CN104549527A - 一种氧化铝载体的制备方法 - Google Patents

一种氧化铝载体的制备方法 Download PDF

Info

Publication number
CN104549527A
CN104549527A CN201310495646.7A CN201310495646A CN104549527A CN 104549527 A CN104549527 A CN 104549527A CN 201310495646 A CN201310495646 A CN 201310495646A CN 104549527 A CN104549527 A CN 104549527A
Authority
CN
China
Prior art keywords
aqueous solution
time
accordance
temperature
aging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310495646.7A
Other languages
English (en)
Other versions
CN104549527B (zh
Inventor
吕振辉
薛冬
彭绍忠
张学辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Fushun Research Institute of Petroleum and Petrochemicals
Original Assignee
China Petroleum and Chemical Corp
Sinopec Fushun Research Institute of Petroleum and Petrochemicals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Fushun Research Institute of Petroleum and Petrochemicals filed Critical China Petroleum and Chemical Corp
Priority to CN201310495646.7A priority Critical patent/CN104549527B/zh
Publication of CN104549527A publication Critical patent/CN104549527A/zh
Application granted granted Critical
Publication of CN104549527B publication Critical patent/CN104549527B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)

Abstract

本发明公开了一种氧化铝载体的制备方法。本发明方法包括:利用撞击流反应器,酸性铝盐水溶液与碱金属铝酸盐溶液并流中和与pH值摆动中和过程相结合,进行成胶过程,中和物料经老化、过滤、洗涤和干燥,得到氧化铝干胶,氧化铝干胶经挤条、干燥和焙烧,得到氧化铝载体。本发明方法制备的氧化铝载体氧化铝载体孔径较大,孔径分布集中,结晶度高,晶粒完整。可以用于制备蜡油、渣油加氢处理催化剂。

