WO2022134617A1 - 锂离子电池用正极材料及其制备方法和锂离子电池 - Google Patents

锂离子电池用正极材料及其制备方法和锂离子电池 Download PDF

Info

Publication number
WO2022134617A1
WO2022134617A1 PCT/CN2021/112266 CN2021112266W WO2022134617A1 WO 2022134617 A1 WO2022134617 A1 WO 2022134617A1 CN 2021112266 W CN2021112266 W CN 2021112266W WO 2022134617 A1 WO2022134617 A1 WO 2022134617A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode material
mixed
precursor
primary
Prior art date
Application number
PCT/CN2021/112266
Other languages
English (en)
French (fr)
Inventor
侯雪原
王竞鹏
张学全
刘亚飞
陈彦彬
Original Assignee
北京当升材料科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京当升材料科技股份有限公司 filed Critical 北京当升材料科技股份有限公司
Priority to JP2022565672A priority Critical patent/JP7292537B2/ja
Priority to EP21908622.0A priority patent/EP4138160A4/en
Priority to KR1020227040576A priority patent/KR20230008126A/ko
Publication of WO2022134617A1 publication Critical patent/WO2022134617A1/zh
Priority to US18/081,221 priority patent/US11837722B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • C01P2004/86Thin layer coatings, i.e. the coating thickness being less than 0.1 time the particle radius
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of lithium ion batteries, in particular to a positive electrode material for lithium ion batteries, a preparation method thereof, and a lithium ion battery.
  • the biggest defect of the high-nickel ternary cathode material is that there are many phase changes in the crystal structure during the charging and discharging process, and the volume change caused by the phase transition leads to particle pulverization.
  • CN109713297A discloses a high-nickel positive electrode material with directional arrangement of primary particles and a preparation method thereof.
  • the method includes: (1) blending: adding a high-nickel positive electrode material precursor, a lithium source, A dopant capable of reducing the surface energy of the 003 crystal plane of the layered structure of the high-nickel positive electrode material to obtain a mixture; (2) sintering: sintering the mixture to obtain a high-nickel positive electrode material with primary particles oriented in a directional arrangement.
  • this method requires pre-sintering in the preparation process, which increases the difficulty of the process, and does not optimize the coating of the formed surface structure, so it is difficult to suppress the volume change of the primary grains inside the agglomerates of high-nickel cathode materials after long cycles. crack growth.
  • CN110492064A discloses a positive electrode active material for a lithium secondary battery and a lithium secondary battery including a positive electrode comprising the positive electrode active material, the method comprising: subjecting a mixture comprising a lithium source and a metal hydroxide to a first step in an oxidizing gas atmosphere a heat treatment to obtain nickel-based active material secondary particles; and adding a fluoride precursor to the nickel-based active material secondary particles to obtain a reaction mixture, and subjecting the reaction mixture to a second heat treatment in an oxidizing gas atmosphere , and wherein the second heat treatment is performed at a lower temperature than the first heat treatment.
  • the method prepares radially distributed agglomerate secondary particles through precursor doping, and protects the surface through fluorine coating. However, due to the low secondary coating temperature, it can only protect the surface of the particles, and the internal primary particles lack mutual support, which cannot effectively inhibit the growth of internal cracks during the cycle.
  • the purpose of the present invention is to overcome the defect problem of the internal crack growth of the positive electrode material in the prior art in the long cycle process, to provide a positive electrode material for a lithium ion battery and a preparation method thereof and a lithium ion battery, a lithium ion battery containing the positive electrode material is provided.
  • the first aspect of the present invention provides a positive electrode material for lithium ion batteries, wherein the positive electrode material comprises a high nickel multi-element positive electrode material, and the high nickel multi-element positive electrode material is formed by agglomeration of a plurality of primary crystal grains, and the primary crystal grains are distributed in a divergent shape along the diameter direction of the high-nickel multi-element cathode material;
  • the aspect ratio L/R of the primary crystal grains inside the positive electrode material is greater than or equal to 3, and the radial distribution ratio of the primary crystal grains inside the positive electrode material is greater than or equal to 60%.
  • a second aspect of the present invention provides a method for preparing the aforementioned positive electrode material, wherein the preparation method includes:
  • Ni salt, A salt, Co salt are contacted with water to obtain mixed salt solution
  • a third aspect of the present invention provides a lithium ion battery, wherein the lithium ion battery contains the aforementioned positive electrode material.
  • the present invention has the following advantages:
  • the primary crystal grains inside the positive electrode material provided by the present invention are distributed in a radial direction, and the aspect ratio of the primary crystal grains inside the positive electrode material is greater than or equal to 3, and the radial direction of the primary crystal grains inside the positive electrode material is ⁇ 3.
  • the distribution ratio is greater than or equal to 60%, which can facilitate the insertion and extraction of lithium ions, and facilitate the conduction of internal stress caused by the change of grain volume caused by charge and discharge during the cycle, thereby improving the cycle performance.
  • the positive electrode material provided by the present invention contains M oxides that are uniformly distributed in the interior and surface of the high-nickel multi-element positive electrode material, which is beneficial to the growth of the (003) crystal plane inside the primary sintered material, so that the primary crystal inside the positive electrode material can grow.
  • the aspect ratio of the grains can be further increased, and the radial distribution ratio of the primary grains can be further increased.
  • the positive electrode material provided by the present invention also contains a coating layer coated on the outer surface of the high-nickel multi-element positive electrode material, because during the calcination process, the N element in the additive can be diffused to the inside of the positive electrode material, It is conducive to the formation of bulk doping of the surface layer, and the bonding effect is formed on the radially distributed primary grain interface, which further improves the cycle performance of the positive electrode material.
  • Fig. 1 is the scanning electron microscope picture of the precursor prepared in Example 1;
  • Example 2 is a SEM image of the cross-section of the positive electrode material prepared in Example 1;
  • Fig. 4 is the cross-sectional scanning electron microscope image of the cathode material prepared in Comparative Example 2;
  • Example 5 is a schematic diagram of the relationship between the number of cycles and the capacity retention rate of Example 1, Comparative Example 1 and Comparative Example 2;
  • FIG. 6 is a schematic diagram of the aspect ratio of the multi-component material prepared by the present invention.
  • the first aspect of the present invention provides a positive electrode material for lithium ion batteries, wherein the positive electrode material comprises a high nickel multi-element positive electrode material, and the high nickel multi-element positive electrode material is formed by agglomeration of a plurality of primary crystal grains, and the primary crystal grains are distributed in a divergent shape along the diameter direction of the high-nickel multi-element cathode material;
  • the aspect ratio L/R of the primary crystal grains inside the positive electrode material is greater than or equal to 3, and the radial distribution ratio of the primary crystal grains inside the positive electrode material is greater than or equal to 60%.
  • the preparation method of the positive electrode material provided by the present invention through two synthesis, unsteady growth in the synthesis process of the precursor is made, and in the second synthesis and growth process, it is more favorable for the primary grains inside the precursor to be radially oriented growth, can prepare a precursor with an aspect ratio of the primary crystal grains inside the precursor ⁇ 1.5, and the radial distribution ratio of the primary crystal grains inside the precursor ⁇ 30%, so that when the precursor reacts with the lithium source,
  • the high reactivity is conducive to the diffusion of lithium and the diffusion of additives during the sintering process; in addition, the addition of specific additives can facilitate the growth of primary grains along the (003) crystal plane, combined with the specific precursor structure, the obtained positive electrode material internal
  • the primary crystal grains are distributed radially in a radial direction, and the aspect ratio of the primary crystal grains inside the positive electrode material can reach ⁇ 3, and the radial distribution ratio of the primary crystal grains inside the positive electrode material is ⁇ 60%; thus, it is beneficial to lithium ions
  • the N element in the additive can be diffused into the interior of the positive electrode material, and there are It is conducive to the formation of bulk doping of the surface layer, and the bonding effect is formed on the radially distributed primary grain interface, which further improves the cycle performance of the positive electrode material.
  • Aspect ratio represents the ratio between the length L in the axial direction of the primary grain and the diameter R in the vertical axial direction of the primary grain, that is, the value of L/R, as shown in Figure 6.
  • the schematic diagram of the aspect ratio is shown.
  • Ring distribution ratio means the ratio of the number of grains distributed in the axial direction of the primary grains to the total number of primary grains.
  • the aspect ratio of the inner primary crystal grains in the positive electrode material is 3-5, and the radial distribution ratio of the inner primary crystal grains in the positive electrode material is 60-85%, more preferably , the aspect ratio of the inner primary crystal grains in the positive electrode material is 4-5, and the radial distribution ratio of the inner primary crystal grains in the positive electrode material is 75-83%.
  • the radial distribution ratio of the inner primary crystal grains in the positive electrode material is 60-85%
  • the number is 60-85% of the total number of primary grains”.
  • the composition of the high nickel multi-element cathode material is represented by the general formula Li 1+a (Ni 1-xy Co x A y )O 2 .
  • A is Al and/or Mn, preferably, 0.01 ⁇ a ⁇ 0.05, 0.09 ⁇ x ⁇ 0.11, 0.03 ⁇ y ⁇ 0.06; A is Mn.
  • the positive electrode material further comprises: oxides of M evenly distributed in the interior and the surface layer of the high-nickel multi-element positive electrode material, wherein the M is selected from boron (B), aluminum (Al), tungsten ( W), one or more of niobium (Nb), cerium (Ce) and strontium (Sr); preferably, the oxide of M is selected from WO3 nanopowder, B2O3 nanopowder, Nb2 One or more of O5 nanopowder and H3BO3 nanopowder.
  • M is selected from boron (B), aluminum (Al), tungsten ( W), one or more of niobium (Nb), cerium (Ce) and strontium (Sr); preferably, the oxide of M is selected from WO3 nanopowder, B2O3 nanopowder, Nb2 One or more of O5 nanopowder and H3BO3 nanopowder.
  • the particle size of the oxide of M is 30 nm-2 ⁇ m, in order to achieve better doping effect, it is preferably 50 nm-1 ⁇ m, more preferably 50 nm-300 nm.
  • the content of the oxide of M is 0.1-0.8 mol %, in order to achieve better doping effect, it is preferably 0.1-0.5 mol %, more preferably 0.2-0.3 mol%.
  • the positive electrode material further comprises: a coating layer coated on the outer surface of the high-nickel multi-component positive electrode material; wherein, the coating layer contains an oxide of N, and the N is selected from nickel (Ni (Ni). ), cobalt (Co), manganese (Mn), titanium (Ti), vanadium (V), niobium (Nb), molybdenum (Mo), cerium (Ce), aluminum (Al), barium (Ba), yttrium (Y) ) and one or more of zirconium (Zr).
  • nickel Ni
  • Co cobalt
  • Mn manganese
  • Ti titanium
  • V vanadium
  • Nb niobium
  • Mo molybdenum
  • Ce cerium
  • Al aluminum
  • Ba barium
  • Y yttrium
  • Zr zirconium
  • the particle size of the N oxide is 30 nm-2 ⁇ m, and in order to achieve better reactivity and coating effect, it is preferably 5 nm-1 ⁇ m, more preferably 10-200 nm.
  • the thickness of the coating layer is 0.01-0.1 ⁇ m, preferably 0.01-0.05 ⁇ m, more preferably 15-21 nm.
  • the content of the N oxide is 0.1-2.5 mol%, in order to achieve better reactivity and coating effect, it is preferably 0.1-2 mol%, More preferably, it is 1-1.5 mol%.
