WO2021196324A1 - 一种三元正极材料前驱体及其制备方法 - Google Patents

一种三元正极材料前驱体及其制备方法 Download PDF

Info

Publication number
WO2021196324A1
WO2021196324A1 PCT/CN2020/086885 CN2020086885W WO2021196324A1 WO 2021196324 A1 WO2021196324 A1 WO 2021196324A1 CN 2020086885 W CN2020086885 W CN 2020086885W WO 2021196324 A1 WO2021196324 A1 WO 2021196324A1
Authority
WO
WIPO (PCT)
Prior art keywords
material precursor
cathode material
ternary
solution
ternary cathode
Prior art date
Application number
PCT/CN2020/086885
Other languages
English (en)
French (fr)
Inventor
李溢文
倪湖炳
朱珠
刘刚
牛磊
焦凯龙
刘伟
王碧武
田光磊
王本平
刘瑞
Original Assignee
宁波容百新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波容百新能源科技股份有限公司 filed Critical 宁波容百新能源科技股份有限公司
Publication of WO2021196324A1 publication Critical patent/WO2021196324A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of battery materials, and specifically to a ternary cathode material precursor and a preparation method thereof.
  • lithium-ion batteries have been widely used in mobile phones and tablet computers due to their large specific energy, high output voltage, high current charge and discharge, no memory effect, long cycle life, low self-discharge rate, and environmental protection.
  • it has gradually become the preferred power source for energy storage devices, electric vehicles and other fields.
  • ternary cathode materials In 2018, the output of ternary cathode materials was 141,200 tons, a year-on-year increase of 33% compared to 2017. Ternary precursors are necessary for the synthesis of ternary battery cathode materials, which directly affect the performance of battery materials. At present, high nickel products (nickel content) >80%) battery cycle performance will gradually become worse with the increase of nickel content, and the compressive strength of high nickel cathode materials will also become worse.
  • the production of the precursor of the ternary cathode material uses cobalt sulfate crystals and nickel sulfate crystals as the main raw materials.
  • the current problems are that the high nickel ternary cathode materials have poor battery cycle performance and low compressive strength, which reduces the battery life. .
  • Patent Application Publication No. CN 109485104 A discloses a method of increasing the specific surface area (BET) of the ternary precursor through a microbubble device to reduce the crystallinity of the precursor of the ternary material, which physically sweeps the oxidizing property to the liquid phase of the reaction solution
  • the gas oxidizes the cobalt element and additive elements, increases the specific surface area (BET) of the precursor and reduces the crystallinity.
  • this method requires the addition of special equipment to increase the oxidizing gas.
  • the porosity can only be increased directionally, but cannot be reduced, and the physical method of blowing air cannot ensure the uniform distribution of gas in the solution.
  • the main purpose of this application is to provide a ternary cathode material precursor and a preparation method thereof, so as to solve the problem that the internal porosity of the precursor is difficult to directly control in the related technology, and the compressive strength of the sintered cathode sample is low.
  • a method for preparing a precursor of a ternary cathode material includes the following steps:
  • the added amount of the foaming agent or the defoaming agent meets that, when mixing in step 4), the concentration of the foaming agent or the defoaming agent is 0.01 g/L to 10 g/L.
  • the foaming agent is selected from at least one of sodium lauryl sulfate, sodium fatty alcohol polyoxyethylene ether sulfate, amino acids and derivatives thereof, and the defoaming agent is selected from trialkyl melamine, cyanogen At least one of urea chloride melamine, copolymer of ethylene oxide and propylene oxide, and polydimethylsiloxane.
  • the total concentration of metal ions in the metal salt mixed solution is 1-3 mol/L.
  • the metal salt is a salt of three metals, nickel, cobalt, and manganese.
  • the concentration of the alkali metal hydroxide solution is 1-15 mol/L, and the concentration of the ammonia solution is 5-10 mol/L.
  • the reaction in step 4) is carried out at 40-80° C., the reaction time is 15-26 h, and the pH value of the reaction system is controlled at 10-12.
  • Reaction time actual use volume of the reactor/volume of all solution entering the reactor per unit time
  • volume of all the solution entering the reactor per unit time volume of transition metal salt solution entering the reactor per unit time + entering the reaction within a unit time
  • the reaction in step 4) is carried out under oxygen-free conditions.
  • an inert gas is introduced into the reactor to exhaust oxygen.
  • the post-treatment in step 5) includes solid-liquid separation of the slurry, followed by washing and drying to obtain a product.
  • the ternary cathode material precursor is a sphere formed by the aggregation of fibrous primary crystal grains, the diameter of the primary crystal grains is 0.1-1 ⁇ m, and the average particle size of the ternary cathode material precursor is 5 ⁇ m- 20 ⁇ m, the tap density of the ternary cathode material precursor is 1-3 g/cm 3 .