Description

一种氧化铝载体的制备方法
技术领域
本发明涉及一种氧化铝载体的制备方法。
背景技术
众所周知,目前氧化铝干胶的制备方法可归纳为固相法、气相法和液相法。液相法有沉淀法和溶胶-凝胶法及相转移法。常规沉淀法所制备的氧化铝干胶晶粒较大,但结晶度低,颗粒完整度不高,孔分布比较弥散,孔结构不理想;在制备载体的过程中由于颗粒堆积松散,在外加胶溶酸和剪切力的作用下,很容易导致孔道坍塌,孔容、孔径较小,致使强度低,堆密度减小,很难制备大孔容,高比表面积,高强度的载体。
撞击流反应器是安装在容器下部并浸没在介质中的两个螺旋桨推动流体经与之相配的两个导流筒流动并在中心处相向撞击,形成撞击区;随后经导流筒与器壁间的环室循环再回流到导流筒进口。此方法具有下列特点:(1)撞击区微观混合强烈、快速反应生成大量晶核;(2)环室回流区和导流筒中基本上无混合、不反应,初生态微晶不长大,还有利于表面稳定和钝化。
专利CN101088605A公开了一种氧化铝载体的制备方法。该方法是将酸性铝盐和碱金属铝酸盐并流中和,并在摆动过程中和,物料老化,然后过滤、洗涤、干燥,得到氧化铝干胶。该方法所制备的氧化铝干胶虽然粒径较大,但是结晶度低,颗粒不够完整,在制备载体的过程中很容易造成颗粒破坏,孔道坍塌,很难制备大孔径的氧化铝载体。
由此可见,采用现有技术制备的氧化铝载体孔径分布较宽,结晶度较低,颗粒不够完整,很难制备出具有较窄粒径分布,且孔径大,结晶度高的氧化铝载体。
发明内容
本发明的目的是克服现有技术的不足,提供一种氧化铝载体的制备方法。本方法采用撞击流-沉淀反应器进行反应,所制备的氧化铝载体不但孔径较大,孔径分布集中,而且结晶度高,晶粒完整,孔结构理想。
本发明提供的氧化铝载体的制备方法,包括以下步骤:
(1)在撞击流反应器中加入底水并加热至反应温度;
(2)调节两个导流管的撞击方向,启动螺旋桨驱动电机,螺旋桨推动溶液在撞击流反应器中循环流动和撞击; 
(3)在撞击流反应器两端的进料口Ⅰ和Ⅱ以一定的流量同时连续加入酸性铝盐水溶液和碱金属铝酸盐水溶液或碱性沉淀剂,调节pH值为5~8后,停止加入酸性铝盐水溶液和碱金属铝酸盐水溶液或碱性沉淀剂,中和反应并稳定一段时间;
(4)通入碱金属铝酸盐水溶液或碱性沉淀剂,调节pH值至8.6~12,稳定一段时间;
(5)通入酸性铝盐水溶液,调节pH值至2~4,稳定一段时间;
(6)通入碱金属铝酸盐水溶液或碱性沉淀剂,调节pH值至8.6~12,稳定一段时间;
(7)重复步骤(5)和步骤(6)1~4次,成胶结束;
(8)成胶结束后关闭撞击流反应器,进行老化,然后经过滤、洗涤和干燥得到氧化铝干胶。
(9)取一定量步骤(8)所制备的氧化铝干胶,与氨水混合,经碾压机碾压一段时间之后,挤条成一定形状后,经干燥、两段升温焙烧得到所制备的氧化铝载体。
根据本发明的氧化铝载体的制备方法,其中步骤(1)中所述的反应温度为45℃~100℃,优选50℃~95℃。
步骤(2)中,需要控制螺旋桨转速,具体转速根据观察到撞击区撞击情况而定,以流体剧烈翻动但不飞溅为宜。所述的撞击流螺旋桨转数范围一般为750 r/min~2000r/min,最好是800r/min~1500r/min;两股物料的撞击角度为90°~180°,优选150°~180°。
步骤(3)中所述的酸性铝盐水溶液可以为AlCl3、Al2(SO4)3或Al(NO)3的水溶液,优选Al2(SO4)3水溶液。所述的碱金属铝酸盐水溶液选自NaAlO2或KAlO2水溶液。所述的碱性沉淀剂一般为NaOH、(NH4)2CO3或NH4OH溶液,优选(NH4)2CO3或NH4OH溶液。
步骤(3)中所述的pH值范围是5~8,优选7.0~7.8。所述中和反应的时间为5min~20min,优选10min~15min。所述酸性铝盐水溶液和碱金属铝酸盐水溶液或碱性沉淀剂的流量一般为0.5L/min~1.0L/min,优选0.5L/min~0.8 L/min。
步骤(4)所述的pH值范围是8.6~12.0,优选9.0~11.0。所述的稳定时间范围为5min~20min,优选10min~15min。
步骤(5)所述的pH值范围为2.0~4.0,优选3.0~3.5。所述的稳定时间范围为5min~20min,优选10min~15min。
步骤(6)所述的pH值范围是8.6~12.0,优选9.0~11.0;所述的稳定时间范围为5min~20min,优选10min~15min。
步骤(7)中,所述步骤(5)和步骤(6)的重复次数为1次~4次,优选为2次~3次。
步骤(8)所述的老化温度范围是80℃~150℃,优选90℃~120℃;老化的pH值范围为8.0~10.0,优选9.0~9.5;老化的时间为0.5h~2h,优选0.5h~1h。优选在老化温度高于步骤(3)中的中和温度10℃~100℃,最好20℃~70℃、老化pH值高于步骤(3)中的中和pH值0.5~4.0,最好1.5~2.5的条件下进行老化。
