CN104487086A - 无动物源的不含酒精的疫苗组合物及其制备方法 - Google Patents
无动物源的不含酒精的疫苗组合物及其制备方法 Download PDFInfo
- Publication number
- CN104487086A CN104487086A CN201380036198.2A CN201380036198A CN104487086A CN 104487086 A CN104487086 A CN 104487086A CN 201380036198 A CN201380036198 A CN 201380036198A CN 104487086 A CN104487086 A CN 104487086A
- Authority
- CN
- China
- Prior art keywords
- polysaccharide
- purification
- capsular polysaccharide
- prp
- hib
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/02—Bacterial antigens
- A61K39/025—Enterobacteriales, e.g. Enterobacter
- A61K39/0275—Salmonella
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/02—Bacterial antigens
- A61K39/09—Lactobacillales, e.g. aerococcus, enterococcus, lactobacillus, lactococcus, streptococcus
- A61K39/092—Streptococcus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/02—Bacterial antigens
- A61K39/095—Neisseria
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/02—Bacterial antigens
- A61K39/102—Pasteurellales, e.g. Actinobacillus, Pasteurella; Haemophilus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55505—Inorganic adjuvants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/60—Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
- A61K2039/6031—Proteins
- A61K2039/6037—Bacterial toxins, e.g. diphteria toxoid [DT], tetanus toxoid [TT]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Medicinal Chemistry (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
公开了疫苗组合物和用于在无动物成分的培养基中培养包含毒性荚膜多糖的致病菌、分离、纯化多糖和多糖-蛋白质缀合物的方法。荚膜多糖的纯化可以采用或可以不采用酒精用于制备免疫原性制剂。从本发明的方法获得的免疫原被配制并且不包含动物源和酒精赋形剂的任何来源。还公开了用于流感嗜血杆菌(Haemophilus Influenza)的细菌荚膜多糖的分离、纯化和缀合的方法。用于纯化、内毒素去除和免疫缀合物形成的新颖方法还被用来产生新颖组合物,该组合物负责激发针对Hib的感染的免疫原性和其预防以及其治疗。
Description