  • the composition of the positive electrode material is represented by the general formula Li 1+a ((Ni 1-xy Co x A y M p )N z )O 2 ; wherein, -0.5 ⁇ a ⁇ 0.5, 0 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.2, 0 ⁇ p ⁇ 0.008, 0 ⁇ z ⁇ 0.02;
  • A is Al and/or Mn;
  • N is Ni, Co, Mn, Ti, V, Nb, Mo, Ce, Al, Ba, One or more elements of Y and Zr.
  • A is Mn, M is W, B and one or more of Nb, N is one or more of Ni, Co and Mn.
  • the particle size of the positive electrode material is 9-14 ⁇ m.
  • a second aspect of the present invention provides a method for preparing the aforementioned positive electrode material, characterized in that, the preparation method includes:
  • Ni salt, A salt, Co salt are contacted with water to obtain mixed salt solution
  • the Ni salt, A salt, and Co salt are soluble metal salts, and the soluble metal salt is selected from one or more of sulfate, chloride and acetate, Preferred are sulfates.
  • the molar ratio of the amounts of the Ni salt, the Co salt and the A salt is (60-95): (3-20): (1- 20), preferably (60-90): (4-20): (1-10), more preferably (83-88): (3-11): (3-9), still more preferably (83) -88):(9-11):(3-6).
  • the amounts of the Ni salt, the Co salt and the A salt are controlled within the aforementioned ranges, so that both good capacity and cycle performance can be obtained.
  • the molar concentration of the mixed salt solution is 0.5-2 mol/L, preferably 1.5-2 mol/L.
  • controlling the molar concentration of the mixed salt solution within the aforementioned range can effectively control the solid content and growth time in the reaction process.
  • the molar concentration of the complexing agent ammonia solution is 4-12 mol/L, and the molar concentration of the sodium hydroxide solution is 2-8 mol/L.
  • step (2) the mixed salt solution is contacted with the first mixed solution containing water, a complexing agent and a precipitating agent in a reactor to perform a first reaction to obtain a first mixed slurry; preferably
  • the complexing agent and the precipitating agent are added to the reaction kettle before adding the mixed solution to keep the pH at a relatively high level, wherein the reaction kettle is placed with 20- 25% pure water at the liquid level; then add the mixed solution, the mixed salt solution is added at a certain flow rate, and the initial stirring speed should be kept at a high speed.
  • the complexing agent and the precipitating agent act together.
  • Granular precipitation is formed under the precipitation, and the initially added metal salt solution Ni, Co, and A are composed of P(OH) 2 , PCO 3 or PC 2 O 4 (wherein, P is one or more of Ni, Co and A) ) and other forms to form spherical particle seed crystals, that is, precursor crystal nuclei, and the precursor crystal nuclei obtained by the reaction are filtered and used for later use.
  • step (2) the pH value of the first mixed solution is 11.5-13, and the pH value is kept at a relatively high level, the purpose is to suppress the growth of particles during the first synthesis process, so as to prepare for the subsequent synthesis. nuclei, and high pH facilitates increased particle density.
  • step (2) based on the total volume of the reaction kettle, the consumption of the first mixed solution is 20-30%, and the consumption of the mixed salt solution is 15-20%.
  • the conditions of the first reaction include: the flow rate of the mixed salt solution is 1-5L/h, the stirring rate is 500-600r/min, the temperature is 40-80°C, The time is 2-10h, the pH value is 11.5-13; preferably, the flow rate of the mixed salt solution is 1-2.5L/h, the stirring rate is 600r/min, the temperature is 50-80°C, and the time is 6-10h , the pH value is 12-13.
  • Small particle precursor crystal nuclei can be obtained by adding salt solution, precipitating agent and complexing agent to the reaction kettle while stirring.
  • the particle size D 50 of the precursor crystal nucleus is 1-3 ⁇ m, preferably 1-2 ⁇ m.
  • step (3) in the process of preparing and synthesizing the precursor, the precipitate formed by the metal salt gradually grows on the periphery of the crystal nucleus of the precursor without separate nucleation, and all particles grow at the same time, which ensures the growth of each particle. uniformity.
  • step (3) the pH value of the second mixed solution is 11-12.5.
  • the dosage of the second mixed solution is 150-200%, and the dosage of the mixed salt solution is 70-100%.
  • the solid content in the second mixed slurry is 30-60%, preferably 40-60%, more preferably 40-45%; in the present invention, in order to make the second mixed slurry
  • the reaction process when the slurry in the reactor reaches 80%, 20% slurry is released from the lower side of the reactor. After standing for precipitation, the supernatant of the slurry is poured out, and the remaining slurry is poured into the reactor to increase The solid content in the reactor.
  • controlling the solid content in the second mixed slurry to be within the aforementioned range can improve the probability of the precursor particles colliding in the reactor, thereby improving the sphericity of the precursor, and making the The precursor surface is smooth.
  • the conditions of the second reaction include: the flow rate of the mixed salt solution is 0.5-5L/h, the stirring rate is 300-500r/min, the temperature is 40-80°C, the time is 10-200h, the pH The value is 11-13; preferably, the flow rate of the mixed salt solution is 1-2.5L/h, the stirring rate is 500r/min, the temperature is 50-60°C, the time is 100-150h, and the pH value is 11-12.5 ; Further, the particle size D 50 of the precursor is 9-18 ⁇ m, preferably 9.5-11 ⁇ m; further, the aspect ratio of the primary crystal grains inside the precursor is 1.5-4, preferably 1.5-3, and all The radial distribution ratio of the primary crystal grains inside the precursor is 30-50%; further, the aspect ratio of the primary crystal grains inside the precursor is 3, and the diameter of the primary crystal grains inside the precursor is 3 The distribution ratio is 40-50%.
  • the complexing agent is selected from one or more of EDTA, ammonia water, ammonium chloride, ammonium sulfate, ammonium nitrate, ammonium fluoride, ammonium citrate, ammonium acetate and ethylenediamine.
  • the molar ratio of the complexing agent to the total metal salt is usually (0.1-3):1; preferably (1-2):1; more preferably (1-1.5):1, wherein the metal Total salt is the total moles of Ni, Co, A metal salts.
  • the precipitating agent is selected from compounds containing OH - and CO 3 2- , such as one or more of sodium hydroxide, potassium hydroxide, ammonium carbonate, sodium bicarbonate, sodium carbonate and potassium carbonate.
  • the molar ratio of the precipitant to the total metal salt is (1-3):1; preferably (1-2):1; more preferably (1.01-1.04):1, wherein the total metal salt is Total moles of Ni, Co, A metal salts.
  • the conditions of the heat treatment include: drying for 1-20 hours at a temperature of 90-130° C. in a vacuum environment or a blast environment.
  • the molar ratio of the precursor to the lithium source is 1:(0.95-1.05), and the lithium source is lithium hydroxide.
  • the conditions of the first roasting treatment include: the temperature is 500-1100° C., and the time is 6-20 h; Sintering at 700-900°C for 8-18h, and crushing to obtain primary sintered material with primary grains distributed radially.
  • the additive M is selected from oxides and corresponding oxides of one or more elements selected from the group consisting of boron (B), aluminum (Al), tungsten (W), niobium (Nb), cerium (Ce) and strontium (Sr). /or hydroxide particles; preferably, the additive M is selected from one or more of oxides, hydroxides, carbonates, nitrates and sulfates corresponding to the above metal elements; more preferably , the additive M is selected from one or more of WO 3 nano-powder, B 2 O 3 nano-powder, Nb 2 O 5 nano-powder and H 3 BO 3 nano-powder.
  • the conditions of the second calcination treatment include: the temperature is 600-1000°C, and the time is 6-20h; Sintering at 650-900°C for 8-18h, crushing and dissociating to obtain a positive electrode material.
  • the additive N is selected from nickel (Ni), cobalt (Co), manganese (Mn), titanium (Ti), vanadium (V), niobium (Nb), molybdenum (Mo), cerium (Ce), aluminum ( One or more oxide and/or hydroxide particles of Al), barium (Ba), yttrium (Y) and zirconium (Zr); preferably, the additive N is selected from the corresponding metal elements One or more of oxides, hydroxides, carbonates, sulfates and nitrates; more preferably, the additive N is selected from Co(OH) 2 , Ni(OH) 2 , Mn(OH) ) 2 and one or more of Co 3 O 4 .
  • the particle strength of the positive electrode material is ⁇ 120 MPa, preferably 120-135 MPa.
  • the battery pole pieces prepared from this material can withstand higher rolling strength during the production process, and the higher particle strength is beneficial to the improvement of battery cycle life; further, the particle strength containing the above-mentioned positive electrode material There are big improvements.
  • a third aspect of the present invention provides a lithium ion battery, wherein the lithium ion battery contains the aforementioned positive electrode material.
  • a method for preparing a positive electrode material with a divergent structure provided by the present invention includes:
  • Precursor crystal nucleus preparation the complexing agent and the precipitating agent are firstly added to the reactor with stirring, wherein, the pure water of 20-25% liquid level is placed in the reactor to obtain the first mixed solution , wherein, based on the total volume of the reaction kettle, the amount of the first mixed solution is 20-30%, and the pH of the first mixed solution is adjusted to 11.5-13;
  • the mixed salt solution L 1 is added and reacted at a flow rate of 1-2.5 L/h to obtain a first mixed slurry, wherein, based on the total volume of the reaction kettle, the mixed salt solution
  • the dosage is 15-20%
  • the pH value of the control reaction is 11.5-13
  • the reaction temperature is 50-80 ° C
  • the stirring speed is 500-600 r/min
  • the molar ratio of the complexing agent ammonia water to the total metal salt is (1-1.5): 1
  • the molar ratio of precipitant and total metal salt is (1.01-1.04): 1
  • the reaction time is 6-10h
  • the precursor crystal nucleus with particle size D50 of 1-2 ⁇ m is obtained by filtration;
  • Precursor preparation the second mixed solution containing pure water, complexing agent and precipitating agent is added to the reactor with stirring to carry out the reaction, wherein, based on the total volume of the reactor, the The dosage of the second mixed solution is 150-200%, the pH value of the second mixed solution is adjusted to 11-12.5, and the stirring speed is 500r/min;
  • the precursor crystal nucleus and the mixed salt solution L 1 are added to the reaction kettle for the second reaction, wherein the mixed salt solution L 1 is added at a flow rate of 1-2.5L/h, wherein the total volume of the reaction kettle is As a benchmark, the dosage of the mixed salt solution is 70-100%, the stirring speed is 500-600r/min, the pH value is controlled at 11-12.5, the reaction temperature is 60°C, and the reaction time is 120-150h.
  • the total volume of the kettle is 30%; during the reaction process, when the solution in the reactor reaches 80%, 20% of the second mixed slurry is released from the lower side of the reactor.
  • Electron microscope photo parameters were measured by a scanning electron microscope with model S4800 purchased from Hitachi;
  • the capacity retention rate is measured by purchasing from Xinwei manufacturer, the instrument name is high-precision battery tester, and the model is CT4008.
  • This example is to illustrate the positive electrode material with a divergent structure prepared by the preparation method of the present invention.
  • Nickel sulfate, cobalt sulfate, manganese sulfate are dissolved in pure water according to metal mol ratio 88: 9: 3 to obtain the mixed salt solution L 1 of 2.0mol/L, the ammonia solution of preparation 4mol/L is used as complexing agent, 8mol /L sodium hydroxide solution as precipitant;
  • the mixed salt solution L1 was added to react at a flow rate of 2.5L/h to obtain a first mixed slurry, wherein, based on the total volume of the reaction kettle, the amount of the mixed salt solution was 20%, the pH value of the control reaction is 13, the reaction temperature is 50°C, the stirring speed is 600r/min, the molar ratio of the complexing agent ammonia water to the total metal salt is 1:1, and the molar ratio of the precipitating agent sodium hydroxide to the total metal salt is 1.01 : 1, the reaction time is 10h, and the precursor crystal nucleus is obtained by filtration;
  • Precursor preparation the second mixed solution containing pure water, aqueous ammonia solution, sodium hydroxide is added to the reactor with stirring and reacts in parallel, wherein, based on the total volume of the reactor, the The dosage of the second mixed solution is 150%, the pH value of the second mixed solution is adjusted to 12.5, and the stirring speed is 600r/min;
  • the precursor crystal nucleus and the mixed salt solution L 1 are added to the reaction kettle for the second reaction, wherein the mixed salt solution L 1 is added at a flow rate of 2.5L/h, wherein the total volume of the reaction kettle is used as the benchmark , the dosage of the mixed salt solution is 80%, the stirring speed is 600r/min, the pH value is controlled at 12.5, the reaction temperature is 60°C, and the reaction time is 120h, and the solution after adding the reaction accounts for 30% of the total volume of the reaction kettle; during the reaction process When the solution in the reaction kettle reaches 80%, 20% of the second mixed slurry is released from the lower side of the reaction kettle.