根据本发明的方法,其中步骤(8)中所制备的氧化铝干胶结晶度≥85%,优选90%~95%。本发明方法所制得氧化铝干胶最大粒径范围为20μm~30μm,最小粒径范围为10μm~15μm;而且粒径分布非常集中:其粒径分布中,<20μm粒径所占比例为5%~20%;20μm~25μm粒径所占比例为50%~70%,优选为55%~70%;>25μm的粒径所占比例为20%~35%。本发明方法中的结晶度采用XRD进行测定,粒径分布采用激光粒度仪来进行测定。
根据本发明的方法,其中步骤(9)中制备的氧化铝载体其比表面积为100m2/g~150m2/g,优选120m2/g~140m2/g;孔径为120nm~150nm,优选120nm~140nm;其中60nm~150nm的孔占总孔容含量的85%~95%,优选90%~95%。
步骤(9)所述的干燥温度为40℃~200℃,优选60℃~120℃;干燥时间为1h~5h,优选2h~4h;氛围可以是空气或其它氛围,干燥温度根据有机化合物的性质具体确定。所述的干燥方法包括喷雾干燥、沸腾干燥或微波真空干燥等方法。喷雾干燥的热空气进口温度100℃~180℃,出口温度为90℃~120℃,雾化的转速控制在8000~12500r/min范围;沸腾干燥的温度为40℃~150℃,优选40℃~80℃;干燥时间为1h~5h,优选2h~3h;氛围可以是空气或其他氛围;微波真空干燥的温度40℃~150℃,优选40℃~80℃;干燥时间为1h~5h,优选2h~3h;干燥压力为0.1 MPa~0.4MPa,优选0.1 MPa~0.3MPa。
步骤(9)所述的焙烧温度为350℃~800℃,优选400℃~550℃,焙烧时间为2h~5h;第一段采用缓慢升温过程升温至250~700℃,优选300~450℃,升温速度为2℃/min~10℃/min,优选2℃/min~5℃/min,升温时间为1.0h~2.5h,优选1.0h~2.0h;第二段采用快速升温过程,升温速度为20℃/min~30℃/min,优选20℃/min~25℃/min,升温时间为5min~10min,优选5min~8min。焙烧氛围为氧气、氮气或无氧氛围。
本发明方法制备的氧化铝载体在制备加氢处理催化剂,特别是蜡油、重油加氢催化剂中的应用。
与现有技术相比较,本发明提供的氧化铝载体的制备方法具有以下优点: 
1、采用撞击流反应-共沉淀的方法在撞击区有较高的过饱和度,能够促使大量晶核的产生;撞击区内的过饱和度均匀,促使氧化铝干胶的粒径分布较窄,结晶度高,平均粒径分散均匀。因此生成的晶种氢氧化铝结晶纯度高,颗粒度较小,这样生成的氢氧化铝是优良的晶种氢氧化铝,在后期的pH摆动过程中,可起到良好的导向作用。
2、由于撞击流反应器内生成的晶种氢氧化铝结晶纯度较高,颗粒较小,在pH摆动过程中,可起到良好的晶种导向作用,颗粒生长到预期大小所需的pH摆动次数少,简化了制备步骤。本方法晶种形成过程中产生的无定形或细小颗粒氢氧化铝较少,其再溶解后浆液中的铝离子减少。又由于晶种结晶度高,表明晶种数量多,再沉淀时浆液中的铝离子主要沉淀在晶种上,减少了新生的无定形或细小颗粒氢氧化铝的生成,使得最终老化浆液中的固含量可以增高,提高了生产效率。
3、采用撞击流-共沉淀反应器由于初期生成大量高度结晶的氢氧化铝晶种,在pH摆动共沉淀的过程中,氢氧化铝能够均匀的沉淀于晶种表面。
4、本方法采用两段焙烧,一段缓慢升温过程有利于结晶水或结合水的挥发,二段快速升温过程可以使氧化铝晶粒快速收缩,提高晶粒的收缩度,增加氧化铝载体的孔径。
5、本方法所制备的氧化铝干胶颗粒结晶度高,晶粒完整,所制备的氧化铝载体孔径较大,孔分布集中。
6、本方法工艺过程简单,能耗低,在较低的焙烧温度下即可以得到具有较大孔径,比表面积适中的氧化铝载体。
附图说明
图1为本发明中使用的浸没式撞击流反应器的结构示意图。
其中1-导流管;2-螺旋桨;3-撞击区;4-溢流口。
具体实施方式
本发明所述的氧化铝载体的制备方法具体包括以下步骤:
(a)制备工作溶液,工作溶液的浓度及配制方法均为本领域技术人员所熟知的。如,酸性铝盐水溶液的浓度以Al2O3计为3g/100mL~15g/100mL;碱金属铝酸盐水溶液的浓度以Al2O3计为8g/100mL~35g/100mL,或者可以配制稀氨水溶液,浓度以NH3计为9 g/100mL~20g/100mL。酸性铝盐水溶液一般为AlCl3、Al2(SO4)3或Al(NO)3的水溶液,优选Al2(SO4)3水溶液;所述的碱金属铝酸盐水溶液选自NaAlO2或KAlO2水溶液。碱性沉淀剂一般为NaOH、(NH4)2CO3或NH4OH溶液,优选(NH4)2CO3或NH4OH溶液。
(b)往浸没式撞击流反应器中加入底水,并加热到50℃~95℃;启动撞击流反应器,调整螺旋桨的转速为500r/min~1500 r/min;调整两个导流管的撞击角度为150°~180°。
(c)从进料口I和II分别以一定速率(如0.5 L/min~0.8 L/min)注入酸性铝盐水溶液和碱金属铝酸盐水溶液或碱性沉淀剂;调节溶液的pH值为5~8后,停止注入酸性铝盐水溶液和碱金属铝酸盐水溶液或碱性沉淀剂,稳定反应5min~20min,优选稳定反应10min~15min。