  • the preparation method of the present application is easy to popularize in chemical production, and is more convenient and direct for changing the characteristics of the product.
  • the preparation method of this application is a method that can directionally change the porosity of the ternary material precursor, so that fine pores can be evenly distributed in the prepared precursor, so that the battery cycle performance of the ternary cathode material after firing Significantly improved, and the compressive strength of the positive electrode material is also improved at the same time.
  • Figure 1 is an electron micrograph of a particle profile of a ternary cathode material precursor
  • FIG. 2 is an electron micrograph of a particle cross-section of a ternary cathode material precursor according to an embodiment of the present application
  • FIG. 3 is an electron micrograph of a particle cross-section of a ternary cathode material precursor provided according to an embodiment of the present application
  • FIG. 4 is an electron micrograph of a particle cross-section of a ternary cathode material precursor provided according to an embodiment of the present application.
  • nickel sulfate, cobalt sulfate, and manganese sulfate to prepare 200L of a solution with a molar ratio of nickel, cobalt and manganese of 8:1:1, and a total molar concentration of 1.5mol/L of nickel, cobalt and manganese, and use sodium hydroxide to prepare 5.0mol/L sodium hydroxide
  • the solution is 200 liters, and the above-prepared nickel sulfate, cobalt sulfate, manganese sulfate aqueous solution, sodium hydroxide solution and complexing agent ammonia (10mol/L) are added into the reactor through a metering pump in parallel, and the reaction temperature in the reactor is controlled as well.
  • the concentration of ammonia water is 10 ⁇ 2g/L
  • the pH value of the reaction is 11.0 ⁇ 0.5
  • the precipitate is filtered after 50 hours of reaction, the precipitate is washed with 60°C pure hot water, and after washing, the precipitate is placed at 110°C Dry in a drying box for 10 hours. After drying, the precipitate is sieved with 200 meshes to obtain a nickel-cobalt-manganese composite hydroxide.
  • nickel sulfate, cobalt sulfate, and manganese sulfate to prepare 200L of a solution with a molar ratio of nickel, cobalt and manganese of 8:1:1, and a total molar concentration of 1.5mol/L of nickel, cobalt and manganese, and use sodium hydroxide to prepare 5.0mol/L sodium hydroxide
  • the solution is 200 liters, and the trialkyl tricyanamide is added to the prepared nickel cobalt manganese sulfate solution, the concentration is 2g/L, and the prepared nickel cobalt manganese sulfate solution, sodium hydroxide solution and complexing agent ammonia ( 10mol/L) was added into the reaction kettle through a metering pump in parallel flow.
  • the reaction temperature in the reaction kettle was 60 ⁇ 5°C, the concentration of ammonia water was 10 ⁇ 2g/L, and the pH value of the reaction was 11.0 ⁇ 0.5. After 50 hours of reaction, it will precipitate Filter, wash the precipitate with pure hot water at 60°C. After washing, put the precipitate in a drying box at 110°C for 10 hours. After drying, the precipitate is sieved with 200 meshes to obtain a nickel-cobalt-manganese composite hydroxide.
  • nickel sulfate, cobalt sulfate, and manganese sulfate to prepare 200L of a solution with a molar ratio of nickel, cobalt and manganese of 8:1:1, and a total molar concentration of 1.5mol/L of nickel, cobalt and manganese, and use sodium hydroxide to prepare 5.0mol/L sodium hydroxide
  • the solution is 200 liters, add sodium lauryl sulfate to the prepared nickel cobalt manganese sulfate solution, the concentration is 2g/L, and the prepared nickel cobalt manganese sulfate solution, sodium hydroxide solution and complexing agent ammonia (10mol /L) Add the metering pump into the reaction kettle in parallel flow.
  • the reaction temperature in the reaction kettle is 60 ⁇ 5°C
  • the concentration of ammonia water is 10 ⁇ 2g/L
  • the pH value of the reaction is 11.0 ⁇ 0.5
  • the precipitate is filtered after 50 hours of reaction.
  • nickel sulfate, cobalt sulfate, and manganese sulfate to prepare 200L of a solution with a molar ratio of nickel, cobalt and manganese of 8:1:1, and a total molar concentration of 1.5mol/L of nickel, cobalt and manganese, and use sodium hydroxide to prepare 5.0mol/L sodium hydroxide
  • the solution is 200 liters, add sodium lauryl sulfate to the prepared nickel cobalt manganese sulfate solution, the concentration is 5g/L, and the prepared nickel cobalt manganese sulfate solution, sodium hydroxide solution and complexing agent ammonia (10mol /L) Parallel flow into the reactor through the metering pump, the same as controlling the reaction temperature in the reactor at 60 ⁇ 5°C, the concentration of ammonia water is 10 ⁇ 2g/L, the pH value of the reaction is 11.0 ⁇ 0.5, the precipitate is filtered after 50 hours of reaction Wash the precipitate with pure hot water at 60
  • the porosity can be increased, and the same conclusion can be drawn from the corresponding BET change. From the electron microscope image of the particle profile, it can be seen that the pores exist in a large area and are evenly distributed, as shown in the figure 4 shown.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