本申请要求2012年7月07日提交的印度临时专利申请第2754/CHE/2012号和2012年7月11日提交的印度临时专利申请第2317/CHE/2012号的优先权。
发明领域
本发明涉及无动物源的不含酒精的疫苗。本发明还涉及用于制备无动物源的不含酒精的疫苗的方法。一般来说,本发明涉及细菌多糖疫苗领域和生物体在具有改良特征的新颖培养基中的培养以及细菌多糖及其缀合疫苗的制造方法。本发明还涉及缀合多糖疫苗领域中与细菌多糖和它们的缀合对应物的纯化有关的下游处理。特别地,本发明涉及用于在不含动物成分的培养基中培养包含毒性多糖的致病菌,分离、纯化多糖和多糖-蛋白缀合物用于制备免疫原性制剂,而不采用酒精或在有限时期内使用极低量的酒精,从而排除酒精在最终疫苗制品中存在的所有机会的新颖方法。从本发明的方法获得的免疫原性制剂不包含任何来源的动物源和/或任何其他酒精赋形剂,因为在纯化步骤中,绝对不使用酒精或在有限的时间段内以非常有限的量使用酒精。
发明背景
细菌病原体可以引起可以既为地方性又为流行性的疾病。由这些病原体引起的大部分的疾病和死亡率在儿童之中为高,尤其在发展中国家中。b型流感嗜血杆菌(Haemophilus influenzae type b)(Hib)是幼儿肺炎和脑膜炎的致病生物体。大致2百万疾病案例和450,000例死亡发生在绝大多数发展中国家中;因此,用于该疾病的疫苗需求既于国家又于国际儿童免疫接种计划中刻不容缓[疫苗和免疫的全球计划:对b型流感嗜血杆菌缀合疫苗的WHO立场文件(www.who.int/vaccine-documents/pp-wer/wer7310.Pdf)]。致病菌如脑膜炎奈瑟菌(Neisseria meningitidis)、b型流感嗜血杆菌(Hib)、伤寒沙门菌(Salmonella typhi)、肺炎链球菌(Streptococcus pneumoniae)含有引起婴儿、儿童和成人脑膜炎、伤寒、肺炎、菌血症、蜂窝组织炎、骨髓炎、会厌炎、中耳炎、鼻窦炎的毒性多糖。很多革兰氏阴性菌如链球菌(Streptococcus)(肺炎链球菌、金黄色葡萄球菌(aureus))、脑膜炎奈瑟菌、Salmonella entericus typhi、b型流感嗜血杆菌(Hib)等具有细胞表面荚膜多糖(CPS)或脂多糖(LPS)或两者,它们帮助病原体建立感染并逃避免疫系统。已经观察到,大多数的这些荚膜多糖的抗体具有防范来自有荚膜的生物体的感染的能力。这些荚膜多糖通过使细菌逃避补体介导的裂解抵御免疫系统。脑膜炎奈瑟菌和肺炎链球菌是人类病原体并且它们毒力的主要原因是荚膜多糖(CPS)。然而,当被纯化时,这些细菌多糖已知是保护性抗原,并且因此能够用于细菌疫苗制备。然而,针对CPS引发的大部分的免疫应答是T细胞非依赖性的,因此免疫记忆、亲和力成熟和同种型转换的诱导不发生,导致在婴儿和儿童中的免疫应答失败。该问题通过引入称为缀合疫苗的新一代疫苗被克服,其中多糖被缀合到诸如蛋白质的载体组/部分,从而将T细胞表位引入多糖上并且将其转化成T细胞依赖性抗原[Vaccinebased on the cell surface carbohydrates of pathogenic bacteria(2005)AnnalsBrazilian Acd.Sci.77,293-324]。
因此,抗细菌疫苗被认为是可以用来控制这类疾病传播的最好的预防措施。在疫苗类型之中,亚单位疫苗例如蛋白抗原或多糖疫苗是最有效的候选物,因为这些疫苗在婴儿和儿童中不仅安全和有效,还预防相同生物体的大量的致病血清型。多种Hib疫苗被广泛用于发达国家,但相对较少的这些疫苗被常规地用于不发达国家。此未充分利用主要是由于这些疫苗的高成本和不可购性。这些疫苗高成本的主要原因是由于无污染物的多糖的次优的回收率和次优的缀合方法。因此,本发明对这两个阶段的改进提出建议,从而建立简单、温和、有效率和成本有效的生产方法,以便满足Hib疫苗的高需求的同时在培养过程期间不涉及任何源于动物的产物。