(d)继续注入碱金属铝酸盐水溶液或碱性沉淀剂,调整pH值为8.6~12.0,优选pH值为9.0~11.0,稳定反应5min~20min,优选10min~15min。
(e)停止注入碱金属铝酸盐水溶液或碱性沉淀剂,注入酸性铝盐水溶液,调节体系内浆液的pH值范围为2.0~4.0,优选为3.0~3.5;并稳定反应5min~20min,优选10min~15min。
(f)停止注入酸性铝盐水溶液,注入碱金属铝酸盐水溶液或碱性沉淀剂,调节pH值为8.6~12.0,优选9.0~11.0;稳定反应5min~20min,优选10min~15min。
(g)步骤(e)和步骤(f)重复1~4次,成胶结束,关闭撞击流反应器,进行老化。
(h)在80℃~150℃,优选90℃~120℃进行老化,老化的pH值为8.0~10.0,优选9.0~9.5;老化的时间为0.5h~2h,优选0.5h~1h;优选在老化pH值高于步骤(3)中的中和pH值0.5~4.0,优选1.5~2.5;老化温度高于步骤(3)中的中和温度10℃~100℃,优选20℃~70℃的条件下进行老化。
(i)步骤(h)所得浆液经过滤、滤饼经洗涤和干燥得到氧化铝干胶;所述的过滤、洗涤和干燥均为本领域技术人员熟知的常规操作。例如所述的干燥条件可以为:干燥温度为100℃~300℃,优选100℃~220℃;干燥时间为1h~5h,优选2h~4h。干燥氛围可以是空气或其它氛围。
(j)取步骤(i)所制备的氧化铝干胶,与氨水混合均匀后,碾压一段时间,挤条成一定形状后,经过干燥,两段升温焙烧得到所制备的氧化铝载体。
下面通过具体实施例对本发明的氧化铝载体进行更详细的描述。实施例只是对本发明方法的具体实施方式的举例说明,并不构成本发明保护范围的限制。
本发明实施例和比较例中,所使用的硫酸铝、偏铝酸钠、氨水均购自烟台恒辉化工有限公司。本发明方法中结晶度采用XRD进行测定,粒径分布采用激光粒度仪来进行测定。
实施例1
本实施例介绍Mo、Ni、P原始溶液的配制方法。本实施例只配制一种浓度及比例的Mo、Ni、P原始溶液,可根据所介绍的方法,配制其他比例及浓度的溶液。
取386g氧化钼,123g碱式碳酸镍放入多口烧瓶中,加入一定量的去离子水后,进行搅拌直至瓶中物质呈浆状,然后缓慢添加86g磷酸,等起始反应过后再缓慢加热,保持溶液温度90℃~110℃时间为1h~3h.停止加热后,趁热对所得溶液过滤,滤掉某些不溶杂质后,得到澄清的深绿色原始溶液。溶液组成为MoO3:69.27g/100ml;NiO:12.49g/100ml;P:4.10g/100ml。
实施例2
将6L偏铝酸钠水溶液(Al2O3浓度为20g/100mL)和9L硫酸铝水溶液(Al2O3浓度为5g/100mL)分别装入带有泵的容器内,分别连接到装有5L蒸馏水的撞击流反应器的进料口Ⅰ和进料口Ⅱ上,将撞击流反应器内加热到65℃;启动撞击流反应器内的螺旋搅拌桨,调整两个导流管的夹角为0°,调整转速为1500r/min,稳定一段时间后,调节进料口Ⅰ和进料口Ⅱ的流速到0.6L/min,开始注入偏铝酸钠水溶液和硫酸铝水溶液,调节pH值到7.0;中和15min后,停止进料,稳定10min后;加入偏铝酸钠水溶液,调整pH值为9.0,停止进料;稳定10min后,加入硫酸铝水溶液,调整pH值为3.0,停止进料,稳定10min;然后重复(e),(f)步骤各一次。摆动结束后,用NH4OH调节pH为9.6,停止撞击流反应器,将撞击流反应器中的浆液温度升至110℃,老化0.5h后,过滤分离母液,洗涤。在120℃温度下干燥3h,所制备氧化铝干胶GF-1(干基70%)的性质见表1。
将642.8gGF-1,66.7g小孔SB粉,10g田菁粉在碾压机中混合均匀后,加入含有35.7g氨水和736.4g净水的混合溶液,碾压一段时间后,在挤条机中挤塑成一定形状,然后在120℃温度下干燥3h,以3℃/min升温到300℃后,以25℃/min升温到500℃,焙烧3h,即得到氧化铝ZT-1,性质见表2。取一定量实施例1所制备的浸渍液饱和浸渍ZT-1,前驱体在120℃温度下干燥3h,500℃温度下焙烧3h,得到催化剂CT-1,性质见表3。
实施例3
将6L偏铝酸钠水溶液(Al2O3浓度为20g/100mL)和9L硫酸铝水溶液(Al2O3浓度为5g/100mL)分别装入带有泵的容器内,分别连接到装有5L蒸馏水的撞击流反应器的进料口Ⅰ和进料口Ⅱ上,将撞击流反应器内加热到65℃;启动撞击流反应器内的螺旋搅拌桨,调整两个导流管的夹角为5°,调整转速为1000r/min,稳定一段时间后,调节进料口Ⅰ和进料口Ⅱ的流速到0.6L/min,开始注入偏铝酸钠和硫酸铝水溶液,调节pH值到7.0,中和15min后,停止进料;稳定10min后,加入偏铝酸钠水溶液,调整pH值为9.0,停止进料;稳定10min后,加入硫酸铝水溶液,调整pH值为3.5,停止进料,稳定10min后;然后重复(e),(f)步骤各两次。摆动结束后,用NH4OH调节pH为9.6,停止撞击流反应器,将撞击流反应器中的浆液温度升至110℃,老化0.5h后,过滤分离母液,洗涤。在120℃温度下干燥3h,所制备氧化铝干胶GF-2(干基71%)的性质见表1。