提供一种三元正极材料前驱体的制备方法,包括以下步骤:1)配制三元金属盐的混合溶液;2)配制碱金属氢氧化物溶液和氨溶液;3)向所述金属盐混合溶液、碱金属氢氧化物溶液或氨溶液中加入发泡剂或消泡剂,搅拌均匀;4)将所述步骤1)至3)中配制的各溶液混合,搅拌反应,生成含三元正极材料前驱体的浆料;5)对所述浆料进行后处理,得到三元正极材料前驱体;该三元正极材料前驱体的通式为Ni xCo yM z(OH) 2+a,其中,x+y+z=1,0.5≤x≤0.95,0≤y≤0.3,0≤z≤0.5,0≤a≤0.5,所述M是金属元素,选自Mg、Ca、Al、Ti、Mn、Zr和Zn中的至少一种。还提供使用所述方法制备得到的三元正极材料。本方法通过添加发泡剂增加反应溶液气体含量,从而增加前驱体内部孔隙率,使得烧成的正极材料具有良好抗压特性,增加电池循环性能,而对于不需要孔隙的前驱体,则通过消泡剂除去反应溶液中的气体。

Description

一种三元正极材料前驱体及其制备方法 技术领域
本申请涉及电池材料领域,具体而言,涉及一种三元正极材料前驱体及其制备方法。
背景技术
近些年来,锂离子电池由于其比能量大、输出电压高、可大电流充放电、无记忆效应、循环寿命长、自放电率低、绿色环保等诸多优点,被广泛应用在手机、平板电脑等电子数码产品中,并逐渐成为储能装置、电动车等领域首选的动力电源。
2018年三元正极材料产量14.12万吨,相比于2017年同比上涨33%,三元前驱体是合成三元电池正极材料的必需品,直接影响了电池材料的性能,目前高镍产品(镍含量>80%)的电池循环性能随着镍含量的增加会逐渐变差,且高镍正极材料的抗压强度也会变差。
三元正极材料前躯体的生产采用硫酸钴结晶、硫酸镍结晶等为主要原料,目前存在的问题是高镍三元正极材料的电池循环性能差,且抗压强度低,使得电池的使用寿命降低。
专利申请公布号CN 109485104 A公开了一种通过微泡装置增加三元前驱体的比表面积(BET)降低三元材料前躯体的结晶度,其通过物理方法向反应溶液液相部吹扫氧化性气体,氧化了钴元素和添加剂元素,增加了前驱体的比表面积(BET)同时降低了结晶度。然而该方法需要增加特殊设备来增加氧化性气体,只可以定向增加孔隙率,无法减少,而且物理方法吹入空气无法保证溶液内部均匀分布气体。
发明内容
本申请的主要目的在于提供一种三元正极材料前驱体及其制备方法,以解 决相关技术中前驱体内部孔隙率难以直接调控,正极烧结出来的样品抗压强度较低的问题。
为了实现上述目的,根据本申请的第一方面,提供一种三元正极材料前驱体的制备方法,其特征在于,所述方法包括以下步骤:
1)配制金属盐的混合溶液;
2)配制碱金属氢氧化物溶液和氨溶液;
3)向所述金属盐混合溶液、碱金属氧化物溶液或氨溶液中加入发泡剂或消泡剂,搅拌均匀;
4)将所述步骤1)至3)中配制的各溶液混合,搅拌反应,生成含三元正极材料前驱体的浆料;
5)对所述浆料进行后处理,得到三元正极材料前驱体。
优选地,所述发泡剂或消泡剂的加入量满足,在步骤4)中混合时,发泡剂或消泡剂的浓度为0.01g/L至10g/L。
优选地,所述发泡剂选自十二烷基硫酸钠、脂肪醇聚氧乙烯醚硫酸钠、氨基酸及其衍生物中的至少一种,所述消泡剂选自三烷基三聚氰胺、氰脲酰氯三聚氰胺、环氧乙烷和环氧丙烷的共聚物、聚二甲基硅氧烷中的至少一种。