纯化的CPS被用于针对这些细菌感染的疫苗的生产。包含荚膜多糖作为抗原的这些细菌疫苗的制备通常在包含优选猪源的动物来源的培养基中制备且在下游加工过程中涉及酒精。因此,最可能的是制成品包含微量的猪材料和酒精。如同将血晶素(hemine)添加至Hib的培养基,肉类培养基被用于培养破伤风梭菌(clostridium tetani)且动物蛋白胨被用于培养肺炎链球菌和脑膜炎奈瑟菌。经培养的多糖和缀合蛋白的纯化程序常常包括长期的乙醇分级分离、酶消化和酚提取技术。
酒精和非素食食物或源自任何动物来源的食物材料的消耗在很多宗教中被禁止。在动物产品和酒精的消耗不被政府或宗教团体禁止的国家或州中,关于这些材料的使用留给个人的愿望来自己决定,然而在对酒精和动物产品的使用没有限制的那些国家中,有深厚宗教信仰的公民或宗教思想坚定的追随者制止自己消耗任何源自动物或包含酒精的食物材料。
特别地,消耗酒精、摄入特别来源于猪(swine或porcine)的肉类在如伊朗、伊拉克、埃及、沙特阿拉伯、马来西亚、一些其他中东和海湾国家的伊斯兰教地区的国家中被严格禁止。他们把这些事物称作HARAM,其意指作为他们宗教信仰的一部分为非法或禁止的。甚至有时包含可忽略的量的酒精或微量的猪来源的药物制剂也被他们避开。因此,明显的是,在那些遵循严格伊斯兰信仰的国家中的人口的一部分仍然要被治疗,因为由于完成的疫苗产品中可能含有猪和酒精成分,他们不喜欢针对以上提到的疾病给自己接种疫苗。在现有技术中制备和使用的各种疫苗从基于动物源的来源生长的培养基来制备、使用大量的酒精来分离和纯化,因此其包含酒精赋形剂和动物来源,这限制了它们作为伊斯兰种族和宗教保守派群体之中广泛接受的疫苗的使用。因此,无动物来源和酒精赋形剂的免疫原性制剂可以广泛用于这些地区而没有任何宗教或地理限制,所述免疫原性制剂还可以被称为HALAL疫苗,意指在伊斯兰法下合法或许可的。
例如,阿布扎比卫生局(Health Authority of Abu Dhabi,HAAD)提议为所有到麦加进行Al朝觐(Al Hajj)的哈吉(Hajj)朝圣者强制制作疫苗接种证明。由于数以百万计的伊斯兰追随者为此吉利原因去往麦加,所以在没有任何预防方法下很可能发生疾病。在HAAD哈吉责任下强制接种的疫苗是脑膜炎球菌(Meningococcal)疫苗、季节性流感疫苗和肺炎球菌疫苗,以使旅行者免于脑膜炎、流感和肺炎球菌疾病。(http://www.haad.ae/HAAD/tabid/1198/Default.aspx)在此方案中,HALAL疫苗将一直证明是朝圣者的额外好处和目前的潜在需要,这是因为HALAL疫苗绝对使残留动物成分和酒精成分在最终疫苗组合物中出现的机会否定至不存在,因为没有介入动物成分并且在纯化期间没有涉及酒精成分或者在HALAL疫苗组合物的生产和纯化中可能涉及非常有限量的酒精。常规的脑膜炎疫苗已经被所述国家的某些认证为清真疫苗,因为他们接受疫苗制备期间使用动物产品但不使用任何猪肉产品。然而,这类HALAL认证仅基于不使用猪肉产品而给出,但它们可以包括来自其他动物的来源。被称为HALAL的本申请的疫苗接种用于该术语在所有方面的字面含义。其不包含任何种类的动物来源以及酒精。因此,发明人宁愿以其真正意义创造术语“HALAL疫苗(HALAL VACCINE)”,其可应用于遍布全球的广泛范围的群体,而没有任何文化和宗教障碍。
WO2001/05997公开用于使用无源自动物的产品的培养基生产破伤风毒素的方法。发明谈到提供用于破伤风梭菌的生长和破伤风毒素生产的系统,以用于破伤风类毒素制剂的配制。在如该特定专利中公开的方法中使用的培养基包括作为氨基酸来源的水解大豆,其作为源自动物的产品的代替物。此外,该专利教导了铁粉、铁丝、铁箔、硫酸亚铁铵作为铁的各种来源的使用。发酵培养基还包含磷酸钠、硫酸镁、磷酸钾和氯化钠连同包括氮气或氮气和氢气的90:10的混合物的存在的葡萄糖。另一出版物WO2006/042542也谈到使用包含非动物来源且非大豆基成分的发酵培养基生产破伤风、白喉和百日咳毒素和类毒素。培养和发酵培养基声称使用源自小麦或大米和小麦的混合物、源自土豆或源自酵母的蛋白质的水解产物。以上提到的专利或专利申请的教导谈到仅可应用于细菌或病毒蛋白的那些方法。尽管现有技术包括仅用于细菌或病毒蛋白的非动物来源的产品的培养基,但在本领域的当前技术中缺乏在其上游操作和下游操作期间没有任何动物基产品的细菌多糖。