将633.8gGF-2,66.7g小孔SB粉,10g田菁粉在碾压机中混合均匀后,加入含有35.7g氨水和736.4g净水的混合溶液,碾压一段时间后,在挤条机中挤塑成一定形状,在110℃温度下干燥3h,然后以3℃/min升温到300℃后,以25℃/min升温到480℃,焙烧3h,即得到氧化铝载体ZT-2,性质见表2。取一定量实施例1所制备的浸渍液饱和浸渍ZT-2,前驱体在120℃温度下干燥3h,500℃温度下焙烧3h,得到催化剂CT-2,性质见表3。
实施例4
将6L偏铝酸钠水溶液(Al2O3浓度为20g/100mL)和9L硫酸铝水溶液(Al2O3浓度为5g/100mL)分别装入带有泵的容器内,分别连接到装有5L蒸馏水的撞击流反应器的进料口Ⅰ和进料口Ⅱ上,将撞击流反应器内加热到65℃;启动撞击流反应器内的螺旋搅拌桨,调整两个导流管的夹角为0°,调整转速为800r/min,稳定一段时间后,调节进料口Ⅰ和进料口Ⅱ的流速到0.6L/min,开始注入偏铝酸钠和硫酸铝水溶液,调节pH值到7.0,中和15min后,停止进料;稳定10min后, 加入偏铝酸钠水溶液,调整pH值为11.0,停止进料;稳定10min后,加入硫酸铝水溶液,调整pH值为3.3,停止进料,稳定10min;然后重复(e),(f)步骤各一次,用NH4OH调节pH为9.6,停止撞击流反应器,将撞击流反应器中的浆液温度升至120℃,老化0.5h后,过滤分离母液,洗涤。在120℃温度下干燥3h,所制备氧化铝干胶GF-3(干基70%)的性质见表1。
将642.8gGF-3,66.7g小孔SB粉,10g田菁粉在碾压机中混合均匀后,加入含有35.7g氨水和736.4g净水的混合溶液,碾压一段时间后,在挤条机中挤塑成一定形状,然后在120℃温度下干燥3h,以3.5℃/min升温到300℃后,以20℃/min升温到490℃,即得到氧化铝载体ZT-3,性质见表2。取一定量实施例1所制备的浸渍液饱和浸渍ZT-3,前驱体在120℃温度下干燥3h,500℃温度下焙烧3h,得到催化剂CT-3,性质见表3。
实施例5
将6L偏铝酸钠水溶液(Al2O3浓度为20g/100mL)和9L硫酸铝水溶液(Al2O3浓度为5g/100mL)分别装入带有泵的容器内,分别连接到装有5L蒸馏水的撞击流反应器的进料口Ⅰ和进料口Ⅱ上,将撞击流反应器内加热到65℃;启动撞击流反应器内的螺旋搅拌桨,调整两个导流管的夹角为10°,调整转速为1500r/min,稳定一段时间后,调节进料口Ⅰ和进料口Ⅱ的流速到0.6L/min,开始注入偏铝酸钠和硫酸铝水溶液,调节pH值到7.0,中和15min后,停止进料,稳定10min后, 加入偏铝酸钠水溶液,调整pH值为10.5,停止进料;稳定10min后,加入偏铝酸钠水溶液,调整pH值为10.5,停止进料;稳定10min后,加入硫酸铝水溶液,调整pH值为3.1,停止进料,稳定10min;然后重复(e),(f)步骤各两次。摆动结束后,用NH4OH调节pH为9.6,停止撞击流反应器,将撞击流反应器中的浆液温度升至120℃,老化1.0h后,过滤分离母液,洗涤。在120℃温度下干燥3h,所制备氧化铝干胶GF-4(干基72%)的性质见表1。
将625gGF-4,66.7g小孔SB粉,10g田菁粉在碾压机中混合均匀后,加入含有35.7g氨水和736.4g净水的混合溶液,碾压一段时间后,在挤条机中挤塑成一定形状,在120℃温度下干燥3h,以3℃/min升温到300℃后,以25℃/min升温到500℃,焙烧2.5h,即得到氧化铝载体ZT-4,性质见表2。取一定量实施例1所制备的浸渍液饱和浸渍ZT-4,前驱体然后在120℃温度下干燥3h,500℃温度下焙烧3h,得到催化剂CT-4,性质见表3。
实施例6
将6L偏铝酸钠水溶液(Al2O3浓度为20g/100mL)和9L硫酸铝水溶液(Al2O3浓度为5g/100mL)分别装入带有泵的容器内,分别连接到装有5L蒸馏水的撞击流反应器的进料口Ⅰ和进料口Ⅱ上,将撞击流反应器内加热到65℃;启动撞击流反应器内的螺旋搅拌桨,调整两个导流管的夹角为0°,调整转速为1000r/min,稳定一段时间后,调节进料口Ⅰ和进料口Ⅱ的流速到0.6L/min,开始注入偏铝酸钠和硫酸铝水溶液,调节pH值到7.0,中和15min后,停止进料;稳定10min后, 加入偏铝酸钠水溶液,调整pH值为9.0,停止进料;稳定10min后,加入硫酸铝水溶液,调整pH值为3.2,停止进料,稳定10min,然后重复(e),(f)步骤各两次。摆动结束后,用NH4OH调节pH为10.5,停止撞击流反应器,将撞击流反应器中的浆液温度升至120℃,老化1.0h后,过滤分离母液,洗涤。在120℃温度下干燥3h,所制备氧化铝干胶GF-5(干基70%)的性质见表1。