优选地,所述金属盐混合溶液中,金属离子的总浓度为1-3mol/L,优选地,所述金属盐为镍、钴、锰三种金属的盐。
优选地,所述碱金属氢氧化物溶液的浓度为1-15mol/L,所述氨溶液的浓度为5-10mol/L。
优选地,所述步骤4)中的反应在40-80℃下进行,反应时间为15-26h,反应体系的pH值控制在10-12。
反应时间=反应釜实际使用体积/单位时间内所有进入反应釜内的溶液体积,单位时间所有进入反应釜内的溶液体积=单位时间内进入反应釜的过渡金属盐溶液体积+单位时间内进入反应釜的碱金属溶液体积+单位时间内进入反应釜的氨溶液体积。
优选地,所述步骤4)的反应在无氧条件下进行,优选地,在混合各溶液前,向反应器中通入惰性气体以排出氧气。
优选地,所述步骤5)中的后处理包括,对浆料进行固液分离,然后洗涤并干燥,得到产物。
根据本申请的另一个方面,提供所述三元正极材料前躯体的制备方法制备得到的三元正极材料前驱体,其特征在于,所述三元正极材料前躯体的通式为Ni xCo yM z(OH) 2+a,其中,x+y+z=1,0.5≤x≤0.95,0≤y≤0.3,0≤z≤0.5,0≤a≤0.5,所述M是金属元素,选自Mg、Ca、Al、Ti、Mn、Zr和Zn中的至少一种。
优选地,所述三元正极材料前驱体为纤维状的一次晶粒聚集形成的球体,所述一次晶粒的直径为0.1-1μm,所述三元正极材料前驱体的平均粒径为5μm-20μm,所述三元正极材料前驱体的振实密度为1-3g/cm 3
本申请的三元正极材料前驱体及其制备方法具有以下优点:
1.通过添加物理发泡剂或者化学发泡剂来增加反应溶液中的气体含量,最终增加前驱体内部的孔隙率使得烧成的正极材料具有良好的抗压特性,增加电池的循环性能,而对于不需要孔隙的前驱体材料,可以通过消泡剂来去除反应溶液中存在的气体。
2.本申请的制备方法在化工生产中便于推广,对于改变产品的特性来说,更加方便直接。
3.本申请的制备方法为一种可以定向改变三元材料前驱体孔隙率的方法,使得制成的前驱体内部可以均匀分布细小的孔隙,使得后期烧成的三元正极材料的电池循环性能明显改善,且正极材料的抗压强度也同时得到提升。
附图说明
构成本申请的一部分的附图用来提供对本申请的进一步理解,使得本申请的其它特征、目的和优点变得更明显。本申请的示意性实施例附图及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是一种三元正极材料前驱体的颗粒剖面电镜图;
图2是根据本申请实施例提供的一种三元正极材料前驱体的颗粒剖面电镜图;
图3是根据本申请实施例提供的一种三元正极材料前驱体的颗粒剖面电镜图;
图4是根据本申请实施例提供的一种三元正极材料前驱体的颗粒剖面电镜图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
实施例1
用硫酸镍、硫酸钴、硫酸锰配制镍钴锰摩尔比为8:1:1、镍钴锰总摩尔浓度为1.5mol/L的溶液200L,用氢氧化钠配制成5.0mol/L氢氧化钠溶液200升,将上述配制好的硫酸镍、硫酸钴、硫酸锰水溶液、氢氧化钠溶液及络合剂氨水(10mol/L)通过计量泵并流加入反应釜中,同控制反应釜中反应温度为60±5℃,氨水浓度为10±2g/L,反应pH值为11.0±0.5,反应50小时后将沉淀过滤,用60℃纯热水洗涤沉淀物、洗涤后将沉淀物放入110℃干燥箱中干燥10小时,干燥后将沉淀物进行200目筛分后得到镍钴锰复合氢氧化物。