此外,传染性海绵状脑病(TSE)正成为不断增长的公众健康问题,其由消耗或摄入感染牛海绵状脑病(BSE)的牛肉产品引起。其通常由于在牛的许多外周组织中被称为朊病毒蛋白的病理性蛋白的存在而引起,该病理性蛋白感染人类。由于感染BSE的啮齿动物和羊的血液在人类中传播的实验证据也已经遍及全球地报告过。还已经报告,疫苗和其他药物产品可以全世界地传播TSE,甚至包括那些BSE还未被报告的国家。涉及疫苗的生产的牛源材料一直是疾病遍及全世界传播的潜在原因并且造成严重威胁。在2003年2月,WHO以不同的论坛举办关于与人TSE有关的医药产品的商讨会,并且修订了1997年制订的在这方面的指南。在2006年还发布一套新的指南以预防人类形式的TSE(http://www.who.int/bloodproducts/TSEPUBLISHEDREPORT.pdf)。尽管已经确定了少数谈到细菌蛋白质用作疫苗候选物而没有任何动物来源的生产的专利申请,然而在细菌多糖领域中没有这一发展对于开发缀合多糖疫苗所需的可用的技术。因此,缀合多糖疫苗的生产和纯化领域中的现有技术状态严重需要开发无任何种类的动物来源的技术。
存在关于缀合多糖(CPS)疫苗的免疫特征的几种研究。大规模生产和纯化的可用技巧基于使用如乙醇和酚的溶剂以及阳离子去污剂的几种选择性沉淀步骤。在细菌在工业生物反应器中以恰当的控制培养之后,CPS需要被纯化直到实现所要求的纯度水平,而使回收率最大化并使生产成本最小化。固体从液体的分离基于在防爆装置中的连续离心。公开了用于纯化来自肺炎链球菌的荚膜多糖的纯化方法,所述由以下组成:使用通过凭借0.22微米膜的切向微滤获得的培养液、通过以30kDa螺旋膜切向超滤的培养液微滤浓缩、乙醇分级沉淀(28-60%)、核酸酶和蛋白酶处理、以及以30kDa盒膜(cassette membrane)中浓缩/渗滤。最终的多糖回收率为89%。最终的蛋白质和核苷酸污染物分别为1.5%(w/w)和0.3%(w/w)(Goncalvese等人,Pubmed,2003年6月;37(Pt 3);283-7)。酚和缩醛溶液也通常卷入分离的荚膜多糖的蛋白质污染物中。
包括b型流感嗜血杆菌的很多革兰氏阴性细菌产生多余的荚膜多糖,所述多余的荚膜多糖已经被用作人疫苗的多余的荚膜多糖。在大规模生产CPS期间,纯化和下游加工常常被污染物妨碍,所述污染物为比如核酸、细胞蛋白质以及在它们纯化步骤期间的大量高度可变(在尺寸、电荷、疏水性方面)量的被称为内毒素的脂多糖。根据现有技术水平采用的用于纯化和去除这些污染物的方法复杂、费时和昂贵,并且因而在很多方式中损害宝贵的CPS成分的收率。一些对本技术已知的方法包括:
a)脱蛋白质并且通过酚提取,接着乙醇沉淀,其导致不需要的酚有毒废物。此外,如酚的化学品的使用还可能导致多糖或蛋白质载体不需要的结构变化[Rienstra等人的U.S.5045456和Gordon的美国专利4644059]。
b)培养液的超滤,以及用阳离子去污剂沉淀,接着CPS的乙醇沉淀。CPS溶解在合适的缓冲液或溶液中并且用阴离子去污剂沉淀,接着第二轮的乙醇沉淀。CPS和乙醇沉淀的这些交替洗涤处理经受不必要的重复性,费时和昂贵的工序[US6891037B1和US7582459B2]。
c)酶处理,接着在螯合剂和去污剂的存在下超滤。这些仍然不太成本有效并且可变[Takagi M.等人,Purification of capsular polysaccharideproduced by Haemophilus influenzae type b through a simple,efficient andsuitable method for scale-up.J.Ind.Microbial.Biotechnology.(2008),35,1217-1222]。
d)使用柱层析以用于纯化。这大大损害了CPS的回收率。[US4220717和US5192540]。
因此,始终注意到以上提到的缺点,本发明提出了公开的温和、有效、较少费时的方法。此外,在要被用作特定疫苗候选物的细菌多糖的纯化中高量的酒精长时间使用通常是已知的并且广泛使用的。存在对生产不包含任何动物来源以及在这类细菌多糖的下游加工期间没有酒精或使酒精的介入减少至实质水平的潜在细菌多糖疫苗候选物的需要。本发明克服如以上段落中具体说明的常规疫苗的问题,并且公开用于在无动物成分的培养基中培养包含毒性多糖的致病菌、采用或不采用酒精分离、纯化多糖和多糖-蛋白质缀合物用于制备免疫原性制剂的新颖方法。
在制造缀合疫苗尤其B型流感嗜血杆菌-磷酸多聚核糖基核糖醇(Hib-PRP)缀合疫苗中的第二关键且限制步骤是免疫-缀合物的构建。该步骤不仅在恢复期望的多糖的免疫学性质方面有挑战性,而且还确保Hib-PRP满足在大规模缀合期间的再现性,以及缀合物的稳定性。
缀合常常由多糖和载体蛋白两者的官能团的化学活化来引发,所述化学活化通过用小的化学连接试剂或间隔试剂使所述官能团衍生来实现。接着使用水溶性的交联试剂进行两个大分子之间的缀合。本领域所使用的缀合方法的选择经常恶劣并且可能破坏多糖或载体蛋白的天然结构,影响免疫原性或收率。经常用于制造磷酸多聚核糖基核糖醇(PRP)缀合疫苗的领域的一个具体方法是溴化氰(CNBr)活化法,其中多糖通过使用CNBr来活化,并且立即用如己二酸二酰肼(ADH)的双官能交联剂衍生,并且使用水溶性的碳化二亚胺偶联至破伤风类毒素。
通常,CNBr活化在高pH(10-11)下进行,导致多糖羟基上氰酸酯的形成;这些又与如二胺或二酰肼的双官能试剂反应。然后这些衍生的部分交联至载体蛋白分子。然而,该方法经受以下的几种缺点:
1)碱性水解导致几种非生产性副反应,比如氨基甲酸酯、线型或环状亚氨基甲酸酯的形成。
2)在最终与交联试剂反应的羟基上形成的反应性氰酸酯在高碱性pH下高度不稳定。
3)CNBr试剂本身高度不稳定并且在高碱性pH下自发经历水解。
因此,这些限制可能导致可变收率和缀合物完整性的损失。因此,本发明公开了没有任何碱性环境并且没有任何氢氧化钠的使用而对载体蛋白破伤风类毒素的Hib-PRP缀合技术的新颖方法。
发明目的
本发明的总体目的是提供用于分离和纯化多糖和多糖-蛋白质缀合物以用于其免疫原性制剂,而无酒精和动物源的方法。
本发明的主要目的是在没有任何动物来源的培养基上分离和培养致病菌。
本发明的另一目的是提供用于分离和纯化免疫原性多糖和蛋白质以用于制备免疫原性制剂而在纯化步骤不采用酒精或在非常有限的时期内使用极小量的酒精的新颖方法。
本发明的另一目的是在下游加工期间使用或不使用酒精而提高纯化的多糖的回收率,以及增大CPS多糖缀合疫苗的成本效益比。
本发明的又一个目的是提供在B型流感嗜血杆菌荚膜多糖磷酸多聚核糖基核糖醇和载体蛋白破伤风类毒素之间的缀合技术,其不存在碱性环境以便防止碳酸酯和氨基甲酸酯衍生物的不期望的形成。
本发明的另外的目的是提供无酒精和动物源赋形剂的免疫原性制剂,其被称为HALAL疫苗,其可以被世界上所有国家的所有群体使用而没有任何宗教或地理限制。
发明概述
根据本发明的一个实施方案,其提供疫苗组合物,其中所述疫苗组合物的成分没有任何动物或酒精成分。
根据本发明的一个其他实施方案,本发明提供疫苗组合物,其中抗原成分是荚膜多糖和与其缀合的蛋白质。
根据本发明的一个其他实施方案,其提供疫苗组合物,其中所述疫苗组合物通过在荚膜多糖的培养、发酵和生产或培养期间没有并入任何动物来源的产物的新颖方法制造。
本发明的优选实施方案提供疫苗组合物,其中所述疫苗组合物通过在荚膜多糖的纯化期间没有涉及以具体限定的时间和量的任何酚成分和任选使用的酒精成分的新颖方法制造。
本发明的另一优选实施方案涉及缀合多糖疫苗组合物,其中缀合蛋白质也通过其中在培养基中没有涉及动物成分并且没有使用酒精纯化的方法来生产。
本发明的另一优选实施方案提供用于没有任何动物来源的脑膜炎奈瑟菌A、C、Y、W135、X的发酵和培养。
本发明的另一优选实施方案提供用于没有任何动物来源的'b'型流感嗜血杆菌的发酵培养。
本发明的又另一优选实施方案提供用于没有任何动物来源的2型伤寒沙门菌的发酵培养。
根据本发明的其他优选实施方案之一,提供用于没有任何动物来源的肺炎链球菌的发酵和培养。
根据本发明的另一优选实施方案,提供用于没有任何动物来源的破伤风梭菌(Clostredium tetani)的发酵和培养。
本发明的又另一实施方案提供在绝对不存在任何酒精成分下的多糖的纯化和沉淀。
本发明的又另一实施方案提供在非常有限的时期内存在有限量的酒精成分下的多糖的纯化和沉淀。
根据本发明的一个优选实施方案,本发明提供在没有氢氧化钠或碱性pH下的Hib-PRP-TT缀合的新颖方法。
脑膜炎奈瑟菌血清组A、C、Y、W135、b型流感嗜血杆菌、2型伤寒沙门菌、肺炎链球菌血清型4、6B、9V、14、18C、19F和23F的细菌菌株在控制条件下使用没有任何动物来源的培养基分离和培养。收获的细菌培养物通过使用离心机分离来处理并且收集上清液。使用阳离子化合物十六烷基三甲基溴化铵(西曲溴铵),通过疏水相互作用将多糖从上清液中沉淀。多糖的分离和纯化被实现,而不采用如氯仿、酚等的刺激性化学品。在本方法中,使用Triton-X 100/114以双层分离方法去除内毒素,其中内毒素惯于沉降在中间层处并且多糖在顶层处。另外,使用无菌管线收集多糖级分但不离心。纯化的多糖然后用载体蛋白配制或缀合,所述载体蛋白优选地源自由以下组成的组:破伤风类毒素、白喉蛋白CRM197或任何其他重组蛋白。用于缀合的蛋白质还源自其中生物体在无动物源的培养基中生长并且然后使用或不使用酒精纯化的方法。
由本发明的方法获得的纯化的多糖和多糖-蛋白被用于制备无酒精和动物源的HALAL免疫原性制剂。这样的免疫原性制剂可以遍及所有宗教群体和国家针对目标疾病使用。
附图简述
图1是本发明用于纯化细菌多糖的一般流程的示意图:一旦获得目标OD后,离心培养物并且将上清液浓缩至原始尺寸的1/4。将十六烷基三甲基溴化铵(西曲溴铵)添加至浓缩的上清液中并且在搅拌条件下保持在室温下孵育并且加样到深度过滤器(depth filter)上。收集的西曲溴铵沉淀物在室温下用充足的WFI来清洗。进一步溶解沉淀物并且使用0.5M NaCl洗脱。用WFI进一步稀释多糖洗脱液,以得到0.2M NaCl浓度。离心样品,弃去沉淀并且收集上清液,并且针对10mM磷酸缓冲盐水(PBS)进一步渗滤。使用Triton X114在相分离中使样品经受内毒素去除。磷酸多聚核糖基核糖醇层(PRP层)被收集并且加样到疏水相互作用柱上以去除残留Triton-X114。使用20mM PBS缓冲液从柱中进一步渗滤多糖洗脱液。使用0.22μ囊式过滤器无菌过滤最终多糖体积。
图2:当被注射到SEC HPLC中时,脑膜炎奈瑟菌血清组A的纯化的多糖在RID中以14.05分钟的平均保留时间洗脱,当与标准图比较时其指示500KDa分子大小,并且单峰指示脑膜炎奈瑟菌血清组A多糖的高纯度,这指示不存在其他不期望的蛋白和核酸。
图3:当被注射到SEC HPLC RID上时,脑膜炎奈瑟菌血清组C的纯化的多糖以14.67分钟的平均保留时间洗脱,当与标准图比较时其指示大约350KDa分子大小,并且单峰曲线指示多糖的高纯度,其中不存在其他蛋白质和核酸。
图4:当被注射到SEC HPLC RID上时,脑膜炎奈瑟菌血清组Y的纯化的多糖以13.72分钟的平均保留时间洗脱,当与标准图比较时其指示大约650KDa分子大小,并且峰曲线指示多糖的高纯度。
图5:当被注射到SEC HPLC RID上时,脑膜炎奈瑟菌血清组W135的纯化的多糖以14.69分钟的平均保留时间洗脱,基于标准多糖图,其指示大约320KDa分子大小,并且峰曲线指示多糖的高纯度,其中不存在蛋白质和核酸。
图6:当被注射到SEC HPLC RID上时,2型伤寒沙门菌的纯化的多糖以14.82分钟的平均保留时间洗脱,基于标准多糖图其指示大约280KDa分子大小,并且峰曲线指示多糖的高纯度。
图7描述2型伤寒沙门菌的纯化的Vi多糖的NMR谱。Vi多糖的谱示出预期的峰。N-乙酰基和醋酸根离子共振态被解体并且整合表明原始样品的O-乙酰化程度接近100%。O-乙酰基出现在2ppm处。残留的水出现在4.7ppm处。O-乙酰基的存在证实了2型伤寒沙门菌的Vi多糖。
图8:当被注射到SEC HPLC RID上时,b型流感嗜血杆菌的纯化的多糖以12.50分钟的平均保留时间洗脱,其指示大约1600KDa分子大小,并且峰曲线指示多糖的高纯度。
图9描述b型流感嗜血杆菌的纯化的PRP多糖的NMR谱。Hib多糖的谱示出预期的峰。核糖基和核糖磷酸基共振态被分离并且整合表明原始样品的核糖基化程度接近100%。核糖基和核糖磷酸基出现在4.7ppm至5.1ppm处。核糖基和核糖磷酸基(H1、H2、H3)的存在证实'b'型流感嗜血杆菌的荚膜多糖。
图10:当被注射到SEC HPLC UV上时,破伤风梭菌的纯化的蛋白以18.02分钟的平均保留时间洗脱,其指示大约150KDa分子大小,并且峰曲线指示蛋白质的高纯度。
图11:当被注射到SEC HPLC UV上时,白喉蛋白CRM197的纯化的蛋白以18.88分钟的平均保留时间洗脱,其指示大约60KDa分子大小,并且峰曲线指示CRM197蛋白的高纯度。
图12:SDS page TT:本发明中纯化的破伤风类毒素通过非还原PAGE移动,并且当与标准标记物相比时示出150kD。多达10倍的破伤风类毒素也示出突出带。
图13:SDS CRM 197:本发明中纯化的CRM 197通过非还原PAGE移动,并且当与标准标记物相比时示出相当于66kD。浓缩的CRM 197还被加样以检查带的纯度。
发明详述
本发明涉及在用于人类使用的免疫原性制剂制备中的细菌多糖的分离和纯化。很多致病菌如脑膜炎奈瑟菌血清组A、C、Y、W135,b型流感嗜血杆菌,2型伤寒沙门菌,肺炎链球菌4、6B、9V、14、18C、19F和23F在合适的培养基上生长并且形成通常被称为接种物的积极生长的细胞的荚膜多糖。将接种物转移至包含预先灭菌的无动物来源的培养基的发酵罐。在发酵罐中,细菌细胞在如pH、溶氧浓度、搅动和温度的发酵参数的控制条件下生长。进行发酵过程直到获得要求的光密度(OD)。在产生次级代谢产物之前,细菌培养物在早期静止期通过用甲醛灭活或通过热杀(heatkill)来收获。
本发明的新颖特征包括用于细菌生长的没有任何动物来源的培养基以及多糖的分离、在纯化步骤不采用酒精的多糖的纯化。
在多糖提取的方法中,将细菌培养物离心并且浓缩或用十六烷基三甲基溴化铵直接处理上清液。获得的粗多糖被进一步纯化,以用于去除如核酸、蛋白质和脂多糖的宿主细胞杂质。
“HALAL疫苗”的定义:从通过本发明的方法分离和纯化的多糖、多糖蛋白缀合物制备的免疫原性制剂不包含动物源和酒精赋形剂的任何来源。因此,这些免疫原性制剂可以在所有群体中使用和商业化,而没有任何宗教或地理限制。由于没有动物来源和酒精,这些免疫原性制剂还可以称为HALAL疫苗或素疫苗,其解除了与TSE-传染性海绵状脑病(TSE's)(一种影响人类的致死的神经退行性疾病)和牛海绵状脑病(BSE)(俗称“疯牛病”或“朊病毒病”)有关的任何风险。
本发明在以下实施例中被进一步描述。本领域技术人员将理解,以下实施例的小修改应被解释为非限制本发明的范围。
实施例
实施例1:细菌生物体的培养
根据本发明,获得其中没有使用动物来源的原材料的特定培养基用于选择性细菌菌株。获得细菌菌株并且其在选择性培养基中进一步经过连续传代。已经显示采用(adoption)和成活力的培养物被选择并且被制备成细胞库。仅那些培养物被用于通过接种到发酵培养物(种子批)中获得特定的多糖衍生物。培养物的生长通过使用分光光度计在特定波长(纳米)下测量光密度(OD)来确定。细菌培养物基于OD在发酵罐中对每种微生物确定的pH下来收获。每种微生物在种子批系统中在各自的培养基中来生长。种子在固体培养基平板上或在液体培养基中复苏。
实施例1.1:脑膜炎奈瑟菌血清组A、C、Y和W135的培养
从University of Goteberg,Sweden采购的脑膜炎奈瑟菌血清组A(菌株编号:CCUG 42379)、血清组C(菌株编号:CCUG32912)、血清组Y(菌株编号:CCUG38303)、血清组W135(菌株编号:41483)基于种子批系统,并且最初在35℃下在琼脂平板上生长约18-20小时,所述琼脂平板包含植物蛋白胨-17.5g/L、可溶性淀粉-1.5g/L、琼脂-17.0g/L、氯化钠-2.0g/L。将培养物从平板转移至生产培养基,所述生产培养基包含植物蛋白胨-17.5g/L、可溶性淀粉-1.5g/L、氯化钠-2.0g/L。在发酵12(±2)小时并且在600nm下测得10±2的OD时收获生产培养物。