  • the supernatant liquid of the slurry is poured out, and the remaining slurry is poured into the reaction kettle to increase the solid content in the reaction kettle. Controlling the liquid feeding speed and growth speed, when the D 50 grows to 9.5 ⁇ m, and the reaction time reaches 120h, when the solid content reaches 45%, the precursor is precipitated, filtered, washed, and dried at 120 °C to obtain the multi-material precursor;
  • the primary sintering material is mixed with 1 mol % of Co(OH) 2 nano-powder particles, and the addition amount is 1.5 mol %, and the mixed material is sintered at 680° C. for 15 hours.
  • the positive electrode material S1 was prepared, and the chemical formula of S1 was:
  • the properties of the cathode material are shown in Table 2.
  • FIG. 1 is a scanning electron microscope image of the precursor for lithium ion battery prepared in Example 1. It can be seen from FIG. 1 that the primary particles of the precursor prepared by this preparation scheme are distributed along the radial direction.
  • FIG. 2 is a SEM image of the cross-section of the positive electrode material prepared in Example 1. It can be seen from FIG. 2 that the primary particles of the positive electrode material prepared by this scheme are distributed along the radial direction.
  • This example is to illustrate the positive electrode material with a divergent structure prepared by the preparation method of the present invention.
  • Nickel sulfate, cobalt sulfate, manganese sulfate are dissolved in pure water according to metal mol ratio 83: 11: 6 to obtain a mixed salt solution L 2 of 2.0mol/L, the ammonia solution of 4mol/L is prepared as a complexing agent, 8mol /L sodium hydroxide solution as precipitant;
  • the mixed salt solution L is added to react at a flow rate of 2.2 L/h to obtain a first mixed slurry, wherein, based on the total volume of the reaction kettle, the amount of the mixed salt solution is 20%, the pH value of the control reaction is 11.5, the reaction temperature is 60°C, the stirring speed is 600r/min, the molar ratio of the complexing agent ammonia water to the total metal salt is 1:1, and the molar ratio of the precipitant sodium hydroxide to the total metal salt is 1.04 : 1, the reaction time is 6h, and the precursor crystal nucleus is obtained after filtration;
  • Precursor preparation the second mixed solution containing pure water, complexing agent and precipitating agent is added to the reactor with stirring and reacts in parallel, wherein, based on the total volume of the reactor, the The dosage of the second mixed solution is 170%, the pH value of the second mixed solution is adjusted to be 12, and the stirring speed is 600r/min;
  • the precursor crystal nucleus and the mixed salt solution L are added to the reaction kettle for the second reaction, wherein the mixed salt solution L is added at a flow rate of 2L/h, wherein, based on the total volume of the reaction kettle,
  • the dosage of the mixed salt solution is 80%
  • the stirring speed is 600r/min
  • the pH value is controlled to be 12
  • the reaction temperature is 60°C
  • the reaction time is 180h.
  • 20% of the second mixed slurry is released from the lower side of the reactor. After standing for precipitation, the supernatant liquid of the slurry is poured out, and the remaining slurry is poured into the reactor to increase the reaction.
  • the solid content in the kettle is controlled, and the liquid feeding speed and growth speed are controlled.
  • the D 50 grows to 11 ⁇ m and the reaction time reaches 180 h, when the solid content reaches 50%, the precursor is precipitated, filtered, washed, and dried at 120 ° C to obtain multi-component materials.
  • the primary sintering material was mixed with Ni(OH) 2 nano-powder particles in an amount of 1.5 mol %, and the addition amount was 1.5 mol %, and the mixed material was sintered at 680° C. for 15 h.
  • the cathode material S2 was prepared, and the chemical formula of S2 was:
  • the properties of the cathode material are shown in Table 2.
  • This example is to illustrate the positive electrode material with divergent structure prepared by the preparation method of the present invention.
  • the positive electrode material was prepared according to the same method as in Example 1, except that: in step (4), the precursor and lithium hydroxide were thoroughly mixed at a molar ratio of 1:1.05, and 0.2 mol% B 2 O 3 nanometer was added. powder. In an oxygen atmosphere, the temperature was kept at 800 °C for 14 h. After cooling down naturally, crushing and sieving, the primary sintered material of agglomerates with a grain size distribution greater than 60% is obtained.
  • the primary sintered material was mixed with 1.5 mol% of Mn(OH) 2 nano-powder particles, and the addition amount was 1.5 mol%, and the mixed material was sintered at 680° C. for 15 hours.
  • the positive electrode material S3 was prepared, and the chemical formula of S3 was:
  • the properties of the cathode material are shown in Table 2.
  • This example is to illustrate the positive electrode material with a divergent structure prepared by the preparation method of the present invention.
  • the positive electrode material was prepared according to the same method as in Example 1, except that in step (4), the precursor and lithium hydroxide were thoroughly mixed at a molar ratio of 1:1.05, and 0.3 mol% Nb 2 O 5 was added. Nano powder. In an oxygen atmosphere, the temperature was kept at 795°C for 14h. After cooling down naturally, crushing and sieving, the primary sintered material of agglomerates with a grain size distribution greater than 60% is obtained.
  • the primary sintering material was mixed with Co(OH) 2 nano-powder particles in an amount of 1.5 mol%, and the mixed material was sintered at 680° C. for 15 hours.
  • the properties of the cathode material are shown in Table 2.
  • This example is to illustrate the positive electrode material with a divergent structure prepared by the preparation method of the present invention.
  • the positive electrode material was prepared according to the same method as in Example 1, except that: in step (4), the precursor and lithium hydroxide were thoroughly mixed at a molar ratio of 1:1.05, and 0.2 mol% H 3 BO 3 was added. Nano powder. In an oxygen atmosphere, the temperature was kept at 780°C for 14h. After cooling down naturally, crushing and sieving, the primary sintered material of agglomerates with a grain size distribution greater than 60% is obtained.
  • the primary sintering material was mixed with Co 3 O 4 nano-powder particles, and the addition amount of Co element was 1.5 mol%, and the mixed material was sintered at 680° C. for 15 hours.
  • the properties of the cathode material are shown in Table 2.
  • the positive electrode material was prepared according to the same method as in Example 1, except that in step (4), the precursor and lithium hydroxide were thoroughly mixed at a molar ratio of 1:1.05. In an oxygen atmosphere, the temperature was kept at 780 °C for 14 h to obtain a primary sintered material.
  • the positive electrode material D1 was prepared, and the chemical formula of D1 was:
  • the properties of the cathode material are shown in Table 2.
  • FIG. 3 is a SEM image of the cross-section of the cathode material prepared in Comparative Example 1. It can be seen from FIG. 3 that the distribution ratio of the primary grains of the cathode material prepared according to FIG. 3 is lower than that of Example 1.
  • the positive electrode material was prepared according to the same method as in Example 1, except that in step (5), after the primary sintering material was prepared, it was coated with LiF 0.2 mol%, and sintered at 400°C for 10 hours.
  • the positive electrode material D2 was prepared, and the chemical formula of D2 was:
  • the properties of the cathode material are shown in Table 2.
  • FIG. 4 is a cross-sectional SEM image of the cathode material prepared in Comparative Example 2. It can be seen from FIG. 4 that the distribution ratio of the primary grains of the cathode material prepared according to FIG. 4 is lower than that of Example 1.
  • Figure 5 is a schematic diagram showing the relationship between the number of cycles and the capacity retention rate in Example 1, Comparative Example 1 and Comparative Example 2. It can be seen from Figure 5 that the cycle retention rate in Example 1 is the best, followed by Comparative Example 1 and Comparative Example 2. Cycle retention is the worst.
  • the positive electrode material was prepared according to the same method as in Example 1, except that the conditions of B 2 O 3 of 0.5 mol of the coating additive for the second sintering were changed.
  • the cathode material D3 was prepared, and the chemical formula of D3 was:
  • the properties of the cathode material are shown in Table 2.
  • the positive electrode material was prepared according to the same method as in Example 1, except that in step (4), the holding time was 25h.
  • the positive electrode material D4 was prepared, and the chemical formula of D4 was:
  • the properties of the cathode material are shown in Table 2.
  • the positive electrode material was prepared in the same manner as in Example 1, except that in step (5), the temperature was 500°C.
  • the positive electrode material D5 was prepared, and the chemical formula of D5 was:
  • the properties of the cathode material are shown in Table 2.
  • the positive electrode material was prepared according to the same method as in Example 1, except that there was no preparation of the precursor crystal nucleus in the second step, the precursor was directly prepared in the third step, and the aspect ratio of the primary crystal grain inside the prepared precursor was 1 or so, and the shape of the primary grains inside the precursor is irregular.
  • the subsequent steps are the same as in Example 1.
  • the positive electrode material D6 was prepared, and the chemical formula of D6 was:
  • the properties of the cathode material are shown in Table 2.
  • the positive electrode materials prepared by using Examples 1-5 of the present invention have M oxides that are uniformly distributed in the interior and surface of the high-nickel multi-element positive electrode material, which is beneficial to the interior of the primary sintered material ( 003) the growth of the crystal plane, so that the aspect ratio of the primary crystal grains inside the positive electrode material can be further increased, and the radial distribution ratio of the primary crystal grains can be further increased;
  • the coating layer on the outer surface of the high-nickel multi-element positive electrode material can make the N element in the additive diffuse to the inside of the positive electrode material during the firing process, which is conducive to the formation of surface layer bulk doping.
  • the primary grain interface forms a bonding effect.
  • Comparative Examples 1-6 since the primary sintering additive was not used in Comparative Example 1, the aspect ratio and radial distribution of the primary particles of the material were not as good as those in Example 1. Two different non-metallic compounds were used in Comparative Examples 2 and 3 respectively. Coating, coating cycle retention is poor. In Comparative Example 4, the length-diameter ratio of the primary grains became smaller due to the long holding time of the first sintering, and the cycle was poor. In Comparative Example 5, due to the low sintering temperature, the primary grain aspect ratio of the material becomes small, the capacity is low, and the effect is not good. In Comparative Example 6, since the aspect ratio and radial distribution of the precursor are not within the scope of the present invention, the result is not good.
  • concentration is 1.1 mol/L
  • the ratio of positive electrode material:carbon black:PVDF in the battery pole piece is 90:5:5.
  • the pole piece compacted density was 3.5 g/cm 2 .
  • the half-cell capacity was first tested with 0.1C charge and discharge at 25°C, and the cycle capacity of the material was tested with 1C charge and discharge. The number of cycles is 80 weeks.
  • Lithium-ion battery S1 215 120 Lithium-ion battery S2 213 95 135 Lithium-ion battery S3 215 94 120 Lithium-ion battery S4 214 94 122 Li-ion battery S5 212 94 121 Lithium-ion battery D1 209 93 93 Lithium-ion battery D2 210 90 100 Lithium-ion battery D3 211 87 98 Lithium-ion battery D4 210 80 110 Li-ion battery D5 193 94 77 Lithium-ion battery D6 211 81 87
  • the lithium-ion batteries prepared in Examples 1-5 have high battery capacity, good cycle performance, and greatly improved particle strength.
  • the battery pole piece prepared by the material can withstand higher rolling strength during the manufacturing process, and the higher particle strength is beneficial to the improvement of the battery cycle life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种锂离子电池用正极材料及其制备方法和锂离子电池,涉及二次电池技术领域,所述正极材料包括高镍多元正极材料,所述高镍多元正极材料由多个一次晶粒团聚形成,且所述一次晶粒沿所述高镍多元正极材料的直径方向呈发散状分布;其中,所述正极材料内部的一次晶粒的长径比L/R≥3,且所述正极材料内部的一次晶粒的径向分布比例≥60%。含有该正极材料的锂离子电池容量高,颗粒强度有很大的改进。