理化数据如下:
测试指标 Ni(mol%) Co(mol%) Mn(mol%) D50(μm) BET(m2/g)
80.2 9.9 9.9 10.3 9.5
电镜图片如图1所示,在没有添加化学发泡剂或者消泡剂时,内部带有少许孔隙,并且分布不是很均匀。
实施例2
用硫酸镍、硫酸钴、硫酸锰配制镍钴锰摩尔比为8:1:1、镍钴锰总摩尔浓度为1.5mol/L的溶液200L,用氢氧化钠配制成5.0mol/L氢氧化钠溶液200升,在配置好的硫酸镍钴锰溶液中加入三烷基三取氰胺,浓度为2g/L,将上述配制好的硫酸镍钴锰溶液、氢氧化钠溶液及络合剂氨水(10mol/L)通过计量泵并流加入反应釜中,同控制反应釜中反应温度为60±5℃,氨水浓度为10±2g/L,反应pH值为11.0±0.5,反应50小时后将沉淀过滤,用60℃纯热水洗涤沉淀物、洗涤后将沉淀物放入110℃干燥箱中干燥10小时,干燥后将沉淀物进行200目筛分后得到镍钴锰复合氢氧化物。
理化数据如下:
测试指标 Ni(mol%) Co(mol%) Mn(mol%) D50(μm) BET(m2/g)
80.2 9.9 9.9 10.2 4.3
添加消泡剂后,从颗粒剖面电镜图可以看到内部孔隙基本被消除,如图2所示。
实施例3
用硫酸镍、硫酸钴、硫酸锰配制镍钴锰摩尔比为8:1:1、镍钴锰总摩尔浓度为1.5mol/L的溶液200L,用氢氧化钠配制成5.0mol/L氢氧化钠溶液200升,在配置好的硫酸镍钴锰溶液中加入十二烷基硫酸钠,浓度为2g/L,将上述配制好的硫酸镍钴锰溶液、氢氧化钠溶液及络合剂氨水(10mol/L)通过计量泵并流加入反应釜中,同控制反应釜中反应温度为60±5℃,氨水浓度为10±2g/L,反应pH值为11.0±0.5,反应50小时后将沉淀过滤,用60℃纯热水洗涤沉淀物、洗涤后将沉淀物放入110℃干燥箱中干燥10小时,干燥后将沉淀物进行200目筛分后得到镍钴锰复合氢氧化物。
理化数据如下:
测试指标 Ni(mol%) Co(mol%) Mn(mol%) D50(μm) BET(m2/g)
80.2 9.9 9.9 10.3 15.9
添加发泡剂后,从颗粒剖面电镜图可以看到孔隙大面积存在,并且分布均匀,如图3所示。
实施例4
用硫酸镍、硫酸钴、硫酸锰配制镍钴锰摩尔比为8:1:1、镍钴锰总摩尔浓度为1.5mol/L的溶液200L,用氢氧化钠配制成5.0mol/L氢氧化钠溶液200升,在配置好的硫酸镍钴锰溶液中加入十二烷基硫酸钠,浓度为5g/L,将上述配制好的硫酸镍钴锰溶液、氢氧化钠溶液及络合剂氨水(10mol/L)通过计量泵并流加入反应釜中,同控制反应釜中反应温度为60±5℃,氨水浓度为10±2g/L,反应pH值为11.0±0.5,反应50小时后将沉淀过滤,用60℃纯热水洗涤沉淀物、洗涤后将沉淀物放入110℃干燥箱中干燥10小时,干燥后将沉淀物进行200目筛分后得到镍钴锰复合氢氧化物。
理化数据如下:
测试指标 Ni(mol%) Co(mol%) Mn(mol%) D50(μm) BET(m2/g)
80.2 9.9 9.9 10.2 25.3
通过增加发泡剂十二烷基硫酸钠的浓度,可以增加孔隙率,从相应的BET变化也可以得出相同结论,从颗粒剖面电镜图可以看到孔隙大面积存在,并且分布均匀,如图4所示。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种三元正极材料前驱体的制备方法,其特征在于,所述方法包括以下步骤:
    1)配制金属盐的混合溶液;
    2)配制碱金属氢氧化物溶液和氨溶液;
    3)向所述金属盐混合溶液、碱金属氢氧化物溶液或氨溶液中加入发泡剂或消泡剂,搅拌均匀;
    4)将所述步骤1)至3)中配制的各溶液混合,搅拌反应,生成含三元正极材料前驱体的浆料;
    5)对所述浆料进行后处理,得到三元正极材料前驱体。
  2. 根据权利要求1所述的三元正极材料前驱体的制备方法,其特征在于,所述发泡剂或消泡剂的加入量满足,在步骤4)中混合时,发泡剂或消泡剂的浓度为0.01g/L至10g/L。
  3. 根据权利要求1所述的三元正极材料前驱体的制备方法,其特征在于,所述发泡剂选自十二烷基硫酸钠、脂肪醇聚氧乙烯醚硫酸钠、氨基酸及其衍生物中的至少一种,所述消泡剂选自三烷基三聚氰胺、氰脲酰氯三聚氰胺、环氧乙烷和环氧丙烷的共聚物、聚二甲基硅氧烷中的至少一种。
  4. 根据权利要求1所述的三元正极材料前驱体的制备方法,其特征在于,所述金属盐混合溶液中,金属离子的总浓度为1-3mol/L,和/或,所述金属盐为镍、钴、锰三种金属的盐。
  5. 根据权利要求1所述的三元正极材料前驱体的制备方法,其特征在于,所述碱金属氢氧化物溶液的浓度为1-15mol/L和/或所述氨溶液的浓度为5-10mol/L。
  6. 根据权利要求1所述的三元正极材料前躯体的制备方法,其特征在于,所述步骤4)中的反应在40-80℃下进行,反应时间为15-26h,反应体系的pH值控制在10-12。
  7. 根据权利要求1所述的三元正极材料前躯体的制备方法,其特征在于,所述步骤4)的反应在无氧条件下进行,优选地,在混合各溶液前,向反应器中通入惰性气体以排出氧气。
  8. 根据权利要求1所述的三元正极材料前躯体的制备方法,其特征在于,所述步骤5)中的后处理包括,对浆料进行固液分离,然后洗涤并干燥,得到产物。
  9. 使用权利要求1-8中任意一项所述的三元正极材料前躯体的制备方法制备得到的三元正极材料前驱体,其特征在于,所述三元正极材料前躯体的通式为Ni xCo yM z(OH) 2+a,其中,x+y+z=1,0.5≤x≤0.95,0≤y≤0.3,0≤z≤0.5,0≤a≤0.5,所述M是金属元素,选自Mg、Ca、Al、Ti、Mn、Zr和Zn中的至少一种。
  10. 根据权利要求9所述的三元正极材料前驱体,其特征在于,所述三元正极材料前驱体为纤维状的一次晶粒聚集形成的球体,所述一次晶粒的直径为0.1-1μm,所述三元正极材料前驱体的平均粒径为5μm-20μm,所述三元正极材料前驱体的振实密度为1-3g/cm 3
PCT/CN2020/086885 2020-04-03 2020-04-25 一种三元正极材料前驱体及其制备方法 WO2021196324A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010262819.0A CN111463425A (zh) 2020-04-03 2020-04-03 一种三元正极材料前驱体及其制备方法
CN202010262819.0 2020-04-03