将642.8gGF-5,66.7g小孔SB粉,10g田菁粉在碾压机中混合均匀后,加入含有35.7g氨水和736.4g净水的混合溶液,碾压一段时间后,在挤条机中挤塑成一定形状,然后在120℃温度下干燥4h,以3.5℃/min升温到300℃后,以23℃/min升温到500℃,即得到ZT-5,性质见表2。取一定量实施例1所制备的浸渍液饱和浸渍ZT-5,前驱体在120℃温度下干燥3h,500℃温度下焙烧3h,得到催化剂CT-5,性质见表3。
比较例1
将6L偏铝酸钠水溶液(Al2O3浓度为20g/100mL)和9L硫酸铝水溶液(Al2O3浓度为5g/100mL)分别装入带有泵的容器内,分别连接到装有5L蒸馏水的撞击流反应器的进料口Ⅰ和进料口Ⅱ上,将撞击流反应器内加热到65℃;启动撞击流反应器内的螺旋搅拌桨,调整两个导流管的夹角为0°,调整转速为1000r/min,稳定一段时间后,调节进料口Ⅰ和进料口Ⅱ的流速到0.6L/min,开始注入偏铝酸钠和硫酸铝水溶液,调节pH值到7.0,中和一段时间后,将撞击流反应器中的浆液温度升至120℃,老化1.5h后,过滤分离母液,洗涤。在120℃温度下干燥3h,所制备氧化铝干胶GF-6(干基72%)的性质见表1。
将625gGF-6,66.7g小孔SB粉,10g田菁粉在碾压机中混合均匀后,加入含有35.7g氨水和736.4g净水的混合溶液,碾压一段时间后,在挤条机中挤塑成一定形状,然后在120℃温度下干燥3h,850℃温度下焙烧3h,即得到ZT-6。取一定量实施例1所制备的浸渍液饱和浸渍ZT-6,性质见表2。前驱体在120℃温度下干燥3h,500℃温度下焙烧3h,所制备的催化剂CT-6,性质见表3。
比较例2
将6L偏铝酸钠水溶液(Al2O3浓度为20g/100mL)和9L硫酸铝水溶液(Al2O3浓度为5g/100mL)分别装入带有泵的容器内,分别连接到装有5L蒸馏水的带有搅拌器和加热套的不锈钢容器内,加热到65℃;调节进料口Ⅰ和进料口Ⅱ的流速到0.6L/min,开始注入偏铝酸钠和硫酸铝水溶液,调节pH值到7.0,中和15min后,停止进料;稳定10min后, 加入偏铝酸钠水溶液,调整pH值为9.0,停止进料;稳定10min后,加入硫酸铝水溶液,调整pH值为3,停止进料,稳定10min;然后重复(e),(f)步骤各四次。摆动结束后,用NH4OH调节pH为9.6,将反应器中的浆液温度升至110℃,老化0.5h后,过滤分离母液,洗涤。在120℃温度下干燥3h,所制备氧化铝干胶GF-7(干基71%)的性质见表1。
将633.8gGF-1,66.7g小孔SB粉,10g田菁粉在碾压机中混合均匀后,加入含有35.7g氨水和736.4g净水的混合溶液,碾压一段时间后,在挤条机中挤塑成一定形状,然后在120℃温度下干燥3h,800℃温度下焙烧3h,即得到ZT-7。取一定量实施例1所制备的浸渍液饱和浸渍ZT-7,性质见表2。前驱体在120℃温度下干燥3h,500℃温度下焙烧3h,所制备的催化剂CT-7,性质见表3。
表1 实施例及比较例所得氧化铝干胶性质。
由表1的数据可以看出,采用撞击流-沉淀制备的氧化铝干胶GF-6结晶度高,粒径较小,孔径分布较集中,适合制备超细粉末;采用摆动中和滴定的方法所制备的氧化铝干胶GF-7,其粒径较大,但是粒径分布比较弥散,结晶度不高,孔径分布不集中。然而采用本发明的摆动中和撞击流反应方法所制备的氧化铝干胶GF-1~GF-5,其结晶度比常规的摆动中和滴定的方法更高,而且粒径较大,粒径分布更加均匀,孔径较集中。
表2 实施例及比较例中所制备载体的性质。
表3  实施例及比较例中所制备催化剂的性质。
由表2的数据可以看出,由于采用撞击流-摆动中和沉淀成胶方法所制备的干胶结晶度高,粒径较小,孔径分布较集中。在用于制备加氢处理催化剂时,催化剂孔分布集中,主要集中在大孔的范围内,而且在较低的温度下就能制备具有大孔,高比表面积的催化剂,适用于蜡油、重油等劣质原料的加工。
实施例7
本实施例为本发明催化剂和比较例1、2催化剂的活性评价实验。
催化剂活性评价实验在50mL小型加氢装置上进行,活性评价前对催化剂进行预硫化。催化剂评价条件为在反应总压8.0MPa,体积空速1.0 h-1,氢油比700:1,反应温度为380℃。活性评价实验用原料油性质见表4。活性评价结果见表5。
表4  原料油性质。
表5 催化剂活性评价结果。
催化剂 CT-1 CT-2 CT-3 CT-4 CT-5 CT-6 CT-7
相对脱氮活性,% 119 118 122 123 120 100 105
由表1-4可见,与比较例1和比较例2相比较,尤其是所得氧化铝载体的孔分布更加集中,80nm~150 nm的孔占总孔容的比例更高,而40nm~80nm的孔占总孔容的比例更低;同时,实施例所得氧化铝载体的比表面积,孔径明显优于比较例所制备的氧化铝载体,较高的比表面积可以提高反应的有效活性位,进而提高催化剂的加氢活性及稳定性。由表5可见,采用本发明方法制备的催化剂,催化剂的加氢脱氮活性明显高于对比例催化剂。