Description

锂离子电池用正极材料及其制备方法和锂离子电池
相关申请的交叉引用
本申请享有申请号为No.202011543438.6,申请日为2020年12月23日,发明名称为“一种锂离子电池用正极材料及其制备方法和锂离子电池”的优先权。
技术领域
本发明涉及锂离子电池技术领域,具体涉及一种锂离子电池用正极材料及其制备方法和锂离子电池。
背景技术
锂离子电池高镍三元正极材料LiNi 1-x-yCo xM yO 2(其中M=Mn和/或Al),由于质量比容量和体积比容量高的优点,最近几年被广泛研究并应用于动力电池,电动工具以及储能中。其中,高镍三元正极材料目前最大的缺陷在于充放电过程中晶体结构相变较多,由于相变引起的体积变化导致了颗粒粉化。
为了克服这种缺点,CN109713297A公开了一种一次颗粒定向排列的高镍正极材料及其制备方法,该方法包括:(1)共混:在混合釜中加入高镍正极材料前驱体,锂源,能降低高镍正极材料层状结构003晶面表面能的掺杂物,得到混合物;(2)烧结:将所述混合物烧结,得到一次颗粒定向排列的高镍正极材料。但是,该方法在制备过程需要提前预烧结,增加了工艺难度,并且没有对于已经形成的表面结构进行包覆优化,所以难以抑制高镍正极材料长循环后团聚体内部一次晶粒由于体积变化导致的裂纹生长。
CN110492064A公开了用于锂二次电池的正极活性材料及包括包含正极活性材料的正极的锂二次电池,该方法包括:在氧化性气体气氛中对包括锂源和金属氢氧化物的混合物进行第一热处理以获得基于镍的活性材料二次颗粒;和向所述基于镍的活性材料二次颗粒添加氟化物前体以获得反应混合物,并在氧化气体气氛中对所述反应混合物进行第二热处理,且其中所述第二热处理比所述第一热处理低的温度下进行。该方法通过前驱体掺杂制备出径向分布团聚体二次颗粒,并且通过氟包覆对于表面的保护作用。但是由于二次包覆温度偏低,只能对颗粒表面形成保护,内部一次颗粒之间缺少相互支撑作用,在循环过程中不能有效抑 制内部裂纹的生长。
因此,研究和开发一种锂离子电池用正极材料具有重要意义。
发明内容
本发明的目的是为了克服现有技术存在的正极材料在长循环过程中内部裂纹生长的缺陷问题,提供一种锂离子电池用正极材料及其制备方法和锂离子电池,含有该正极材料的锂离子循环性能好,颗粒强度有很大的改进,以及电池容量高。
为了实现上述目的,本发明第一方面提供了一种锂离子电池用正极材料,其中,所述正极材料包括高镍多元正极材料,所述高镍多元正极材料由多个一次晶粒团聚形成,且所述一次晶粒沿所述高镍多元正极材料的直径方向呈发散状分布;
其中,所述正极材料内部的一次晶粒的长径比L/R≥3,且所述正极材料内部的一次晶粒的径向分布比例≥60%。
本发明第二方面提供了一种前述所述的正极材料的制备方法,其中,所述制备方法包括:
(1)将Ni盐、A盐、Co盐与水接触得到混合盐溶液;
(2)将所述混合盐溶液与含有水、络合剂和沉淀剂的第一混合溶液在反应釜中接触进行第一反应得到第一混合浆料,将所述第一混合浆料进行过滤得到前驱体晶核;
(3)将所述前驱体晶核和所述混合盐溶液与含有水、络合剂和沉淀剂的第二混合溶液在反应釜中接触进行第二反应得到第二混合浆料,将所述第二混合浆料进行过滤洗涤以及热处理得到前驱体;
(4)将所述前驱体、锂源和添加剂M混合后进行第一焙烧处理得到一次烧结料;
(5)将所述一次烧结料与添加剂N混合后进行第二焙烧处理得到正极材料。
本发明第三方面提供了一种锂离子电池,其中,所述锂离子电池含有前述所述的正极材料。
通过上述技术方案,本发明具有如下优势:
(1)本发明提供的正极材料内部的一次晶粒沿径向发散状分布,且所述正 极材料内部的一次晶粒的长径比≥3,所述正极材料内部的一次晶粒的径向分布比例≥60%,能够利于锂离子的嵌入脱出,利于循环过程中由于充放电导致晶粒体积变化引起的内部应力的传导,从而提升循环性能。
(2)本发明提供的正极材料含有均匀分布于所述高镍多元正极材料的内部以及表层的M氧化物,利于一次烧结料内部(003)晶面的生长,从而使正极材料内部的一次晶粒的长径比能够进一步增加,以及一次晶粒的径向分布比例进一步增加。
(3)本发明提供的正极材料还含有包覆在所述高镍多元正极材料的外表面的包覆层,由于在焙烧处理过程中,能够使得添加剂中的N元素向正极材料的内部扩散,有利于形成表面层体相掺杂,对于径向分布的一次晶粒界面形成粘接作用,进一步提升正极材料的循环性能。
附图说明
图1为实施例1制备的前驱体的扫描电镜图;
图2为实施例1制备的正极材料剖面扫描电镜图;
图3为对比例1制备的正极材料剖面扫描电镜图;
图4为对比例2制备的正极材料剖面扫描电镜图;
图5为实施例1、对比例1和对比例2的循环次数与容量保持率的关系示意图;
图6为本发明制备的多元材料的长径比的示意图。
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
为了实现上述目的,本发明第一方面提供了一种锂离子电池用正极材料,其中,所述正极材料包括高镍多元正极材料,所述高镍多元正极材料由多个一次 晶粒团聚形成,且所述一次晶粒沿所述高镍多元正极材料的直径方向呈发散状分布;
其中,所述正极材料内部的一次晶粒的长径比L/R≥3,且所述正极材料内部的一次晶粒的径向分布比例≥60%。
本发明的发明人意外发现:
(1)在本发明提供的正极材料的制备方法中,通过两次合成,使前驱体合成过程中非稳态增长,第二次合成生长过程中更利于前驱体内部的一次晶粒沿径向生长,能够制备得到前驱体内部的一次晶粒的长径比≥1.5,前驱体内部的一次晶粒的径向分布比例≥30%的前驱体,能够使得该前驱体与锂源进行反应时,反应活性高,利于烧结过程中锂的扩散和添加剂的扩散;另外,特定添加剂加入后能够有利于一次晶粒沿着(003)晶面生长,结合特定的前驱体结构,得到的正极材料内部的一次晶粒沿径向发散状分布,能够达到所述正极材料内部的一次晶粒的长径比≥3,所述正极材料内部的一次晶粒的径向分布比例≥60%;从而利于锂离子的嵌入脱出,利于循环过程中由于充放电导致晶粒体积变化引起的内部应力的传导,从而提升循环性能。
(2)在本发明提供的正极材料的制备方法中,在第一焙烧处理过程中,通过添加添加剂M,利于一次烧结料内部(003)晶面的生长,从而使正极材料内部的一次晶粒的长径比能够进一步增加,以及一次晶粒的径向分布比例进一步增加。
(3)在本发明提供的正极材料的制备方法中,在第二焙烧处理过程中,通过添加添加剂N,由于在焙烧处理过程中,能够使得添加剂中的N元素向正极材料的内部扩散,有利于形成表面层体相掺杂,对于径向分布的一次晶粒界面形成粘接作用,进一步提升正极材料的循环性能。
在本发明中,需要说明的是,对所采用的术语解释如下:
“长径比”表示的是一次晶粒轴向方向的长度L和一次晶粒垂直轴向方向的直径R之间的比值,即L/R的数值,如图6本发明制备的多元材料的长径比的示意图所示。
“发散状分布”的意思是指一次晶粒的轴向方向与高镍多元正极材料的直径方向重合。
“径向分布比例”的意思是一次晶粒轴向分布的晶粒数量占总一次晶粒数量的比例。
根据本发明,优选情况下,所述正极材料中内部一次晶粒的长径比为3-5,所述正极材料中内部一次晶粒的径向分布比例为60-85%,更优选情况下,所述正极材料中内部一次晶粒的长径比为4-5,所述正极材料中内部一次晶粒的径向分布比例为75-83%。在本发明中,需要说明的是,例如,“所述正极材料中内部一次晶粒的径向分布比例为60-85%”的意思是“所述正极材料中内部一次晶粒的径向分布数量占总一次晶粒数量的比例为60-85%”。
根据本发明,所述高镍多元正极材料的组成由通式Li 1+a(Ni 1-x-yCo xA y)O 2表示。
其中,-0.5≤a≤0.5,0<x≤0.2,0<y≤0.2;A为Al和/或Mn,优选地,0.01≤a≤0.05,0.09≤x≤0.11,0.03≤y≤0.06;A为Mn。
根据本发明,所述正极材料还包括:均匀分布于所述高镍多元正极材料的内部以及表层的M的氧化物,其中,所述M选自硼(B),铝(Al),钨(W),铌(Nb),铈(Ce)和锶(Sr)中的一种或多种;优选地,所述M的氧化物选自WO 3纳米粉末、B 2O 3纳米粉末、Nb 2O 5纳米粉末和H 3BO 3纳米粉末中的一种或多种。
根据本发明,所述M的氧化物的粒度为30nm-2μm,为了达到更好的掺杂效果,优选为50nm-1μm,更优选为50nm-300nm。
根据本发明,以所述正极材料的总摩尔数为基准,所述M的氧化物的含量为0.1-0.8mol%,为了达到更好的掺杂效果,优选为0.1-0.5mol%,更优选为0.2-0.3mol%。
根据本发明,所述正极材料还包括:包覆在所述高镍多元正极材料的外表面的包覆层;其中,所述包覆层含有N的氧化物,所述N选自镍(Ni)、钴(Co)、锰(Mn)、钛(Ti)、钒(V)、铌(Nb)、钼(Mo)、铈(Ce)、铝(Al)、钡(Ba)、钇(Y)和锆(Zr)中的一种或多种。
根据本发明,所述N的氧化物的粒度为30nm-2μm,为了达到更好的反应活性和包覆效果,优选为5nm-1μm,更优选为10-200nm。
根据本发明,所述包覆层的厚度为0.01-0.1μm,优选为0.01-0.05μm,更优 选为15-21nm。
根据本发明,以所述正极材料的总摩尔数为基准,所述N的氧化物的含量为0.1-2.5mol%,为了达到更好的反应活性和包覆效果,优选为0.1-2mol%,更优选为1-1.5mol%。
根据本发明,所述正极材料的组成由通式Li 1+a((Ni 1-x-yCo xA yM p)N z)O 2表示;其中,-0.5≤a≤0.5,0<x≤0.2,0<y≤0.2,0≤p≤0.008,0≤z≤0.02;A为Al和/或Mn;N为Ni、Co、Mn、Ti、V、Nb、Mo、Ce、Al、Ba、Y和Zr中的一种或几种元素。优选地,0.01≤a≤0.05,0.09≤x≤0.11,0.03≤y≤0.06,0.83≤1-x-y≤0.88,0.002≤p≤0.006,0.01≤z≤0.015;A为Mn,M为W、B和Nb中的一种或多种,N为Ni、Co和Mn中的一种或多种。
根据本发明,所述正极材料的粒径为9-14μm。
本发明第二方面提供了一种前述所述的正极材料的制备方法,其特征在于,所述制备方法包括:
(1)将Ni盐、A盐、Co盐与水接触得到混合盐溶液;
(2)将所述混合盐溶液与含有水、络合剂和沉淀剂的第一混合溶液在反应釜中接触进行第一反应得到第一混合浆料,将所述第一混合浆料进行过滤得到前驱体晶核;
(3)将所述前驱体晶核和所述混合盐溶液与含有水、络合剂和沉淀剂的第二混合溶液在反应釜中接触进行第二反应得到第二混合浆料,将所述第二混合浆料进行过滤洗涤以及热处理得到前驱体;
(4)将所述前驱体、锂源和添加剂M混合后进行第一焙烧处理得到一次烧结料;
(5)将所述一次烧结料与添加剂N混合后进行第二焙烧处理得到正极材料。
根据本发明,在步骤(1)中,所述Ni盐、A盐、Co盐为可溶性金属盐,所述可溶性金属盐选自硫酸盐、氯化物和醋酸盐中的一种或几种,优选为硫酸盐。
根据本发明,在步骤(1)中,以金属计,所述Ni盐、所述Co盐和所述A盐的用量的摩尔比为(60-95)∶(3-20)∶(1-20),优选为(60-90)∶(4-20)∶(1-10),更优选为(83-88)∶(3-11)∶(3-9),更进一步优选为(83-88)∶(9-11)∶(3-6)。在本发明中,将所述Ni盐、所述Co盐和所述A盐的用量 控制在前述范围之内,能够兼顾获得较好的容量和循环性能。
