CN104576395B - 具有用于源极和漏极的支撑结构的纳米线mosfet - Google Patents

具有用于源极和漏极的支撑结构的纳米线mosfet Download PDF

Info

Publication number
CN104576395B
CN104576395B CN201410385556.7A CN201410385556A CN104576395B CN 104576395 B CN104576395 B CN 104576395B CN 201410385556 A CN201410385556 A CN 201410385556A CN 104576395 B CN104576395 B CN 104576395B
Authority
CN
China
Prior art keywords
layer
silicon layer
drain region
source area
etching stopping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410385556.7A
Other languages
English (en)
Other versions
CN104576395A (zh
Inventor
王建勋
黄懋霖
林群雄
让-皮埃尔·科林格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Publication of CN104576395A publication Critical patent/CN104576395A/zh
Application granted granted Critical
Publication of CN104576395B publication Critical patent/CN104576395B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0676Nanowires or nanotubes oriented perpendicular or at an angle to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41791Source or drain electrodes for field effect devices for transistors with a horizontal current flow in a vertical sidewall, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • H01L29/42392Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor fully surrounding the channel, e.g. gate-all-around
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66439Unipolar field-effect transistors with a one- or zero-dimensional channel, e.g. quantum wire FET, in-plane gate transistor [IPG], single electron transistor [SET], striped channel transistor, Coulomb blockade transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/66772Monocristalline silicon transistors on insulating substrates, e.g. quartz substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/775Field effect transistors with one dimensional charge carrier gas channel, e.g. quantum wire FET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L2029/7858Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET having contacts specially adapted to the FinFET geometry, e.g. wrap-around contacts

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明提供了一种具有用于源极和漏极的支撑结构的纳米线MOSFET。提供了一种晶体管器件和用于形成纳米线场效应晶体管(FET)的方法。形成包括源极区和漏极区的器件层,其中源极区和漏极区由悬空的纳米线沟道连接。在源极区和漏极区的下面形成蚀刻停止层。蚀刻停止层包括介于半导体衬底与源极区和漏极区之间的支撑结构。悬空的纳米线沟道通过蚀刻该悬空的纳米线沟道下面的牺牲材料而形成。该蚀刻对于牺牲材料具有选择性以防止去除源极区和漏极区下面的蚀刻停止层。