Claims (15)

1.一种本发明提供的氧化铝载体的制备方法,其特征在于包括以下内容:
(1)在撞击流反应器中加入底水并加热至反应温度;
(2)调节两个导流管的撞击方向,启动螺旋桨驱动电机,螺旋桨推动溶液在撞击流反应器中循环流动和撞击; 
(3)在撞击流反应器两端的进料口Ⅰ和Ⅱ以一定的流量同时连续加入酸性铝盐水溶液和碱金属铝酸盐水溶液或碱性沉淀剂,调节pH值为5~8后,停止加入酸性铝盐水溶液和碱金属铝酸盐水溶液或碱性沉淀剂,中和反应并稳定一段时间;
(4)通入碱金属铝酸盐水溶液或碱性沉淀剂,调节pH值至8.6~12,稳定一段时间;
(5)通入酸性铝盐水溶液,调节pH值至2~4,稳定一段时间;
(6)通入碱金属铝酸盐水溶液或碱性沉淀剂,调节pH值至8.6~12,稳定一段时间;
(7)重复步骤(5)和步骤(6)1~4次,成胶结束;
(8)成胶结束后关闭撞击流反应器,进行老化,然后经过滤、洗涤和干燥得到氧化铝干胶;
(9)取一定量步骤(8)所制备的氧化铝干胶与氨水混合,碾压、挤条成形后,经干燥、两段升温焙烧得到所制备的氧化铝载体。
2.按照权利要求1所述的方法,其特征在于:步骤(1)中所述的反应温度为45℃~100℃。
3.按照权利要求1所述的方法,其特征在于:步骤(2)中所述的撞击流螺旋桨转数范围一般为750r/min~2000r/min,两股物料的撞击角度为90°~180°。
4.按照权利要求1所述的方法,其特征在于:步骤(3)中所述的酸性铝盐水溶液为AlCl3、Al2(SO4)3或Al(NO)3的水溶液中一种或几种;所述的碱金属铝酸盐水溶液选自NaAlO2或KAlO2水溶液;所述的碱性沉淀剂为NaOH、(NH4)2CO3或NH4OH溶液中一种或几种。
5.按照权利要求1所述的方法,其特征在于:步骤(3)中所述的pH值范围是5~8;所述中和反应的时间为5min~20min。
6.按照权利要求1所述的方法,其特征在于:所述酸性铝盐水溶液和碱金属铝酸盐水溶液或碱性沉淀剂的流量为0.5L/min~1.0L/min。
7.按照权利要求1所述的方法,其特征在于:步骤(4)所述的pH值范围是8.6~12.0;所述的稳定时间范围为5min~20min。
8.按照权利要求1所述的方法,其特征在于:步骤(5)所述的pH值范围为2.0~4.0;所述的稳定时间范围为5min~20min。
9.按照权利要求1所述的方法,其特征在于:步骤(6)所述的pH值范围是8.6~12.0;所述的稳定时间范围为5min~20min。
10.按照权利要求1所述的方法,其特征在于:步骤(7)中,所述步骤(5)和步骤(6)的重复次数为1次~4次。
11.按照权利要求1所述的方法,其特征在于:步骤(8)所述的老化温度范围是80℃~150℃,老化的pH值范围为8.0~10.0,老化的时间为0.5h~2h。
12.按照权利要求1所述的方法,其特征在于:步骤(8)所述的老化温度高于步骤(3)中的中和温度10℃~100℃,老化pH值高于步骤(3)中的中和pH值0.5~4.0。
13.按照权利要求1所述的方法,其特征在于:步骤(8)所述的焙烧温度为350℃~800℃,焙烧时间为2h~5h;焙烧过程采用两段升温,第一段缓慢升温至250~700℃,升温速度为2℃/min~10℃/min,升温时间为1.0h~2.5h;第二段采用快速升温,升温速度为20℃/min~30℃/min,升温时间为5min~10min。
14.权利要求1~12任一方法制备的氧化铝干胶,其特征在于:氧化铝干胶结晶度≥85%,粒径分布如下:以氧化铝干粉的体积为基准,<20μm粒径所占比例为5%~20%;20μm~25μm粒径所占比例为50%~70%;>25μm的粒径所占比例为20%~35%。
15.权利要求1~12任一方法制备的氧化铝载体,其特征在于:氧化铝载体比表面积为100m2/g~150m2/g,孔径为120nm~150nm,其中60nm~150nm的孔占总孔容含量的85%~95%。
CN201310495646.7A 2013-10-22 2013-10-22 一种氧化铝载体的制备方法 Active CN104549527B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310495646.7A CN104549527B (zh) 2013-10-22 2013-10-22 一种氧化铝载体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310495646.7A CN104549527B (zh) 2013-10-22 2013-10-22 一种氧化铝载体的制备方法