Publications (1)

Publication Number Publication Date
WO2021196324A1 true WO2021196324A1 (zh) 2021-10-07

Family

ID=71683624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086885 WO2021196324A1 (zh) 2020-04-03 2020-04-25 一种三元正极材料前驱体及其制备方法

Country Status (2)

Country Link
CN (1) CN111463425A (zh)
WO (1) WO2021196324A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113860395A (zh) * 2021-11-11 2021-12-31 金驰能源材料有限公司 一种高比表面积中空正极材料前驱体及其制备方法
CN114180650A (zh) * 2021-12-20 2022-03-15 宜宾光原锂电材料有限公司 一种自动化制备三元前驱体的方法及设备
CN114655998A (zh) * 2022-03-01 2022-06-24 西安理工大学 高镍三元正极前驱体的制备方法
CN114804225A (zh) * 2022-03-15 2022-07-29 远景动力技术(江苏)有限公司 三元材料前驱体及其应用
CN115465899A (zh) * 2022-09-14 2022-12-13 陕西红马科技有限公司 一种多冠状多元素球形包覆型前驱体及其制备方法、化学包覆修饰产品及方法
WO2023208238A1 (zh) * 2022-04-29 2023-11-02 中伟新材料股份有限公司 一种三元正极材料及其前驱体、锂离子电池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112542328B (zh) * 2020-12-02 2022-07-05 浙江大学 一种三元层状金属氢氧化物@聚苯胺的复合电极材料及其制备方法和应用
CN113896255B (zh) * 2021-09-30 2023-10-13 宁波容百新能源科技股份有限公司 一种环状孔隙三元正极前驱体及其制备方法
CN114084917B (zh) * 2022-01-24 2022-04-19 金驰能源材料有限公司 一种具有xrd衍射分叉双峰的镍钴锰三元前驱体及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120264009A1 (en) * 2011-04-15 2012-10-18 Samsung Sdi Co., Ltd. Method for manufacturing positive active material for rechargeable lithium battery and rechargeable lithium battery using same
CN106784783A (zh) * 2015-11-19 2017-05-31 荆门市格林美新材料有限公司 合成锂离子电池镍钴锰正极材料的方法
CN107285394A (zh) * 2017-07-23 2017-10-24 格林美(无锡)能源材料有限公司 一种三元正极材料用前驱体及其制备方法
CN107585794A (zh) * 2017-09-13 2018-01-16 中南大学 三元正极材料、其前驱体及该材料和前驱体的制备方法
CN109516510A (zh) * 2018-12-13 2019-03-26 华友新能源科技(衢州)有限公司 一种特殊微纳结构的镍钴锰氢氧化物及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101483238A (zh) * 2009-02-04 2009-07-15 宁波金和新材料有限公司 以氨基酸类有机物为络合剂制备锂离子正极材料前驱体的方法
CN103227322B (zh) * 2013-04-18 2015-05-13 秦皇岛科维克科技有限公司 一种四元锂离子电池正极材料及制备方法
CN103618064B (zh) * 2013-11-08 2016-05-18 宁夏共享集团有限责任公司 一种氧化铝复合镍钴锰酸锂三元材料的制备方法
CN107732212A (zh) * 2017-10-25 2018-02-23 广东邦普循环科技有限公司 一种多孔镍钴锰复合氢氧化物及其制备方法和在锂离子正极材料中的应用
CN108461743A (zh) * 2018-03-13 2018-08-28 成都新柯力化工科技有限公司 一种网络镶嵌的高镍三元锂电池电极材料及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120264009A1 (en) * 2011-04-15 2012-10-18 Samsung Sdi Co., Ltd. Method for manufacturing positive active material for rechargeable lithium battery and rechargeable lithium battery using same
CN106784783A (zh) * 2015-11-19 2017-05-31 荆门市格林美新材料有限公司 合成锂离子电池镍钴锰正极材料的方法
CN107285394A (zh) * 2017-07-23 2017-10-24 格林美(无锡)能源材料有限公司 一种三元正极材料用前驱体及其制备方法
CN107585794A (zh) * 2017-09-13 2018-01-16 中南大学 三元正极材料、其前驱体及该材料和前驱体的制备方法
CN109516510A (zh) * 2018-12-13 2019-03-26 华友新能源科技(衢州)有限公司 一种特殊微纳结构的镍钴锰氢氧化物及其制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113860395A (zh) * 2021-11-11 2021-12-31 金驰能源材料有限公司 一种高比表面积中空正极材料前驱体及其制备方法
CN114180650A (zh) * 2021-12-20 2022-03-15 宜宾光原锂电材料有限公司 一种自动化制备三元前驱体的方法及设备
CN114655998A (zh) * 2022-03-01 2022-06-24 西安理工大学 高镍三元正极前驱体的制备方法
CN114804225A (zh) * 2022-03-15 2022-07-29 远景动力技术(江苏)有限公司 三元材料前驱体及其应用
WO2023208238A1 (zh) * 2022-04-29 2023-11-02 中伟新材料股份有限公司 一种三元正极材料及其前驱体、锂离子电池
CN115465899A (zh) * 2022-09-14 2022-12-13 陕西红马科技有限公司 一种多冠状多元素球形包覆型前驱体及其制备方法、化学包覆修饰产品及方法
CN115465899B (zh) * 2022-09-14 2023-09-15 陕西红马科技有限公司 一种多冠状多元素球形包覆型前驱体及其制备方法、化学包覆修饰产品及方法

Also Published As

Publication number Publication date
CN111463425A (zh) 2020-07-28

Similar Documents

Publication Publication Date Title
WO2021196324A1 (zh) 一种三元正极材料前驱体及其制备方法
WO2021136243A1 (zh) 改性镍钴铝酸锂正极材料及其制备方法与应用
US11345609B2 (en) High voltage lithium nickel cobalt manganese oxide precursor, method for making the same, and high voltage lithium nickel cobalt manganese oxide cathode material
CN108428862B (zh) 铝包覆三元掺锆复合材料、复合正极材料及其制备和在锂离子电池中的应用
CN107681128B (zh) 一种锂离子电池正极材料及其制备方法
WO2023169591A1 (zh) 含钠氧化物正极材料及其制备方法与应用、正极片及其应用
WO2016188477A2 (zh) 碳包覆三元正极材料及其制备方法、锂离子电池
CN109411718B (zh) 掺杂改性的三元正极材料的制备方法
CN106207138A (zh) 一种锂离子电池正极材料制备方法及其应用
CN106159254A (zh) 纳米片状三元或富锂锰基固溶体正极材料前驱体制备方法
CN107732212A (zh) 一种多孔镍钴锰复合氢氧化物及其制备方法和在锂离子正极材料中的应用
WO2007000075A1 (fr) Procédé de préparation d’hydroxyde nickeleux sphérique qui est dopé et d’oxydes métalliques multiples, et pile secondaire au lithium
WO2019113870A1 (zh) 一种富锂锰基材料及其制备和应用
WO2010139142A1 (zh) 二次锂电池正极材料及其制备方法
CN114573052B (zh) 镍钴锰三元前驱体及其制备方法、镍钴锰正极材料及其制备方法和锂离子电池
WO2022134617A1 (zh) 锂离子电池用正极材料及其制备方法和锂离子电池
CN115231625B (zh) 三元前驱体材料、三元正极材料及其制备方法和锂离子电池
CN105006566A (zh) 一种改性正极材料及其制备方法和锂离子电池
CN113328075A (zh) 一种还原氧化石墨烯改性镍钴锰三元正极材料的制备方法
CN104716303A (zh) 球形羟基氧化钴-四氧化三钴复合材料的制备方法
WO2023179247A1 (zh) 一种超高镍三元前驱体及其制备方法
WO2024040908A1 (zh) 一种多孔球形三元前驱体及其制备方法、三元正极材料、正极极片和电池
WO2023138220A1 (zh) 具有大通道的正极材料前驱体的制备方法及其应用
CN111592053A (zh) 一种镍基层状锂离子电池正极材料及其制备方法与应用
WO2023092886A1 (zh) 改性正极材料、其制备方法及锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20928119

Country of ref document: EP

Kind code of ref document: A1