Description

具有用于源极和漏极的支撑结构的纳米线MOSFET
技术领域
本公开所描述的技术总体涉及基于纳米线的器件,更具体地,涉及基于纳米线的场效应晶体管(FET)及其制造方法。
背景技术
围栅(GAA)纳米线沟道场效应晶体管(FET)可以使得部件缩小比例超过目前的平面互补金属氧化物半导体(CMOS)技术。纳米线沟道FET还可因为其可优于传统FET器件的静电场而具有价值。纳米线沟道FET的制造可包括生成纳米线束并将它们放置在需要的地方(例如,自底向上的方法)或者可包括各种光刻图案化步骤。
发明内容
本公开涉及一种晶体管器件以及用于形成纳米线场效应晶体管(FET)器件的方法。在用于形成纳米线FET器件的方法中,形成包括源极区和漏极区的器件层,其中源极区和漏极区由悬空的纳米线沟道连接。蚀刻停止层形成在源极区和漏极区的下面。蚀刻停止层包括介于半导体衬底与源极和漏极区之间的支撑结构。悬空的纳米线沟道通过蚀刻该悬空纳米线沟道下方的牺牲材料而形成。蚀刻对于牺牲材料具有选择性以防止去除位于源极区和漏极区下面的蚀刻停止层。
根据本发明的一方面提供了一种用于形成纳米线场效应晶体管(FET)器件的方法,所述方法包括:形成包括源极区和漏极区的器件层,所述源极区和所述漏极区通过悬空的纳米线沟道连接;在所述源极区和所述漏极区下面形成蚀刻停止层,所述蚀刻停止层包括介于半导体衬底与所述源极区和漏极区之间的支撑结构;以及形成悬空的纳米线沟道,所述悬空的纳米线沟道通过蚀刻所述悬空的纳米线沟道下面的牺牲层材料形成,所述蚀刻对于所述牺牲材料具有选择性以防止去除所述源极区和所述漏极区下面的所述蚀刻停止层。
在该方法中,还包括:形成所述蚀刻停止层,其中,所述蚀刻停止层包括掺碳的硅层;以及蚀刻所述牺牲材料,其中,所述牺牲材料包括SiGe。
在该方法中,还包括利用外延工艺来形成所述掺碳的硅层。
在该方法中,还包括:在所述半导体衬底中形成具有第一导电类型的阱;以及形成所述掺碳的硅层,其中,所述掺碳的硅层的电阻率特征使得所述掺碳的硅层将所述源极区、所述漏极区或所述悬空的纳米线沟道与所述阱电隔离。
在该方法中,还包括:在所述半导体衬底中形成具有第一导电类型的阱;通过注入工艺在所述阱中形成具有所述第一导电类型的反穿通层;以及形成所述掺碳的硅层,其中,所述掺碳的硅层i)邻近于所述源极区或所述漏极区,并且ii)邻近于所述反穿通层。
在该方法中,所述第一导电类型是p型。
在该方法中,所述第一导电类型是n型。
在该方法中,还包括:形成所述源极区,其中,所述源极区包括SiP;形成所述漏极区,其中,所述漏极区包括SiP;以及形成所述掺碳的硅层,其中,所述掺碳的硅层邻近于所述源极区或者所述漏极区,并且所述掺碳的硅层减小了SiP向FET器件的部分的扩散。
在该方法中,还包括:对所述器件层和所述蚀刻停止层进行高温处理,其中,所述掺碳的硅层减小了所述SiP在所述高温处理期间的扩散。
在该方法中,还包括:形成所述蚀刻停止层,其中,所述蚀刻停止层包括:未掺杂的硅层,和所述掺碳的硅层,i)邻近于所述源极区或所述漏极区,并且ii)垂直堆叠在所述未掺杂的硅层的上方。
在该方法中,还包括:形成所述未掺杂的硅层,其中,所述未掺杂的硅层邻近于所述半导体衬底。
在该方法中,还包括:形成所述源极区,其中,所述源极区包括SiP;形成所述漏极区,其中,所述漏极区包括SiP;以及形成所述掺碳的硅层,其中,所述掺碳的硅层减小了SiP向所述未掺杂的硅层和所述半导体衬底的扩散。
在该方法中,还包括:形成所述蚀刻停止层,其中,所述未掺杂的硅层的厚度大于所述掺碳的硅层的厚度。
在该方法中,还包括:在所述半导体衬底中形成具有第一导电类型的阱;通过注入工艺在所述阱中形成具有所述第一导电类型的反穿通层;以及形成所述未掺杂的硅层,其中,所述未掺杂的硅层邻近于所述反穿通层。
在该方法中,还包括:形成所述蚀刻停止层,其中,所述蚀刻停止层包括:掺硼的硅层,和所述掺碳的硅层,i)邻近于所述源极区或所述漏极区,并且ii)垂直堆叠在所述掺硼的硅层的上方。
在该方法中,还包括:形成所述掺硼的硅层,其中,所述掺硼的硅层邻近于所述半导体衬底。
在该方法中,还包括:利用第一外延工艺来形成所述掺硼的硅层;以及利用第二外延工艺来形成所述掺碳的硅层。
在该方法中,还包括:形成所述源极区,其中,所述源极区包括SiP;形成所述漏极区,其中,所述漏极区包括SiP;以及形成所述掺碳的硅层,其中,所述掺碳的硅层减小了SiP向所述掺硼的硅层的扩散。
在该方法中,还包括:形成所述蚀刻停止层,其中,所述掺硼的硅层的厚度小于所述掺碳的硅层的厚度。
在该方法中,还包括:在所述半导体衬底中形成具有第一导电类型的阱;以及通过外延工艺形成所述掺硼的硅层,其中,所述掺硼的硅层是反穿通层,并且所述FET器件不包括通过注入工艺形成的反穿通层。
在另一个实例中,在形成纳米线FET器件的方法中,形成包括源极区和漏极区的器件层,其中源极区和漏极区由悬空的纳米线沟道连接。蚀刻停止层形成在源极区和漏极区的下面。该蚀刻停止层包括掺碳的硅层、未掺杂的硅层以及掺硼的硅层。悬空的纳米线沟道通过蚀刻该悬空的纳米线沟道下方的牺牲材料而形成。蚀刻对于牺牲材料具有选择性以防止去除位于源极区和漏极区下面的蚀刻停止层。
根据本发明的另一方面提供了一种形成纳米线场效应晶体管(FET)器件的方法,所述方法包括:形成包括源极区和漏极区的器件层,所述源极区和所述漏极区通过悬空的纳米线沟道连接;在所述源极区和所述漏极区下面形成蚀刻停止层,其中,所述蚀刻停止层包括:掺碳的硅层,未掺杂的硅层,和掺硼的硅层;以及通过蚀刻位于所述悬空的纳米线沟道下面的牺牲材料形成所述悬空的纳米线沟道,所述蚀刻对于所述牺牲材料具有选择性以防止将所述源极区和所述漏极区下面的所述蚀刻停止层去除。
在该方法中,其中,所述掺碳的硅层邻近于所述源极区或所述漏极区,所述掺硼的硅层邻近于半导体衬底,以及所述未掺杂的硅层垂直堆叠在所述掺硼的硅层的上方。
在另一个实例中,晶体管器件包括半导体衬底及包括源极区和漏极区的器件层。源极区和漏极区由悬空的纳米线沟道连接。该晶体管器件还包括位于源极区和漏极区下面的蚀刻停止层。该蚀刻停止层包括介于半导体衬底与源极和漏极区之间的支撑结构。悬空的纳米线沟道通过蚀刻该悬空的纳米线沟道下方的牺牲材料而形成,其中蚀刻对于牺牲材料具有选择性以防止去除位于源极区和漏极区下面的蚀刻停止层。
根据本发明的再一方面提供了一种晶体管器件,包括:半导体衬底;器件层,包括源极区和漏极区,所述源极区和所述漏极区由悬空的纳米线沟道连接;以及位于所述源极区和所述漏极区下面的蚀刻停止层,所述蚀刻停止层包括介于所述半导体衬底与所述源极区和漏极区之间的支撑结构,其中,所述悬空的纳米线沟道通过蚀刻所述悬空的纳米线沟道下面的牺牲材料形成,所述蚀刻对于所述牺牲材料具有选择性以防止将所述源极区和所述漏极区下面的所述蚀刻停止层去除。
附图说明
图1A、图1B、图1C以及图1D是示出了制造围栅(GAA)基于纳米线场效应晶体管(FET)的示例性方法的示意图。
图2A、图2B、图2C以及图2D是示出了制造具有包括未掺杂硅层的蚀刻停止层的基于纳米线的FET的示例性方法的示意图。
图3A、图3B、图3C以及图3D是示出了制造具有包括掺硼的硅层的蚀刻停止层的基于纳米线的FET的示例性方法的示意图。
图4是示出了形成纳米线场效应晶体管器件的示例性方法的流程图。
具体实施方式
图1A、图1B、图1C和图1D是示出制造围栅(GAA)纳米线沟道场效应晶体管(FET)的示例性方法的示意图。如图1A和图1C所示,该基于纳米线的FET可包括源极区104、漏极区106以及连接该源极区104和漏极区106的纳米线沟道102。除了其他材料之外,源极区104和漏极区106每个都可包括磷化硅(SiP)。除了其他类型之外,该纳米线沟道102可包括硅纳米线。在完整的制造状态下,栅极(未在图1A至图1D中示出)可围绕(例如,环绕)纳米线沟道102,其中,栅极可用于调整流经源极区104和漏极区106之间的纳米线沟道102的电流。
图1A可示出在制造基于纳米线的FET过程中的示例性中间阶段的截面图。具体地,图1A可示出FET在去除伪栅结构之后的状态,其中,伪栅结构的去除限定了将器件的纳米线沟道102从源极区104和漏极区106中区分开的沟槽138。如图1A中所示,层间介电(ILD)层118可形成在源极区104和漏极区106之上。可选的间隔件120可形成在沟槽138中,其中间隔件120可设置在源极区104和漏极区106与将要形成在沟槽138中的器件栅极之间。除了其他功能之外,间隔件120可用于使完工的器件中的寄生电容最小化,并且可防止栅极-源/漏极之间的短路。间隔件120还用以使栅极偏离源极区104和漏极区106一定距离。
牺牲层114可形成在纳米线沟道102的下方,其中牺牲层114基本形成在半导体衬底的上方。半导体衬底可包括具有第一导电类型(例如,P型或N型)的阱112,其中阱112可通过离子注入工艺形成。例如,半导体衬底可以是块状N型硅晶圆,而阱112可以是P型阱。相反地,半导体衬底可以是块状P型硅晶圆,而阱112可以是N型阱。在其他实例中,阱112可以与半导体衬底具有相同的导电类型。此外,在其他实例中,半导体衬底可以是绝缘体上半导体或者绝缘体上硅(SOI)衬底。在阱112中,反穿通(APT)层116可通过注入工艺形成。APT层116可用于减小FET器件中的穿通(例如,其中零栅偏压漏极电流随着VDS增大而增大),并且APT层116可以具有第一导电类型或者第二导电类型。因此,牺牲层114可基本形成在半导体衬底的阱112和APT层116的上方。
可以通过蚀刻纳米线沟道102下方的牺牲层114来将纳米线沟道102从半导体衬底上释放出来(例如,形成悬空的纳米线沟道102)。这在图1C中示出,其中已经将牺牲层114蚀刻掉,从而在牺牲层114的位置处留出空区124。牺牲层114可包括例如硅锗(SiGe),其中锗可包括硅锗合金的20%至55%(例如,Si1-xGex,其中x在约20%至55%的范围内)。例如,可利用化学腐蚀剂或者利用干法蚀刻工艺对牺牲层114进行蚀刻以形成图1C中的空区124。
图1A和图1C还示出了形成在该结构的源极区104和漏极区106下方的蚀刻停止层108和110。蚀刻停止层108和110可包括位于半导体衬底与源极区104和漏极区106之间的支撑结构,其中该结构在蚀刻牺牲层114之前和之后支撑源极区104和漏极区106。蚀刻停止层108和110可由例如掺碳的硅组成。可利用外延生长工艺来形成用于蚀刻停止层108和110的掺碳的硅。
可对蚀刻停止层108和110进行选择以包括相对于牺牲层114具有高蚀刻速率选择性的材料。蚀刻速率选择性可被定义为目标材料(即,此处指要被蚀刻的牺牲层114)的蚀刻速率与其他材料(即,此处指在蚀刻牺牲层114的过程中优选不被蚀刻的蚀刻停止层108和110)的蚀刻速率的比率。因此,可选择蚀刻停止层108和110,使得当牺牲层114被蚀刻成使得纳米线沟道102悬空时,以相比于牺牲层114大幅降低的蚀刻速率来蚀刻蚀刻停止层108和110。在掺碳的硅和SiGe之间存在高的蚀刻速率选择性,使得当SiGe用作牺牲层114时,掺碳的硅可为适于蚀刻停止层108和110的材料。使用蚀刻停止层108和110可以防止在去除牺牲层114的过程中在源极区104和漏极区106下面的钻蚀。
在不使用蚀刻停止层108和110的用于基于纳米线的FET器件的传统制造技术中,牺牲层114可在源极区104和漏极区106的下方延伸。在这种传统的制造技术中,当蚀刻牺牲层114时,可在源极区104和漏极区106的下方发生钻蚀。钻蚀可引起对源极区104和漏极区106下方的牺牲层114进行蚀刻,这种蚀刻可能是不期望的并且可造成源极区104和漏极区106缺少结构性支撑。例如,在传统的制造技术中,蚀刻可能是各向同性的,从而在源极区104和漏极区106的下方造成明显的钻蚀。通过使用蚀刻停止层108和110,蚀刻对于牺牲层114而言可以是有选择性的,从而基本防止了蚀刻停止层108和110的去除,并且基本防止了源极区104和漏极区106下方的钻蚀。
在制造基于纳米线的FET器件的过程中,蚀刻停止层108和110可提供其他功能。例如,在形成FET器件的过程中,可使用高温处理(例如,高温栅极圆化和氧化处理)。高温处理可使得源极区104和漏极区106中的SiP向下扩散(例如,自上而下扩散)。在蚀刻停止层108和110包括掺碳的硅的示例性结构中,蚀刻停止层108和110可作为SiP扩散停止层,从而基本上防止SiP在高温处理中向下扩散。还可选择具有高电阻率的蚀刻停止层108和110。例如,掺碳的硅可比未掺杂的硅具有更高的电阻率。因此,当蚀刻停止层108和110中包含掺碳的硅时,较高的电阻率可使得掺碳的硅将源极区104、漏极区106或者纳米线沟道102与形成在半导体衬底中的阱112(例如,P阱)电隔离。
图1B示出了图1A中所示的结构的截面切片,同时图1A的结构在图1B中被旋转了90度。图1D示出了图1C中所示的结构的截面切片,同时图1C的结构在图1D中被旋转了90度。如图1B和1D中所示,牺牲层114可设置在纳米线沟道102的下面,从而当去除牺牲层114时,可将纳米线沟道102悬空在空区124之上。图1B和图1D还示出了半导体衬底122和形成在其中的阱112。半导体衬底可包括作为FET制造工艺的一部分而形成在其中的浅沟道隔离(STI)区域。在图1B和图1D的视图中,沟槽138可由向下延伸至半导体衬底122的ILD层118和间隔件材料120围绕。
图2A、图2B、图2C以及图2D是示出用于制造具有包括未掺杂的硅层210的蚀刻停止层的基于纳米线的FET的示例方法的示意图。如图2A和图2C所示,基于纳米线的FET可包括源极区204、漏极区206以及连接源极区204和漏极区206的纳米线沟道202。除了其他材料之外,源极区204和漏极区206每个都可包括磷化硅(SiP)。除了其他类型之外,纳米线沟道202可包括硅纳米线。在完整制造的状态中,FET可包括围绕纳米线沟道202的栅极(未在图2A至图2D中示出),使得FET可以是围栅(GAA)FET。
图2A可示出在制造基于纳米线的FET的过程中的示例性中间阶段的截面图。具体地,图2A可示出在FET去除伪栅结构之后的的状态,其中,伪栅结构的去除限定了将器件的纳米线沟道202与源极区204和漏极区206区分开的沟槽238。如图2A所示,层间介电(ILD)层218可形成在源极区204和漏极区206之上。可选的间隔件220可形成在沟槽238中,其中间隔件220可设置在源极区204和漏极区206与将要在沟槽238中形成的器件的栅极之间。
牺牲层214(例如,包括Si1-xGex,其中x在约20%至55%的范围内)可形成在纳米线沟道202的下面,并且基本上位于半导体衬底的上方。半导体衬底可包括具有第一导电类型的阱212,其中阱212可通过注入工艺形成。在阱212中,可形成离子注入反穿通(APT)层216。该APT层216可以具有第一导电类型或者第二导电类型。可通过蚀刻纳米线沟道202下面的牺牲层214而将纳米线沟道202从半导体衬底上释放。这在图2C中示出,其中,已经将牺牲层214蚀刻掉,从而在牺牲层214的位置中留下空区224。
图2A和2C还示出了可形成在结构的源极区204和漏极区206下方的蚀刻停止层208和蚀刻停止层210。蚀刻停止层208和210可包括位于半导体衬底与源极区204和漏极区206之间的支撑结构。每个蚀刻停止层都可包括例如掺碳的硅,其可与上面图1A至图1D中所述的掺碳的硅类似。蚀刻停止层208中掺碳的硅可邻近于源极区204和漏极区206,并且可以垂直堆叠在蚀刻停止层210的上方。可以利用外延生长工艺形成蚀刻停止层208中掺碳的硅。
蚀刻停止层210可包括例如未掺杂的硅。如图2A和2C中所示,蚀刻停止层210中未掺杂的硅可邻近于半导体衬底。特别地,在某些实施例中,蚀刻停止层210中的未掺杂的硅可邻近于APT层216或者阱212的其他部分。如图2A和2C中所示,未掺杂的硅层210的厚度可大于掺碳的硅层208的厚度。可选地,未掺杂的硅层210的厚度可小于掺碳的硅层208的厚度,或者层208和层210可具有相同或相似的厚度。
可对蚀刻停止层208和210进行选择以包括相对于牺牲层214具有高蚀刻速率选择性的材料。因此,可选择蚀刻停止层208和210,使得当牺牲层214被蚀刻成使得纳米线沟道202悬空时,可以相比于牺牲层214大幅降低的速率来蚀刻停止层208和210。在掺碳的硅和未掺杂的硅与SiGe之间都存在高蚀刻速率选择性,使得当SiGe用作牺牲层214时,掺碳的硅可以是适于蚀刻停止层208的材料,而未掺杂的硅可以是适于蚀刻停止层210的材料。蚀刻停止层208和210的使用可以防止在去除牺牲层214的过程中在源极区204和漏极区206下面的钻蚀。
在制造基于纳米线的FET器件的过程中,蚀刻停止层208和210可提供其他功能。例如,在形成FET器件的过程中,可使用高温处理。高温处理可使得源极区204和漏极区206中的SiP向下扩散(例如,自上而下扩散)。在蚀刻停止层208包括邻近于源极区204和漏极区206的掺碳的硅的示例性结构中,掺碳的硅可作为SiP扩散停止层,从而防止SiP在高温处理过程中向下扩散。掺碳的硅可防止SiP扩散至未掺杂的硅层210和结构的其他部分(例如,半导体衬底)。
图2B示出了图2A中所示的结构的截面切片,同时图2A的结构在图2B中被旋转90度。图2D示出了图2C中所示的结构的截面切片,同时图2C的结构在图2D中被旋转90度。如图2B和2D中所示,牺牲层214可位于纳米线沟道202的下面,从而当去除牺牲层214时,纳米线沟道可以悬空在空区224之上。图2B和2D还示出了半导体衬底222和形成在其中的阱212。在图2B和2D的示图中,沟槽238可由向下延伸至半导体衬底222的ILD层218和间隔件材料220围绕。
图3A、图3B、图3C和图3D是示出用于制造具有包括掺硼的硅层310的蚀刻停止层的基于纳米线的FET的示例性方法的示意图。如图3A和3C中所示,基于纳米线的FET可以是包括源极区304、漏极区306以及连接源极区304和漏极区306的纳米线沟道302的围栅(GAA)FET。除了其他材料之外,源极区304和漏极区306每个都可包括磷化硅(SiP)。除了其他类型之外,纳米线沟道202可包括硅纳米线。图3A可示出FET去除伪栅极结构之后的状态,其中伪栅极结构的去除限定了沟槽338。如图3A中所示,层间介电(ILD)层318可形成在源极区304和漏极区306之上。可选的间隔件320可形成在沟槽338中。
牺牲层314可形成在纳米线沟道302的下方并且基本上位于半导体衬底的上方,同时牺牲层314包括例如硅锗(SiGe),其中锗可包含硅锗合金的20%至55%(例如,Si1-xGex,其中x在约20%至55%的范围内)。半导体衬底可包括具有第一导电类型的阱312,其中阱312可通过离子注入工艺形成。对比图1A、图1C、图2A和图2C中所示的示例性结构,图3A和图3C中的示例性结构可不包括注入的反穿通(APT)层。如下面更详细的描述,掺硼的硅层310可执行类似于APT层所执行的功能,使得APT层可不形成在图3A和图3C的示例性结构中。可通过蚀刻纳米线沟道302下方的牺牲层314将纳米线沟道302从半导体衬底上释放。这在图3C中示出,其中已经将牺牲层314蚀刻掉,从而在牺牲层314的位置中留下空区324。
图3A和3C还示出了形成在结构的源极区304和漏极区306下面的蚀刻停止层308和310。蚀刻停止层308可包括例如掺碳的硅,其中蚀刻停止层308中掺碳的硅邻近于源极区304和漏极区306,并且垂直堆叠在蚀刻停止层310的上方。可利用外延生长工艺来形成蚀刻停止层308中的掺碳的硅。
蚀刻停止层310可包括例如掺硼的硅。如图3A和图3C中所示,蚀刻停止层310中的掺硼的硅可邻近于半导体衬底。用于蚀刻停止层310的掺硼的硅可利用外延生长工艺来形成。掺硼的硅层310的厚度可小于掺碳的硅层308的厚度。可选地,掺硼的硅层310的厚度可大于掺碳的硅层308的厚度,或者层308和层310可具有相同或类似的厚度。
可选择蚀刻停止层308和310以包括相对于牺牲层314具有高蚀刻速率选择性的材料。例如,牺牲层314可以是SiGe,而蚀刻停止层308和310可分别包括上述的掺碳的硅材料和掺硼的硅材料,以远比SiGe低的蚀刻速率来蚀刻它们。使用蚀刻停止层308和310可防止在去除牺牲层314的过程中在源极区304和漏极区306的下面发生钻蚀。
在基于纳米线的FET器件中,蚀刻停止层308和310可提供其他功能。例如,层308中掺碳的硅的材料可减小SiP在高温处理(例如,栅极圆化和氧化处理)后从源极区304和漏极区306向下扩散(即,自上而下的扩散)。因此,掺碳的硅可防止SiP扩散至例如掺硼的硅层310和该结构的其他部分(例如,半导体衬底)。此外,如上所述,外延生长的掺硼的硅层310可用作反穿通(APT)层,其可消除对APT注入区的需求(例如,如图3A和3C中所示,标注为“无APT注入”)。
图3B示出了图3A中所示的结构的截面切片,同时图3A的结构在图3B中被旋转90度。图3D示出了图3C中所示的结构的截面切片,同时图3C的结构在图3D中被旋转90度。如图3B和3D中所示,牺牲层314可位于纳米线沟道302的下方,从而当去除牺牲层314时,纳米线沟道可悬空在空区324之上。图3B和3D还示出了半导体衬底322和形成在其中的阱312。在图3B和3D的示图中,沟槽338可由向下延伸至半导体衬底322的ILD层318和间隔件材料320围绕。
图1A至图1D、图2A至图2D以及图3A至3D描述了三个示例性结构以及用于形成纳米线FET的方法。然而,应该意识到,可将来自三个不同结构和方法的各个方面组合从而形成多种附加的结构和方法。例如,一个这样的附加结构可包括蚀刻停止层,而蚀刻停止层包括垂直堆叠的掺碳的硅层、未掺杂的硅层以及掺硼的硅层。该附加的结构可包括APT注入或者不包括APT注入。通过组合图1A至图1D、图2A至图2D以及图3A至图3D的各个方面可形成其他各种结构和方法。
图4是示出了用于形成纳米线场效应晶体管器件的示例性方法的流程图。在步骤402中,形成包括源极区和漏极区的器件层,其中源极区和漏极区通过悬空的纳米线沟道连接。在步骤404中,在源极区和漏极区下面形成蚀刻停止层。该蚀刻停止层包括介于半导体衬底与源极区和漏极区之间的支撑结构。在步骤406中,形成悬空的纳米线沟道,其通过蚀刻位于该悬空的纳米线沟道下面的牺牲层材料来形成。该蚀刻对于牺牲材料是有选择性的以防止去除源极区和漏极区下面的蚀刻停止层。
本书面描述利用实例来公开本公开(包括最优模式),而且还使本领域的技术人员制作和使用本公开。本公开的可授权的范围可包括其他实例。应该理解的是,除非上下文中另有明确指示,如此处的描述中以及下面整个权利要求中所使用的,“一”,“一个”和“该”的含义包括复数的指代。而且,除非上下文中另有明确指示,如在此处描述中以及下面整个权利要求中所使用的,“在…之内”的意思包括“在…之内”和“在…上面”。此外,除非上下文中另有明确指示,如此处的描述中以及下面整个权利要求中所使用的,“每个”的意思不要求“每个”和“每一个”。最后,除非上下文中另有明确指示,如此处描述中以及下面整个权利要求中所使用的,“和”和“或”的意思均包括连接词和反义连接词,并且可以交换使用;短语“不包括”可用于指代仅仅反义连接的含义可适用的情况。