Publications (2)

Publication Number Publication Date
CN104549527A true CN104549527A (zh) 2015-04-29
CN104549527B CN104549527B (zh) 2016-11-02

Family

ID=53067229

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310495646.7A Active CN104549527B (zh) 2013-10-22 2013-10-22 一种氧化铝载体的制备方法

Country Status (1)

Country Link
CN (1) CN104549527B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106669852A (zh) * 2015-11-11 2017-05-17 中国石油化工股份有限公司 一种氧化铝载体的制备方法
CN109718796A (zh) * 2017-10-27 2019-05-07 中国石油化工股份有限公司 一种加氢催化剂及其制备方法
CN109867299A (zh) * 2017-12-05 2019-06-11 中国石油化工股份有限公司 一种制备拟薄水铝石的方法
CN110642278A (zh) * 2018-06-26 2020-01-03 中国石油化工股份有限公司 一种制备氢氧化铝的方法
CN112744849A (zh) * 2019-10-31 2021-05-04 中国石油化工股份有限公司 铝溶胶的制备方法和铝溶胶
CN113996308A (zh) * 2020-07-27 2022-02-01 中国石油化工股份有限公司 一种重油加氢催化剂的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1053164C (zh) * 1997-12-19 2000-06-07 中国石油化工总公司 一种氧化铝的制备方法
CN1463789A (zh) * 2002-06-28 2003-12-31 武汉化工学院 撞击流反应-沉淀法制超细粉体
CN100390055C (zh) * 2004-10-29 2008-05-28 中国石油化工股份有限公司 一种碳化法制备无定形硅铝的方法
CN102309994B (zh) * 2010-07-07 2013-04-10 中国石油化工股份有限公司 一种氧化铝载体的制备方法
CN103043694B (zh) * 2011-10-17 2016-11-16 中国石油化工股份有限公司 一种水合氧化铝的制备方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106669852A (zh) * 2015-11-11 2017-05-17 中国石油化工股份有限公司 一种氧化铝载体的制备方法
CN106669852B (zh) * 2015-11-11 2019-01-25 中国石油化工股份有限公司 一种氧化铝载体的制备方法
CN109718796A (zh) * 2017-10-27 2019-05-07 中国石油化工股份有限公司 一种加氢催化剂及其制备方法
CN109718796B (zh) * 2017-10-27 2021-11-09 中国石油化工股份有限公司 一种加氢催化剂及其制备方法
CN109867299A (zh) * 2017-12-05 2019-06-11 中国石油化工股份有限公司 一种制备拟薄水铝石的方法
CN109867299B (zh) * 2017-12-05 2021-06-04 中国石油化工股份有限公司 一种制备拟薄水铝石的方法
CN110642278A (zh) * 2018-06-26 2020-01-03 中国石油化工股份有限公司 一种制备氢氧化铝的方法
CN110642278B (zh) * 2018-06-26 2022-02-08 中国石油化工股份有限公司 一种制备氢氧化铝的方法
CN112744849A (zh) * 2019-10-31 2021-05-04 中国石油化工股份有限公司 铝溶胶的制备方法和铝溶胶
CN112744849B (zh) * 2019-10-31 2023-03-10 中国石油化工股份有限公司 铝溶胶的制备方法和铝溶胶
CN113996308A (zh) * 2020-07-27 2022-02-01 中国石油化工股份有限公司 一种重油加氢催化剂的制备方法
CN113996308B (zh) * 2020-07-27 2023-10-10 中国石油化工股份有限公司 一种重油加氢催化剂的制备方法

Also Published As

Publication number Publication date
CN104549527B (zh) 2016-11-02

Similar Documents

Publication Publication Date Title
CN104549527A (zh) 一种氧化铝载体的制备方法
CN101306828B (zh) 一种制备稀土化合物均匀微粉的装置和工艺
US11305350B2 (en) Method for preparing silver powder by using micro-nano bubbles as crystal seeds
CN104772158B (zh) 一种wo3/c3n4混合光催化剂的制备方法
WO2021196324A1 (zh) 一种三元正极材料前驱体及其制备方法
CN114178543B (zh) 一种类球形银粉的制备方法
CN103551201B (zh) 一种羟基磷酸铜催化剂的制备方法
CN104828869B (zh) 一种钠锰氧化物微粉及其制备方法
CN106216710A (zh) 一种高振实密度高结晶度金属银粉的制备方法
CN104209126B (zh) 一种束状棱柱四氧化三钴的制备方法
CN101791548A (zh) 一种可见光催化剂BiVO4及其制备方法
CN104556174B (zh) 一种撞击流反应器
CN104973615A (zh) 一种纳米氧化钆粉体的微波燃烧制备方法
CN103771467B (zh) 一种大粒径氧化铝干胶的制备方法
CN109718796B (zh) 一种加氢催化剂及其制备方法
CN105727927A (zh) 一种网状高效光催化剂BiVO4的制备方法
CN108682849A (zh) 一种掺铝钴酸锂的制备方法
CN107827153B (zh) 一种纳米钒酸银的制备方法
CN105618071B (zh) 一种加氢催化剂组合物及其制备方法
CN103043694A (zh) 一种水合氧化铝的制备方法
CN109721088A (zh) 一种氢氧化铝及其制备方法
CN102659154A (zh) 一种制备纳米α-Al2O3粉末的方法
CN108620081A (zh) 一种加氢催化剂浸渍液及其制备方法
CN110078132A (zh) 一种间歇性包覆制备掺杂四氧化三钴的方法
CN102836747B (zh) 一种氧化铝载体的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant