) with a perpendicular anisotropy and memories using such magnetic elements
KR20120021539A (ko) * 2010-08-06 2012-03-09 삼성전자주식회사 비휘발성 메모리요소 및 이를 포함하는 메모리소자
JP2012043854A (ja) * 2010-08-16 2012-03-01 Fujitsu Semiconductor Ltd 磁気トンネル接合素子及びその製造方法
US9019758B2 (en) 2010-09-14 2015-04-28 Avalanche Technology, Inc. Spin-transfer torque magnetic random access memory with perpendicular magnetic anisotropy multilayers
JP2012146727A (ja) * 2011-01-07 2012-08-02 Sony Corp 記憶素子及び記憶装置
JP5782715B2 (ja) 2011-01-07 2015-09-24 ソニー株式会社 記憶素子及び記憶装置
JP5796349B2 (ja) * 2011-05-23 2015-10-21 ソニー株式会社 記憶素子の製造方法
JP2013033881A (ja) * 2011-08-03 2013-02-14 Sony Corp 記憶素子及び記憶装置
US8878318B2 (en) * 2011-09-24 2014-11-04 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for a MRAM device with an oxygen absorbing cap layer
JP2013115400A (ja) * 2011-12-01 2013-06-10 Sony Corp 記憶素子、記憶装置
US8823118B2 (en) * 2012-01-05 2014-09-02 Headway Technologies, Inc. Spin torque transfer magnetic tunnel junction fabricated with a composite tunneling barrier layer
US10312433B2 (en) * 2012-04-06 2019-06-04 Taiwan Semiconductor Manufacturing Company, Ltd Reduction of capping layer resistance area product for magnetic device applications
US20140001586A1 (en) * 2012-06-28 2014-01-02 Industrial Technology Research Institute Perpendicularly magnetized magnetic tunnel junction device
US9252710B2 (en) * 2012-11-27 2016-02-02 Headway Technologies, Inc. Free layer with out-of-plane anisotropy for magnetic device applications
US8796797B2 (en) * 2012-12-21 2014-08-05 Intel Corporation Perpendicular spin transfer torque memory (STTM) device with enhanced stability and method to form same

Also Published As

Publication number Publication date
US20170040530A1 (en) 2017-02-09
GB2523934B (en) 2019-10-09
US9054302B2 (en) 2015-06-09
US8796797B2 (en) 2014-08-05
DE112013005561B4 (de) 2023-10-12
US20150255711A1 (en) 2015-09-10
US9882123B2 (en) 2018-01-30
US20140175575A1 (en) 2014-06-26
US9478734B2 (en) 2016-10-25
KR20150063515A (ko) 2015-06-09
GB201510575D0 (en) 2015-07-29
US20140308760A1 (en) 2014-10-16
KR101708844B1 (ko) 2017-02-21
GB2523934A (en) 2015-09-09
DE112013005561T5 (de) 2015-08-20
WO2014098969A1 (en) 2014-06-26
CN104813472A (zh) 2015-07-29

Similar Documents

Publication Publication Date Title
CN104813472B (zh) 具有增强稳定性的垂直自旋转移扭矩存储器(sttm)器件以及其形成方法
US9496486B2 (en) Perpendicular spin transfer torque memory (STTM) device having offset cells and method to form same
TWI590242B (zh) 具有耦合的自由磁性層之垂直自旋轉移力矩記憶體(sttm)裝置
CN100592544C (zh) 磁电阻元件和磁性存储器
TWI530945B (zh) Memory elements and memory devices
CN103151455B (zh) 存储元件和存储装置
CN106887247B (zh) 信息存储元件和存储装置
KR20150130980A (ko) 스핀 홀 mtj 디바이스들을 갖는 교차점 어레이 mram
CN107093449A (zh) 磁性隧道结(mtj)和方法,以及使用其的磁性随机存取存储器(mram)
TWI487155B (zh) Memory elements and memory devices
WO2014049935A1 (en) Storage element, storage apparatus, and magnetic head
JP2012059808A (ja) 記憶素子、メモリ装置
CN109493900A (zh) 存储器装置、用于提供其的方法及三维可堆叠存储器装置
US20140084399A1 (en) Spin transfer torque memory (sttm) device with topographically smooth electrode and method to form same
CN110366756A (zh) 磁存储器、半导体装置、电子设备和读取磁存储器的方法
KR20120023560A (ko) 기억 소자 및 기억 장치
CN108780781A (zh) 磁阻元件、存储元件和电子装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210401

Address after: Han Guojingjidao

Patentee after: Samsung Electronics Co.,Ltd.

Address before: California, USA

Patentee before: INTEL Corp.

TR01 Transfer of patent right