Claims (23)

1.一种用于形成纳米线场效应晶体管(FET)器件的方法,所述方法包括:
形成包括源极区和漏极区的器件层,所述源极区和所述漏极区通过悬空的纳米线沟道连接;
在所述源极区和所述漏极区下面形成蚀刻停止层,所述蚀刻停止层包括介于半导体衬底与所述源极区和漏极区之间的支撑结构;以及
形成悬空的纳米线沟道,所述悬空的纳米线沟道通过蚀刻所述悬空的纳米线沟道下面的牺牲材料形成,所述蚀刻对于所述牺牲材料具有选择性以防止去除所述源极区和所述漏极区下面的所述蚀刻停止层。
2.根据权利要求1所述的方法,还包括:
形成所述蚀刻停止层,其中,所述蚀刻停止层包括掺碳的硅层;以及
蚀刻所述牺牲材料,其中,所述牺牲材料包括SiGe。
3.根据权利要求2所述的方法,还包括:
利用外延工艺来形成所述掺碳的硅层。
4.根据权利要求2所述的方法,还包括:
在所述半导体衬底中形成具有第一导电类型的阱;以及
形成所述掺碳的硅层,其中,所述掺碳的硅层的电阻率特征使得所述掺碳的硅层将所述源极区、所述漏极区或所述悬空的纳米线沟道与所述阱电隔离。
5.根据权利要求2所述的方法,还包括:
在所述半导体衬底中形成具有第一导电类型的阱;
通过注入工艺在所述阱中形成具有所述第一导电类型的反穿通层;以及
形成所述掺碳的硅层,其中,所述掺碳的硅层i)邻近于所述源极区或所述漏极区,并且ii)邻近于所述反穿通层。
6.根据权利要求5所述的方法,其中,所述第一导电类型是p型。
7.根据权利要求5所述的方法,其中,所述第一导电类型是n型。
8.根据权利要求2所述的方法,还包括:
形成所述源极区,其中,所述源极区包括SiP;
形成所述漏极区,其中,所述漏极区包括SiP;以及
形成所述掺碳的硅层,其中,所述掺碳的硅层邻近于所述源极区或者所述漏极区,并且所述掺碳的硅层减小了SiP向FET器件的部分的扩散。
9.根据权利要求8所述的方法,还包括:
对所述器件层和所述蚀刻停止层进行高温处理,其中,所述掺碳的硅层减小了所述SiP在所述高温处理期间的扩散。
10.根据权利要求2所述的方法,还包括:
形成所述蚀刻停止层,其中,所述蚀刻停止层包括:
未掺杂的硅层,和
所述掺碳的硅层,i)邻近于所述源极区或所述漏极区,并且ii)垂直堆叠在所述未掺杂的硅层的上方。
11.根据权利要求10所述的方法,还包括:
形成所述未掺杂的硅层,其中,所述未掺杂的硅层邻近于所述半导体衬底。
12.根据权利要求10所述的方法,还包括:
形成所述源极区,其中,所述源极区包括SiP;
形成所述漏极区,其中,所述漏极区包括SiP;以及
形成所述掺碳的硅层,其中,所述掺碳的硅层减小了SiP向所述未掺杂的硅层和所述半导体衬底的扩散。
13.根据权利要求10所述的方法,还包括:
形成所述蚀刻停止层,其中,所述未掺杂的硅层的厚度大于所述掺碳的硅层的厚度。
14.根据权利要求10所述的方法,还包括:
在所述半导体衬底中形成具有第一导电类型的阱;
通过注入工艺在所述阱中形成具有所述第一导电类型的反穿通层;以及
形成所述未掺杂的硅层,其中,所述未掺杂的硅层邻近于所述反穿通层。
15.根据权利要求2所述的方法,还包括:
形成所述蚀刻停止层,其中,所述蚀刻停止层包括:
掺硼的硅层,和
所述掺碳的硅层,i)邻近于所述源极区或所述漏极区,并且ii)垂直堆叠在所述掺硼的硅层的上方。
16.根据权利要求15所述的方法,还包括:
形成所述掺硼的硅层,其中,所述掺硼的硅层邻近于所述半导体衬底。
17.根据权利要求15所述的方法,还包括:
利用第一外延工艺来形成所述掺硼的硅层;以及
利用第二外延工艺来形成所述掺碳的硅层。
18.根据权利要求15所述的方法,还包括:
形成所述源极区,其中,所述源极区包括SiP;
形成所述漏极区,其中,所述漏极区包括SiP;以及
形成所述掺碳的硅层,其中,所述掺碳的硅层减小了SiP向所述掺硼的硅层的扩散。
19.根据权利要求15所述的方法,还包括:
形成所述蚀刻停止层,其中,所述掺硼的硅层的厚度小于所述掺碳的硅层的厚度。
20.根据权利要求15所述的方法,还包括:
在所述半导体衬底中形成具有第一导电类型的阱;以及
通过外延工艺形成所述掺硼的硅层,其中,所述掺硼的硅层是反穿通层,并且所述FET器件不包括通过注入工艺形成的反穿通层。
21.一种形成纳米线场效应晶体管(FET)器件的方法,所述方法包括:
形成包括源极区和漏极区的器件层,所述源极区和所述漏极区通过悬空的纳米线沟道连接;
在所述源极区和所述漏极区下面形成蚀刻停止层,其中,所述蚀刻停止层包括:
掺碳的硅层,
未掺杂的硅层,和
掺硼的硅层;以及
通过蚀刻位于所述悬空的纳米线沟道下面的牺牲材料形成所述悬空的纳米线沟道,所述蚀刻对于所述牺牲材料具有选择性以防止将所述源极区和所述漏极区下面的所述蚀刻停止层去除。
22.根据权利要求21所述的方法,
其中,所述掺碳的硅层邻近于所述源极区或所述漏极区,
所述掺硼的硅层邻近于半导体衬底,以及
所述未掺杂的硅层垂直堆叠在所述掺硼的硅层的上方。
23.一种晶体管器件,包括:
半导体衬底;
器件层,包括源极区和漏极区,所述源极区和所述漏极区由悬空的纳米线沟道连接;以及
位于所述源极区和所述漏极区下面的蚀刻停止层,所述蚀刻停止层包括介于所述半导体衬底与所述源极区和漏极区之间的支撑结构,
其中,所述悬空的纳米线沟道通过蚀刻所述悬空的纳米线沟道下面的牺牲材料形成,所述蚀刻对于所述牺牲材料具有选择性以防止将所述源极区和所述漏极区下面的所述蚀刻停止层去除。
CN201410385556.7A 2013-10-16 2014-08-07 具有用于源极和漏极的支撑结构的纳米线mosfet Expired - Fee Related CN104576395B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/055,165 2013-10-16
US14/055,165 US9048301B2 (en) 2013-10-16 2013-10-16 Nanowire MOSFET with support structures for source and drain

Publications (2)

Publication Number Publication Date
CN104576395A CN104576395A (zh) 2015-04-29
CN104576395B true CN104576395B (zh) 2017-08-15

Family

ID=52808894

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410385556.7A Expired - Fee Related CN104576395B (zh) 2013-10-16 2014-08-07 具有用于源极和漏极的支撑结构的纳米线mosfet

Country Status (3)

Country Link
US (3) US9048301B2 (zh)
KR (1) KR101633182B1 (zh)
CN (1) CN104576395B (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10553718B2 (en) * 2014-03-14 2020-02-04 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor devices with core-shell structures
US9893159B2 (en) 2014-08-15 2018-02-13 Taiwan Semiconductor Manufacturing Co., Ltd. Transistor, integrated circuit and method of fabricating the same
US9985026B2 (en) * 2014-08-15 2018-05-29 Taiwan Semiconductor Manufacturing Co., Ltd. Transistor, integrated circuit and method of fabricating the same
US9647139B2 (en) 2015-09-04 2017-05-09 International Business Machines Corporation Atomic layer deposition sealing integration for nanosheet complementary metal oxide semiconductor with replacement spacer
US9704962B1 (en) * 2015-12-16 2017-07-11 Globalfoundries Inc. Horizontal gate all around nanowire transistor bottom isolation
US10157992B2 (en) * 2015-12-28 2018-12-18 Qualcomm Incorporated Nanowire device with reduced parasitics
US9806077B2 (en) 2016-03-07 2017-10-31 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor structure with low defect and method for forming the same
US10332986B2 (en) 2016-08-22 2019-06-25 International Business Machines Corporation Formation of inner spacer on nanosheet MOSFET
WO2018063300A1 (en) * 2016-09-30 2018-04-05 Intel Corporation Nanowire transistors employing carbon-based layers
CN107331705B (zh) * 2017-04-18 2020-10-30 黄辉 一种基于桥接生长的纳米线器件及其制备方法
FR3069952B1 (fr) 2017-08-07 2019-08-30 Commissariat A L'energie Atomique Et Aux Energies Alternatives Realisation d'un transistor a structure de canal et regions de source et de drain en semi-metal
KR102388463B1 (ko) 2017-08-21 2022-04-20 삼성전자주식회사 채널 패턴을 포함하는 반도체 소자 및 그 제조 방법
CN111108605A (zh) 2017-12-28 2020-05-05 英特尔公司 纳米线晶体管的源电极和漏电极保护
KR102136806B1 (ko) 2018-03-28 2020-07-23 엘지디스플레이 주식회사 신규한 유기화합물 및 상기 유기화합물을 포함하는 유기전계 발광소자
US10566435B2 (en) * 2018-04-06 2020-02-18 International Business Machines Corporation Gate stack quality for gate-all-around field-effect transistors
US11289417B2 (en) * 2019-09-30 2022-03-29 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and methods of forming the same
US11784226B2 (en) * 2020-11-13 2023-10-10 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor gate-all-around device having an anti-punch-through (APT) layer including carbon

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1855390A (zh) * 2005-03-24 2006-11-01 三星电子株式会社 具有圆形形状的纳米线晶体管沟道的半导体器件及其制造方法
CN102428564A (zh) * 2009-05-21 2012-04-25 国际商业机器公司 具有多个阈值电压的纳米线网的场效应晶体管

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5776808A (en) 1996-12-26 1998-07-07 Siemens Aktiengesellschaft Pad stack with a poly SI etch stop for TEOS mask removal with RIE
KR20030053958A (ko) * 2001-12-24 2003-07-02 동부전자 주식회사 반도체 소자의 트랜지스터 제조방법
KR100755367B1 (ko) * 2005-06-08 2007-09-04 삼성전자주식회사 실린더형 게이트를 갖는 나노-라인 반도체 소자 및 그제조방법
KR101106913B1 (ko) 2005-11-18 2012-01-25 엔엑스피 비 브이 트랜지스터
US7999251B2 (en) 2006-09-11 2011-08-16 International Business Machines Corporation Nanowire MOSFET with doped epitaxial contacts for source and drain
FR2923652B1 (fr) 2007-11-09 2010-06-11 Commissariat Energie Atomique Procede de fabrication de nanofils paralleles a leur substrat support
US7902541B2 (en) * 2009-04-03 2011-03-08 International Business Machines Corporation Semiconductor nanowire with built-in stress
US9373694B2 (en) * 2009-09-28 2016-06-21 Semiconductor Manufacturing International (Shanghai) Corporation System and method for integrated circuits with cylindrical gate structures
KR101156057B1 (ko) * 2010-01-13 2012-06-20 고려대학교 산학협력단 알루미나용 식각액 조성물
US8445337B2 (en) * 2010-05-12 2013-05-21 International Business Machines Corporation Generation of multiple diameter nanowire field effect transistors
US9029834B2 (en) * 2010-07-06 2015-05-12 International Business Machines Corporation Process for forming a surrounding gate for a nanowire using a sacrificial patternable dielectric
US8551833B2 (en) 2011-06-15 2013-10-08 International Businesss Machines Corporation Double gate planar field effect transistors
US9224809B2 (en) * 2012-05-17 2015-12-29 The Board Of Trustees Of The University Of Illinois Field effect transistor structure comprising a stack of vertically separated channel nanowires
KR20140102351A (ko) * 2013-02-12 2014-08-22 삼성전자주식회사 게이트 올 어라운드형 반도체 장치
US9257545B2 (en) * 2013-09-12 2016-02-09 Globalfoundries Inc. Stacked nanowire device with variable number of nanowire channels
US8900951B1 (en) * 2013-09-24 2014-12-02 International Business Machines Corporation Gate-all-around nanowire MOSFET and method of formation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1855390A (zh) * 2005-03-24 2006-11-01 三星电子株式会社 具有圆形形状的纳米线晶体管沟道的半导体器件及其制造方法
CN102428564A (zh) * 2009-05-21 2012-04-25 国际商业机器公司 具有多个阈值电压的纳米线网的场效应晶体管

Also Published As

Publication number Publication date
US9263295B2 (en) 2016-02-16
US9773868B2 (en) 2017-09-26
KR101633182B1 (ko) 2016-06-23
US20150102287A1 (en) 2015-04-16
US20150255306A1 (en) 2015-09-10
CN104576395A (zh) 2015-04-29
KR20150044376A (ko) 2015-04-24
US20160141361A1 (en) 2016-05-19
US9048301B2 (en) 2015-06-02

Similar Documents

Publication Publication Date Title
CN104576395B (zh) 具有用于源极和漏极的支撑结构的纳米线mosfet
CN107039503B (zh) 水平栅极环绕纳米线晶体管的底部隔离
CN103489863B (zh) 采用鳍式场效应晶体管工艺的同质结二极管结构
US6700175B1 (en) Vertical semiconductor device having alternating conductivity semiconductor regions
JP4851694B2 (ja) 半導体装置の製造方法
US9034755B2 (en) Method of epitaxially forming contact structures for semiconductor transistors
CN103035725B (zh) 双栅极捆扎的vdmos器件
CN104037083B (zh) 一种半导体器件的制造方法
JP2010010456A (ja) 半導体装置
CN103904116A (zh) 金属氧化物半导体器件和制作方法
TW201435985A (zh) 半導體元件及其製造方法
TWI414023B (zh) 用於製造一半導體器件的方法
CN105977285A (zh) 半导体器件及其制造方法
JP2007088334A (ja) 半導体装置およびその製造方法
JP2008109010A (ja) 半導体装置及び半導体装置の製造方法
JP3898024B2 (ja) 集積回路及びその製造方法
TW200809980A (en) Method of manufacturing a bipolar transistor
CN112582265B (zh) 半导体结构及其形成方法
CN105575810B (zh) 晶体管的形成方法
CN103400764B (zh) 双极型晶体管的形成方法
JP6059333B2 (ja) 半導体装置及びその製造方法
CN104465377B (zh) Pmos晶体管及其形成方法
CN101866858B (zh) 凹陷沟道型pnpn场效应晶体管的制造方法
JP4014548B2 (ja) 半導体装置及びその製造方法
CN110233176B (zh) 半导体结构及其形成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170815

CF01 Termination of patent right due to non-payment of annual fee