根据本发明,所述混合盐溶液的摩尔浓度为0.5-2mol/L,优选为1.5-2mol/L。在本发明中,将所述混合盐溶液的摩尔浓度控制在前述范围之内,能够有效控制反应过程中固含量和生长时间。
根据本发明,络合剂氨水溶液的摩尔浓度为4-12mol/L,氢氧化钠溶液的摩尔浓度为2-8mol/L。
根据本发明,在步骤(2)中,将所述混合盐溶液与含有水、络合剂和沉淀剂的第一混合溶液在反应釜中接触进行第一反应得到第一混合浆料;优选情况下,在所述前驱体晶核的制备过程中,络合剂和沉淀剂在加入所述混合溶液之前先加入到反应釜中,保持pH在较高水平,其中,反应釜中置有20-25%液位的纯水;随后加入所述混合溶液,所述混合盐溶液以一定的流速加入,初始搅拌转速要保持在高转速,加入混合盐溶液后在络合剂和沉淀剂的共同作用下形成颗粒状沉淀析出,初始加入的金属盐溶液Ni、Co、A成分以P(OH) 2、PCO 3或PC 2O 4(其中,P为Ni、Co和A中的一种或多种)等形式沉积形成球形颗粒晶种,即,前驱体晶核,将反应得到的前驱体晶核抽滤后备用。
根据本发明,在步骤(2)中,所述第一混合溶液的pH值为11.5-13,保持pH在较高水平,目的是抑制第一次合成过程中颗粒的长大,为后续合成造核,并且高pH利于颗粒致密度提升。
根据本发明,在步骤(2)中,以所述反应釜的总体积为基准,所述第一混合溶液的用量为20-30%,所述混合盐溶液的用量为15-20%。
根据本发明,在步骤(2)中,所述第一反应的条件包括:所述混合盐溶液的流速为1-5L/h,搅拌速率为500-600r/min,温度为40-80℃,时间为2-10h,pH值为11.5-13;优选地,所述混合盐溶液的流速为1-2.5L/h,搅拌速率为600r/min,温度为50-80℃,时间为6-10h,pH值为12-13。通过混合盐溶液,沉淀剂,络合剂的同时加入反应釜搅拌能够得到小颗粒前驱体晶核。根据本发明,在步骤(2)中,所述前驱体晶核的粒度D 50为1-3μm,优选为1-2μm。
根据本发明,在步骤(3)中,在前驱体制备合成过程中,金属盐形成的沉淀逐渐生长在前驱体晶核外围,没有单独成核,所有颗粒同时生长,保证了每个颗粒生长的均一性。
根据本发明,在步骤(3)中,所述第二混合溶液的pH值为11-12.5。
根据本发明,以所述反应釜的总体积为基准,所述第二混合溶液的用量为150-200%,所述混合盐溶液的用量为70-100%。
根据本发明,所述第二混合浆料中的固含量为30-60%,优选为40-60%,更优选为40-45%;在本发明中,为了使得所述第二混合浆料中的固含量提升在反应过程中反应釜内浆液达到80%时,从反应釜下侧放出20%浆液,静置沉淀后浆液的上层清液倒掉,剩余浆料倒入反应釜内,增加反应釜内固含量。
在本发明中,将所述第二混合浆料中的固含量控制为前述所述的范围之内,能够提高前驱体颗粒在反应釜中碰撞的几率,从而提高前驱体球形度,并且能够使前驱体表面平滑。
根据本发明,所述第二反应的条件包括:所述混合盐溶液的流速为0.5-5L/h,搅拌速率为300-500r/min,温度为40-80℃,时间为10-200h,pH值为11-13;优选地,所述混合盐溶液的流速为1-2.5L/h,搅拌速率为500r/min,温度为50-60℃,时间为100-150h,pH值为11-12.5;进一步,所述前驱体的粒度D 50为9-18μm,优选为9.5-11μm;更进一步,所述前驱体内部的一次晶粒的长径比1.5-4,优选为1.5-3,且所述前驱体内部的一次晶粒的径向分布比例为30-50%;更进一步,所述前驱体内部的一次晶粒的长径比为3,且所述前驱体内部的一次晶粒的径向分布比例为40-50%。
根据本发明,所述络合剂选自EDTA、氨水、氯化铵、硫酸铵、硝酸铵、氟化铵、柠檬酸铵、乙酸铵和乙二胺中的一种或多种。其中,所述络合剂与金属总盐的摩尔比通常为(0.1-3)∶1;优选为(1-2)∶1;更优选为(1-1.5)∶1,其中,所述金属总盐为Ni、Co、A金属盐的总摩尔数。
根据本发明,所述沉淀剂选自含OH -、CO 3 2-的化合物,例如氢氧化钠、氢氧化钾、碳酸铵、碳酸氢钠、碳酸钠、碳酸钾中的一种或几种。其中,所述沉淀剂与金属总盐摩尔比为(1-3)∶1;优选为(1-2)∶1;更优选为(1.01-1.04)∶1,其中,所述金属总盐为Ni、Co、A金属盐的总摩尔数。
根据本发明,在步骤(3)中,所述热处理的条件包括:在在真空环境或者鼓风环境下,在温度为90-130℃条件下,烘干1-20小时。
根据本发明,所述前驱体与所述锂源的摩尔比为1∶(0.95-1.05),所述锂 源为氢氧化锂。
根据本发明,在步骤(4)中,所述第一焙烧处理的条件包括:温度为500-1100℃,时间为6-20h;优选情况下,在氧气或含氧量>25%气氛中,在700-900℃下烧结8-18h,破碎得到一次晶粒呈径向分布的一次烧结料。
根据本发明,添加剂M选自硼(B),铝(Al),钨(W),铌(Nb),铈(Ce)和锶(Sr)中的一种或多种元素对应的氧化物和/或氢氧化物颗粒;优选情况下,所述添加剂M选自以上金属元素对应的氧化物、氢氧化物、碳酸盐、硝酸盐和硫酸盐中的一种或多种;更优选情况下,所述添加剂M选自WO 3纳米粉末、B 2O 3纳米粉末、Nb 2O 5纳米粉末和H 3BO 3纳米粉末中的一种或多种。
根据本发明,在步骤(5)中,所述第二焙烧处理的条件包括:温度为600-1000℃,时间为6-20h;优选情况下,在氧气或含氧量>25%气氛中,在650-900℃下烧结8-18h,破碎解离得到正极材料。
根据本发明,添加剂N选自镍(Ni)、钴(Co)、锰(Mn)、钛(Ti)、钒(V)、铌(Nb)、钼(Mo)、铈(Ce)、铝(Al)、钡(Ba)、钇(Y)和锆(Zr)中的一种或多种的氧化物和/或氢氧化物颗粒;优选情况下,所述添加剂N选自上述金属元素对应的氧化物、氢氧化物、碳酸盐、硫酸盐和硝酸盐中的一种或多种;更优选情况下,所述添加剂N选自Co(OH) 2、Ni(OH) 2、Mn(OH) 2和Co 3O 4中的一种或多种。
根据本发明,所述正极材料的颗粒强度≥120MPa,优选为120-135MPa。在本发明中,该材料制备的电池极片制作过程中能够承受更高的辊压强度,并且更高的颗粒强度有利于电池循环寿命的提升;进一步,含有前述所述的正极材料的颗粒强度有很大的改进。
本发明第三方面提供了一种锂离子电池,其中,所述锂离子电池含有前述所述的正极材料。
根据本发明一种特别优选的实施方式,本发明提供的一种具有发散状结构的正极材料的制备方法包括:
(1)将硫酸镍、硫酸钴、硫酸锰按照金属摩尔比(83-88)∶(9-11)∶(3-6)溶于纯水得到1.5-2mol/L的混合盐溶液,配制4mol/L的氨水溶液作为络合剂,8mol/L的氢氧化钠溶液作为沉淀剂;
(2)前驱体晶核制备:将络合剂、沉淀剂先并流加入到带搅拌的反应釜中,其中,反应釜中置有20-25%液位的纯水,得到第一混合溶液,其中,以所述反应釜的总体积为基准,所述第一混合溶液的用量为20-30%,调节第一混合溶液的pH值为11.5-13;
在氮气气氛保护下,将混合盐溶液L 1以1-2.5L/h的流速加入进行反应得到第一混合浆料,其中,以所述反应釜的总体积为基准,所述混合盐溶液的用量为15-20%,控制反应pH值为11.5-13,反应温度50-80℃,搅拌转速500-600r/min,络合剂氨水与金属总盐的摩尔比为(1-1.5)∶1,沉淀剂与金属总盐摩尔比为(1.01-1.04)∶1,反应时间6-10h,过滤得到粒度D 50为1-2μm的前驱体晶核;
(3)前驱体制备:将含有纯水、络合剂、沉淀剂的第二混合溶液并流加入到带搅拌的反应釜中进行反应,其中,以所述反应釜的总体积为基准,所述第二混合溶液的用量为150-200%,调节第二混合溶液的pH值为11-12.5,搅拌转速500r/min;
将所述前驱体晶核和混合盐溶液L 1加入反应釜中进行第二反应,其中,混合盐溶液L 1以1-2.5L/h的流速加入,其中,以所述反应釜的总体积为基准,所述混合盐溶液的用量为70-100%,搅拌转速500-600r/min,控制pH值为11-12.5,反应温度60℃,反应时间120-150h,加入后反应的溶液占反应釜总体积30%;在反应过程中反应釜内溶液达到80%时,从反应釜下侧放出20%第二混合浆液,静置沉淀后浆上层清液倒掉,剩余的浆料倒入反应釜内,增加反应釜内固含量,控制进液速度和生长速度,在D 50生长到9.5-11μm,反应时间达到120-180h固含量达到45-50%时,将前驱体沉淀过滤、洗涤,在120℃条件下烘干,得到多元材料前驱体;
(4)将该前驱体与氢氧化锂以1∶1.01-1.05摩尔比充分混合,加入0.2mol%WO 3、B 2O 3、Nb 2O 5和H 3BO 3中的一种或多种的纳米粉末。氧气气氛下,780-800℃保温13-14h。自然降温,粉碎、过筛后,得到一次晶粒径向分布为大于60%团聚体一次烧结料;
(5)将该一次烧结料与Co(OH) 2、Ni(OH) 2、Mn(OH) 2和Co 3O 4中的一种或多种纳米粉颗粒1mol%或1.5mol%混合,添加量1.5mol%,混合后材料在680-700℃下烧结15-16h。
以下将通过实施例对本发明进行详细描述。
以下实施例和对比例中:
电镜照片参数通过购自日立厂家,型号为S4800的扫描电镜测得;
容量保持率通过购自新威厂家,仪器名称为高精度电池测试仪,型号为CT4008测得。
实施例1
本实施例在于说明采用本发明的制备方法制得的具有发散状结构的正极材料。
(1)将硫酸镍、硫酸钴、硫酸锰按照金属摩尔比88∶9∶3溶于纯水得到2.0mol/L的混合盐溶液L 1,配制4mol/L的氨水溶液作为络合剂,8mol/L的氢氧化钠溶液作为沉淀剂;
(2)前驱体晶核制备:将氨水溶液、氢氧化钠溶液先并流加入到带搅拌的反应釜中,其中,反应釜中置有25%液位的纯水,得到第一混合溶液,其中,以所述反应釜的总体积为基准,所述第一混合溶液的用量为20%,调节第一混合溶液的pH值为13.2;
在氮气气氛保护下,将混合盐溶液L 1以2.5L/h的流速加入进行反应得到第一混合浆料,其中,以所述反应釜的总体积为基准,所述混合盐溶液的用量为20%,控制反应pH值为13,反应温度50℃,搅拌转速600r/min,络合剂氨水与金属总盐的摩尔比为1∶1,沉淀剂氢氧化钠与金属总盐摩尔比为1.01∶1,反应时间10h,过滤得到前驱体晶核;
(3)前驱体制备:将含有纯水、氨水溶液、氢氧化钠的第二混合溶液并流加入到带搅拌的反应釜中进行反应,其中,以所述反应釜的总体积为基准,所述第二混合溶液的用量为150%,调节第二混合溶液的pH值为12.5,搅拌转速600r/min;
将所述前驱体晶核和混合盐溶液L 1加入反应釜中进行第二反应,其中,混合盐溶液L 1以2.5L/h的流速加入,其中,以所述反应釜的总体积为基准,所述混合盐溶液的用量为80%,搅拌转速600r/min,控制pH值为12.5,反应温度60℃,反应时间120h,加入后反应的溶液占反应釜总体积30%;在反应过程中反应釜 内溶液达到80%时,从反应釜下侧放出20%第二混合浆液,静置沉淀后浆上层清液倒掉,剩余的浆料倒入反应釜内,增加反应釜内固含量,控制进液速度和生长速度,在D 50生长到9.5μm,反应时间达到120h固含量达到45%时,将前驱体沉淀过滤、洗涤,在120℃条件下烘干,得到多元材料前驱体;
(4)将该前驱体与氢氧化锂以1∶1.05摩尔比充分混合,加入0.2mol%WO 3纳米粉末。氧气气氛下,780℃保温14h。自然降温,粉碎、过筛后,得到一次晶粒径向分布为60%团聚体一次烧结料;
(5)将该一次烧结料与Co(OH) 2纳米粉颗粒1mol%混合,添加量1.5mol%,混合后材料在680℃下烧结15h。
结果制备得到正极材料S1,S1化学式为:
Li 1.05((Ni 0.88Co 0.09Mn 0.03W 0.002)Co 0.015)O 2
所述正极材料的性能如表2所示。
另外,图1为实施例1制备锂离子电池用前驱体的扫描电镜图,从图1能够看出:通过本制备方案制备出的前驱体一次颗粒沿径向分布。
图2为实施例1制备的正极材料剖面扫描电镜图,从图2能够看出:通过本方案制备的正极材料一次颗粒沿径向分布。
另外,从图1和图2的对比,能够看出:图1采用实施例1工艺制备的前驱体内部的一次颗粒呈发散状分布,通过实施例1的掺杂和包覆能够达到图2的内部结构效果,正极材料颗粒内部的一次晶粒的长径比显著提升,发散状更显著。
实施例2
本实施例在于说明采用本发明的制备方法制得的具有发散状结构的正极材料。
(1)将硫酸镍、硫酸钴、硫酸锰按照金属摩尔比83∶11∶6溶于纯水得到2.0mol/L的混合盐溶液L 2,配制4mol/L的氨水溶液作为络合剂,8mol/L的氢氧化钠溶液作为沉淀剂;
(2)前驱体晶核制备:将氨水溶液、氢氧化钠溶液先流加入到带搅拌的反应釜中,其中,反应釜中置有25%液位的纯水中,得到第一混合溶液,其中,以 所述反应釜的总体积为基准,所述第一混合溶液的用量为25%,调节第一混合溶液的pH值为11.6;
在氮气气氛保护下,将混合盐溶液L 2以2.2L/h的流速加入进行反应得到第一混合浆料,其中,以所述反应釜的总体积为基准,所述混合盐溶液的用量为20%,控制反应pH值为11.5,反应温度60℃,搅拌转速600r/min,络合剂氨水与金属总盐的摩尔比为1∶1,沉淀剂氢氧化钠与金属总盐摩尔比为1.04 1,反应时间6h,得到经过过滤得到前驱体晶核;
(3)前驱体制备:将含有纯水、络合剂、沉淀剂的第二混合溶液并流加入到带搅拌的反应釜中进行反应,其中,以所述反应釜的总体积为基准,所述第二混合溶液的用量为170%,调节第二混合溶液的pH值为12,搅拌转速600r/min;
将所述前驱体晶核和混合盐溶液L 2加入反应釜中进行第二反应,其中,混合盐溶液L 2以2L/h的流速加入,其中,以所述反应釜的总体积为基准,所述混合盐溶液的用量为80%,搅拌转速600r/min,控制pH值为12,反应温度60℃,反应时间180h,加入后反应的溶液占反应釜总体积30%。同时在反应过程中反应釜内溶液达到80%时,从反应釜下侧放出20%第二混合浆液,静置沉淀后浆上层清液倒掉,剩余的浆料倒入反应釜内,增加反应釜内固含量,控制进液速度和生长速度,在D 50生长到11μm,反应时间达到180h固含量达到50%时,将前驱体沉淀过滤、洗涤,在120℃条件下烘干,得到多元材料前驱体;
(4)将此前驱体与氢氧化锂以1∶1.05摩尔比充分混合,加入0.2mol%WO 3纳米粉末。氧气气氛下,780℃保温14h。自然降温,粉碎、过筛后,得到一次晶粒径向分布为60%团聚体一次烧结料;
(5)将一次烧结料与Ni(OH) 2纳米粉颗粒1.5mol%混合,添加量1.5mol%,混合后材料在680℃下烧结15h。
结果制备得到正极材料S2,S2化学式为:
Li 1.05((Ni 0.83Co 0.11Mn 0.06W 0.002)Ni 0.015)O 2
所述正极材料的性能如表2所示。
实施例3
本实施例在于说明采用本发明的制备方法制得的具有发散状结构的正极材 料。
按照与实施例1相同的方法制备正极材料,所不同之处在于:在步骤(4)中,将前驱体与氢氧化锂以1∶1.05摩尔比充分混合,加入0.2mol%B 2O 3纳米粉末。氧气气氛下,800℃保温14h。自然降温,粉碎、过筛后,得到一次晶粒径向分布大于60%团聚体一次烧结料。
将一次烧结料与Mn(OH) 2纳米粉颗粒1.5mol%混合,添加量1.5mol%,混合后材料在680℃下烧结15h。
结果制备得到正极材料S3,S3化学式为:
Li 1.5((Ni 0.88Co 0.09Mn 0.03B 0.004)Mn 0.015)O 2
所述正极材料的性能如表2所示。
实施例4
本实施例在于说明采用本发明的制备方法制得的具有发散状结构的正极材料。
按照与实施例1相同的方法制备正极材料,所不同之处在于:在步骤(4)中,将此前驱体与氢氧化锂以1∶1.05摩尔比充分混合,加入0.3mol%Nb 2O 5纳米粉末。氧气气氛下,795℃保温14h。自然降温,粉碎、过筛后,得到一次晶粒径向分布大于60%团聚体一次烧结料。
将一次烧结料与Co(OH) 2纳米粉颗粒混合,添加量1.5mol%,混合后材料在680℃下烧结15h。
结果制备得到正极材料S4,S4化学式为:
Li 1.05((Ni 0.88Co 0.09Mn 0.03Nb 0.006)Co 0.015)O 2
所述正极材料的性能如表2所示。
实施例5
本实施例在于说明采用本发明的制备方法制得的具有发散状结构的正极材料。
按照与实施例1相同的方法制备正极材料,所不同之处在于:在步骤(4)中,将此前驱体与氢氧化锂以1∶1.05摩尔比充分混合,加入0.2mol%H 3BO 3纳 米粉末。氧气气氛下,780℃保温14h。自然降温,粉碎、过筛后,得到一次晶粒径向分布大于60%团聚体一次烧结料。
将一次烧结料与Co 3O 4纳米粉颗粒混合,Co元素添加量1.5mol%,混合后材料在680℃下烧结15h。
结果制备得到正极材料S5,S5化学式为:
Li 1.05((Ni 0.88Co 0.09Mn 0.03B 0.002)Co 0.015)O 2
所述正极材料的性能如表2所示。
对比例1
按照与实施例1相同的方法制备正极材料,所不同之处在于:在步骤(4)中,将此前驱体与氢氧化锂以1∶1.05摩尔比充分混合。氧气气氛下,780℃保温14h,得到一次烧结料。
结果制备得到正极材料D1,D1化学式为:
Li 1.05((Ni 0.88Co 0.09Mn 0.03)Co 0.015)O 2
所述正极材料的性能如表2所示。
另外,图3为对比例1制备的正极材料剖面扫描电镜图,从图3能够看出:按照图3制备出的正极材料一次晶粒沿径向分布比例相比实施例1低。
对比例2
按照与实施例1相同的方法制备正极材料,所不同之处在于:在步骤(5)中,一次烧结料制备后采用LiF 0.2mol%进行包覆,400℃烧结10h。
结果制备得到正极材料D2,D2化学式为:
Li 1.05((Ni 0.88Co 0.09Mn 0.03W 0.002)F 0.002)O 2
所述正极材料的性能如表2所示。
另外,图4为对比例2制备的正极材料剖面扫描电镜图,从图4能够看出:按照图4制备出的正极材料一次晶粒沿径向分布比例相比实施例1低。
图5为实施例1、对比例1和对比例2的循环次数与容量保持率的关系示意图,从图5能够看出:实施例1循环保持率最优,其次是对比例1,对比例2循环保持率最差。
对比例3
按照与实施例1相同的方法制备正极材料,所不同之处在于:通过改变第二次烧结包覆用添加剂为0.5mol的B 2O 3条件。
结果制备得到正极材料D3,D3化学式为:
Li 1.05((Ni 0.88Co 0.09Mn 0.03W 0.002)B 0.01)O 2
所述正极材料的性能如表2所示。
对比例4
按照与实施例1相同的方法制备正极材料,所不同之处在于:在步骤(4)中,保温时间25h。
结果制备得到正极材料D4,D4化学式为:
Li 1.05((Ni 0.88Co 0.09Mn 0.03W 0.002)Co 0.015)O 2
所述正极材料的性能如表2所示。
对比例5
按照与实施例1相同的方法制备正极材料,所不同之处在于:在步骤(5)在,温度为500℃。
结果制备得到正极材料D5,D5化学式为:
Li 1.05((Ni 0.88Co 0.09Mn 0.03W 0.002)Co 0.015)O 2
所述正极材料的性能如表2所示。
对比例6
按照与实施例1相同的方法制备正极材料,所不同之处在于:没有第二步前驱体晶核的制备,直接第三步前驱体制备,制备出的前驱体内部的一次晶粒长径比1左右,且前驱体内部的一次晶粒形状不规则。后续步骤与实施例1一致。结果制备得到正极材料D6,D6化学式为:
Li 1.05((Ni 0.88Co 0.09Mn 0.03W 0.002)Co 0.015)O 2
所述正极材料的性能如表2所示。
表1
Figure PCTCN2021112266-appb-000001
Figure PCTCN2021112266-appb-000002
备注:*表示一次晶粒的长径比,#表示一次晶粒的径向分布比例(%)。
通过表1的结果可以看出,采用本发明的实施例1-5制备的正极材料,由于具有均匀分布于所述高镍多元正极材料的内部以及表层的M氧化物,利于一次烧结料内部(003)晶面的生长,从而使正极材料内部的一次晶粒的长径比能够进一步增加,以及一次晶粒的径向分布比例进一步增加;另外,本发明提供的正极材料还含有包覆在所述高镍多元正极材料的外表面的包覆层,由于在焙烧处理过程中,能够使得添加剂中的N元素向正极材料的内部扩散,有利于形成表面层体相掺杂,对于径向分布的一次晶粒界面形成粘接作用。
而对比例1-6中,由于对比例1没有使用一次烧结添加剂,材料一次颗粒长径比和径向分布不如实施例1,对比例2和对比例3分别采用了两种不同的非金属化合物包覆,包覆循环保持率不佳。对比例4由于第一次烧结保温时间过长导致一次晶粒长径比变小,循环较差。对比例5由于烧结温度偏低,材料一次晶粒长径比变小,容量偏低,效果不好。对比例6由于前驱体的长径比以及径向分布不在本发明所限定的范围之内,结果效果不好。
测试例
采用实施例1-5和对比例1-6制备的正极材料制备锂离子电池,具体方法包括:采用扣式半电池进行评价,电解液采用EC/DMC/EMC=1∶1∶1并且LiPF 6浓 度为1.1mol/L,电池极片中正极材料∶炭黑∶PVDF比例为90∶5∶5。极片压实密度为3.5g/cm 2。半电池在25℃下首先采用0.1C充放电测试半电池容量,采用1C充放电测试材料循环容量。循环次数80周。
并且,将制备得到的锂离子电池的性能进行测试,结果如表2所示,其中,颗粒强度是指正极材料的强度。
表2
项目 电池容量(mAh/g) 循环保持率(%) 颗粒强度(MPa)
锂离子电池S1 215 96 120
锂离子电池S2 213 95 135
锂离子电池S3 215 94 120
锂离子电池S4 214 94 122
锂离子电池S5 212 94 121
锂离子电池D1 209 93 93
锂离子电池D2 210 90 100
锂离子电池D3 211 87 98
锂离子电池D4 210 80 110
锂离子电池D5 193 94 77
锂离子电池D6 211 81 87
从表2能够看出:采用实施例1-5制备的锂离子电池的电池容量高,循环性能好,颗粒强度有很大的改进,颗粒强度提高后提高材料在制作电池过程中的加工性能,该材料制备的电池极片制作过程中能够承受更高的辊压强度,并且更高的颗粒强度有利于电池循环寿命的提升。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (12)

  1. 一种锂离子电池用正极材料,其特征在于,所述正极材料包括高镍多元正极材料,所述高镍多元正极材料由多个一次晶粒团聚形成,且所述一次晶粒沿所述高镍多元正极材料的直径方向呈发散状分布;其中,所述正极材料内部的一次晶粒的长径比L/R≥3,且所述正极材料内部的一次晶粒的径向分布比例≥60%。
  2. 根据权利要求1所述的正极材料,其中,所述正极材料内部的一次晶粒的长径比为3-5,所述正极材料内部的一次晶粒的径向分布比例为60-85%;
    优选地,所述正极材料中内部一次晶粒的长径比为4-5,所述正极材料中内部一次晶粒的径向分布比例为75-83%。
  3. 根据权利要求1所述的正极材料,其中,所述高镍多元正极材料的组成由通式Li 1+a(Ni 1-x-yCo xA y)O 2表示;其中,-0.5≤a≤0.5,0<x≤0.2,0<y≤0.2;A为Al和/或Mn,优选为Mn。
  4. 根据权利要求1-3中任意一项所述的正极材料,其中,所述正极材料还包括:均匀分布于所述高镍多元正极材料的内部以及表层的M的氧化物;其中,所述M选自B,Al,W,Nb,Ce和Sr中的一种或多种;
    优选地,所述M的氧化物的粒度为30nm-2μm;
    优选地,以所述正极材料的总摩尔数为基准,所述M的氧化物的含量为0.1-0.8mol%。
  5. 根据权利要求4所述的正极材料,其中,所述正极材料还包括:包覆在所述高镍多元正极材料的外表面的包覆层;其中,所述包覆层含有N的氧化物,所述N选自Ni、Co、Mn、Ti、V、Nb、Mo、Ce、Al、Ba、Y和Zr中的一种或多种;
    优选地,所述N的氧化物的粒度为30nm-2μm;
    优选地,所述包覆层的厚度为0.01-0.1μm;
    优选地,以所述正极材料的总摩尔数为基准,所述N的氧化物的含量为0.1-2.5mol%。
  6. 根据权利要求1-5中任意一项所述的正极材料,其中,所述正极材料的颗粒强度≥120MPa,优选为120-135MPa。
  7. 一种权利要求1-6中任意一项所述的正极材料的制备方法,其特征在于,所述制备方法包括:
    (1)将Ni盐、A盐、Co盐与水接触得到混合盐溶液;
    (2)将所述混合盐溶液与含有水、络合剂和沉淀剂的第一混合溶液在反应釜中接触进行第一反应得到第一混合浆料,将所述第一混合浆料进行过滤得到前驱体晶核;
    (3)将所述前驱体晶核和所述混合盐溶液与含有水、络合剂和沉淀剂的第二混合溶液在反应釜中接触进行第二反应得到第二混合浆料,将所述第二混合浆料进行过滤洗涤以及热处理得到前驱体;
    (4)将所述前驱体、锂源和添加剂M混合后进行第一焙烧处理得到一次烧结料;
    (5)将所述一次烧结料与添加剂N混合后进行第二焙烧处理得到正极材料。
  8. 根据权利要求7所述的制备方法,其中,在步骤(1)中,以金属计,所述Ni盐、所述Co盐和所述A盐的用量的摩尔比为(60-95):(3-20):(1-20);
    和/或,所述混合盐溶液的摩尔浓度为0.5-2mol/L。
  9. 根据权利要求7所述的制备方法,其中,在步骤(2)中,所述第一混合溶液的pH值为11.5-13;
    优选地,所述第一反应的条件包括:所述混合盐溶液的流速为1-5L/h,搅拌速率为500-600r/min,温度为40-80℃,时间为2-10h,pH值为11.5-13;
    优选地,所述前驱体晶核的粒度D 50为1-3μm。
  10. 根据权利要求7所述的制备方法,其中,在步骤(3)中,所述第二混合溶液的pH值为11-12.5;
    优选地,所述第二混合浆料中的固含量为30-60%;
    优选地,所述第二反应的条件包括:所述混合盐溶液的流速为0.5-5L/h,搅拌速率为300-500r/min,温度为40-80℃,时间为10-200h,pH值为11-13;
    优选地,所述前驱体的粒度D 50为9-18μm;
    优选地,所述前驱体内部的一次晶粒的长径比1.5-4,且所述前驱体内部的一次晶粒的径向分布比例30-50%。
  11. 根据权利要求7所述的制备方法,其中,在步骤(4)中,所述第一焙烧处理的条件包括:温度为500-1100℃,时间为6-20h;
    在步骤(5)中,所述第二焙烧处理的条件包括:温度为600-1000℃,时间为6-20h。
  12. 一种锂离子电池,其特征在于,所述锂离子电池含有权利要求1-6中任意一项所述的正极材料。
PCT/CN2021/112266 2020-12-23 2021-08-12 锂离子电池用正极材料及其制备方法和锂离子电池 WO2022134617A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022565672A JP7292537B2 (ja) 2020-12-23 2021-08-12 リチウムイオン電池用正極材料、その製造方法及びリチウムイオン電池
EP21908622.0A EP4138160A4 (en) 2020-12-23 2021-08-12 POSITIVE ELECTRODE MATERIAL FOR LITHIUM-ION BATTERY AND PREPARATION METHOD THEREFOR, AND LITHIUM-ION BATTERY
KR1020227040576A KR20230008126A (ko) 2020-12-23 2021-08-12 리튬 이온 배터리용 양극 재료 및 이의 제조방법과 리튬 이온 배터리
US18/081,221 US11837722B2 (en) 2020-12-23 2022-12-14 Positive electrode material for lithium ion battery and preparation method therefor, and lithium ion battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011543438.6A CN114665085B (zh) 2020-12-23 2020-12-23 锂离子电池用正极材料及其制备方法和锂离子电池
CN202011543438.6 2020-12-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/081,221 Continuation US11837722B2 (en) 2020-12-23 2022-12-14 Positive electrode material for lithium ion battery and preparation method therefor, and lithium ion battery

Publications (1)

Publication Number Publication Date
WO2022134617A1 true WO2022134617A1 (zh) 2022-06-30

Family

ID=82024862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112266 WO2022134617A1 (zh) 2020-12-23 2021-08-12 锂离子电池用正极材料及其制备方法和锂离子电池

Country Status (6)

Country Link
US (1) US11837722B2 (zh)
EP (1) EP4138160A4 (zh)
JP (1) JP7292537B2 (zh)
KR (1) KR20230008126A (zh)
CN (1) CN114665085B (zh)
WO (1) WO2022134617A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116918106A (zh) * 2022-08-17 2023-10-20 宁德新能源科技有限公司 正极材料、电化学装置及电子设备
CN117038964A (zh) * 2023-10-07 2023-11-10 宜宾锂宝新材料有限公司 超高容量的正极材料及其制备方法、正极和钠离子电池
CN117228744A (zh) * 2023-11-10 2023-12-15 宜宾职业技术学院 放射状微观结构的锂离子电池镍基正极材料及制备方法
CN117374274A (zh) * 2023-11-29 2024-01-09 湖南中伟新能源科技有限公司 正极材料及其制备方法、锂离子电池和涉电设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107534140A (zh) * 2015-04-30 2018-01-02 株式会社Lg化学 二次电池用正极活性材料、其制备方法和包含所述正极活性材料的二次电池
CN108269974A (zh) * 2017-01-01 2018-07-10 北京当升材料科技股份有限公司 一种多层次协同改性的锂电池正极材料及其制备方法
CN109244436A (zh) * 2018-11-20 2019-01-18 宁波容百新能源科技股份有限公司 一种高镍正极材料及其制备方法以及一种锂离子电池
CN109713297A (zh) 2018-12-26 2019-05-03 宁波容百新能源科技股份有限公司 一种一次颗粒定向排列的高镍正极材料及其制备方法
CN110492064A (zh) 2018-05-15 2019-11-22 三星Sdi株式会社 用于锂二次电池的正极活性材料及包括包含正极活性材料的正极的锂二次电池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100991650B1 (ko) * 2005-04-28 2010-11-02 스미토모 긴조쿠 고잔 가부시키가이샤 비수 전해질 리튬 이온 전지용 정극 재료 및 이를 이용한전지
KR102390594B1 (ko) * 2016-07-29 2022-04-26 스미토모 긴조쿠 고잔 가부시키가이샤 니켈망간 복합 수산화물과 그 제조 방법, 비수계 전해질 이차 전지용 정극 활물질과 그 제조 방법, 및 비수계 전해질 이차 전지
JP2018092931A (ja) * 2016-11-30 2018-06-14 三星エスディアイ株式会社Samsung SDI Co., Ltd. リチウム二次電池用ニッケル系活物質、その製造方法、及びそれを含んだ正極を含んだリチウム二次電池
WO2019013605A1 (ko) * 2017-07-14 2019-01-17 한양대학교 산학협력단 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지
CN107394160B (zh) * 2017-07-24 2019-09-10 合肥国轩高科动力能源有限公司 一种锂离子电池正极材料及其制备方法
EP3905393A4 (en) * 2019-01-24 2022-09-28 Battery Solution COMPOSITE METAL OXIDE FOR SECONDARY LITHIUM BATTERY COMPRISING DOPING ELEMENT, ACTIVE MATERIAL OF POSITIVE ELECTRODE FOR SECONDARY LITHIUM BATTERY PREPARED THEREOF AND SECONDARY LITHIUM BATTERY COMPRISING
CN111952590A (zh) * 2020-07-08 2020-11-17 河南科隆新能源股份有限公司 一种提升安全和循环性能的锂离子电池正极材料及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107534140A (zh) * 2015-04-30 2018-01-02 株式会社Lg化学 二次电池用正极活性材料、其制备方法和包含所述正极活性材料的二次电池
CN108269974A (zh) * 2017-01-01 2018-07-10 北京当升材料科技股份有限公司 一种多层次协同改性的锂电池正极材料及其制备方法
CN110492064A (zh) 2018-05-15 2019-11-22 三星Sdi株式会社 用于锂二次电池的正极活性材料及包括包含正极活性材料的正极的锂二次电池
CN109244436A (zh) * 2018-11-20 2019-01-18 宁波容百新能源科技股份有限公司 一种高镍正极材料及其制备方法以及一种锂离子电池
CN109713297A (zh) 2018-12-26 2019-05-03 宁波容百新能源科技股份有限公司 一种一次颗粒定向排列的高镍正极材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PARK KANG-JOON, JUNG HUN-GI, KUO LIANG-YIN, KAGHAZCHI PAYAM, YOON CHONG S., SUN YANG-KOOK: "Improved Cycling Stability of Li[Ni 0.90 Co 0.05 Mn 0.05 ]O 2 Through Microstructure Modification by Boron Doping for Li-Ion Batteries", ADVANCED ENERGY MATERIALS, vol. 8, no. 25, 1 September 2018 (2018-09-01), DE , pages 1 - 9, XP055791596, ISSN: 1614-6832, DOI: 10.1002/aenm.201801202 *
See also references of EP4138160A4

Also Published As

Publication number Publication date
CN114665085B (zh) 2024-02-23
EP4138160A4 (en) 2023-12-20
US11837722B2 (en) 2023-12-05
JP7292537B2 (ja) 2023-06-16
US20230122382A1 (en) 2023-04-20
JP2023515899A (ja) 2023-04-14
EP4138160A1 (en) 2023-02-22
CN114665085A (zh) 2022-06-24
KR20230008126A (ko) 2023-01-13

Similar Documents

Publication Publication Date Title
US11855285B2 (en) Full-gradient nickel cobalt manganese positive electrode material, ruthenium oxide coated material and preparation method thereof
WO2022134617A1 (zh) 锂离子电池用正极材料及其制备方法和锂离子电池
CN112750999B (zh) 正极材料及其制备方法和锂离子电池
CN113955809B (zh) 一种壳核壳结构的镍钴锰铝酸锂正极材料及其制备方法
JP6612356B2 (ja) リチウムイオン電池用の傾斜構造を有する多成分材料、その調製方法、リチウムイオン電池の正極及びリチウムイオン電池
EP3557668A1 (en) Ternary material and preparation method therefor, battery slurry, positive electrode, and lithium battery
WO2021175233A1 (zh) 一种富锂锰基材料及其制备方法和应用
CN111634958A (zh) 一种锂电池用前驱体、锂电池正极材料及其制备方法
EP3965188A1 (en) Composite positive electrode material for lithium ion battery, lithium ion battery, and vehicle
TW200810202A (en) Lithium-metal composite oxides and electrochemical device using the same
CN112928253B (zh) 一种镍锰钛复合材料及其制备方法和应用
WO2023071409A1 (zh) 一种单晶三元正极材料及其制备方法和应用
WO2021136490A1 (zh) 一种富锂锰基材料及其制备方法和应用
CN114335547A (zh) 一种高倍率三元正极材料及制备方法和应用
WO2019113870A1 (zh) 一种富锂锰基材料及其制备和应用
WO2023184996A1 (zh) 一种改性高镍三元正极材料及其制备方法
WO2023138220A1 (zh) 具有大通道的正极材料前驱体的制备方法及其应用
CN114804235B (zh) 一种高电压镍钴锰酸锂正极材料及其制备方法和应用
CN111592053A (zh) 一种镍基层状锂离子电池正极材料及其制备方法与应用
CN110504447A (zh) 一种氟掺杂的镍钴锰前驱体及其制备方法与应用
CN112952085B (zh) 梯度高镍单晶三元材料及其制备方法和使用该材料的电池
CN112952056A (zh) 一种富锂锰基复合正极材料及其制备方法和应用
CN114560510B (zh) 一种改性7系三元正极材料及其制备方法和应用
CN115172756A (zh) 具有浓度梯度的单晶包覆多晶的正极材料及其制备方法
CN114430035A (zh) 锂离子电池、正极材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908622

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022565672

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227040576

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021908622

Country of ref document: EP

Effective date: 20221118

NENP Non-entry into the national phase

Ref country code: DE