实施例1.2:2型伤寒沙门菌的培养
从NIH(USA)采购的2型伤寒沙门菌的培养基于种子批系统,并且种子发育在37℃下在pH 7.3±0.2的培养基上以两阶段生长完成,所述培养基包含植物蛋白胨-17.0g/L、大豆粉的木瓜蛋白酶消化物-3.0g/L、葡聚糖-2.5g/L、氯化钠-5.0g/L、K2PO4-2.5g/L、正磷酸氢二钠二水合物(Na2HPO4.2H2O)-3.5g/L。将最终的种子转移至pH 7.3±0.2的相同的生产培养基。发酵在37℃下进行。在24小时当细胞密度达到在600nm下测得100±10的OD时收获发酵培养物。
实施例1.3:b型流感嗜血杆菌的培养
从CMC Hospital,Vellore,India收集的b型流感嗜血杆菌CS 68菌株的培养基于种子批系统,并且在L-谷氨酸-1.5g/L、硫酸铵(NH3SO4)-1.25g/L、正磷酸氢二钠二水合物(Na2HPO4.2H2O)-11.0g/L、正磷酸氢二钠二水合物(Na2HPO4.2H2O)-3.3g/L、酵母提取物-5g/L、氯化钾(KCL)-100.0mg/L、氯化钠(NaCl)-6.0g/L、植物提取蛋白胨-10g/L、烟酰胺腺嘌呤二核苷酸(NAD)-3.0mg/L、合成血晶素-5.0mg/L、葡萄糖-5.0g/L、L-胱氨酸-100mg/L中在37℃下生长。pH维持在7.0。培养物在550nm下测量并且在发酵的12±2小时当OD达到5±1时收获。
实施例1.4:肺炎链球菌血清型4、6B、9V、14、18C、19F和23F的培养
通过我们内部的R&D收集和发育的肺炎链球菌血清型4、6B、9V、14、18C、19F和23F基于种子批系统并且在琼脂平板中生长,所述琼脂平板包含植物蛋白胨-17.5g/L、可溶性淀粉-1.5g/L、琼脂-17.0g/L、氯化钠-2.0g/L。生产培养基在35℃下包含植物蛋白胨-17.5g/L、可溶性淀粉-1.5g/L、氯化钠(NaCl)-2.0g/L。检查周期发酵样品的微生物纯度和光密度。通过使用特异性抗肺炎球菌荚膜血清使样品经受荚膜肿胀实验(quellingtest)以测定肺炎链球菌的特定血清型。生产培养物生长直到10±2OD并且然后收获。
实施例1.5:破伤风梭菌的培养
破伤风梭菌从Pasteur Institute,Coonoor,India收集,其在35℃下在发酵罐中在pH 8.0±0.1的培养基上生长7天,并且也处于静止模式且在600nm下测量的OD为5±2,所述培养基包含大豆蛋白胨-100g/L、NaCl-1.0g/L、D-葡萄糖-2.0g/L、正磷酸氢二钠二水合物(Na2HPO4.2H2O)-1.0g/L、磷酸钾二水合物(KPO4.2H2O)-0.15g/L、硫酸镁(Mg2SO4)-0.15g/L、L-胱氨酸(10%)-2.5mL/L、尿嘧啶(25mg%)-10mL/L、D泛酸钙(100mgm%)-1.0mL、硫胺素(25mgm%)-1.0mL、吡哆醇(25mgm%)-1mL、核黄素(25mgm%)-1.0mL、烟酸(25mgm%)-1.0mL、叶酸-(25mgm%)-1.0mL、氰钴胺素(25mgm%)-1.0mL、生物素(1.25mgm%)-0.2mL、Fe2SO4-40mg/L。
实施例1.6:表达CRM197蛋白的大肠杆菌的培养
表达CRM197的重组大肠杆菌和酵母的克隆在包含植物蛋白胨-4.0g/L、正磷酸氢二钠二水合物(Na2HPO4.2H2O)-6.8g/L、正磷酸钾(KPO4.2H2O)-3.0g/L、氯化钠(NaCl)-0.5g/L、氯化铵(NH3Cl2)-1.0g/L、葡聚糖-4.0g/L、硫酸镁(Mg2SO4)-0.24g/L的最少盐培养基(Minimalsalt media)中,或者在包含植物蛋白胨-10.0g/L、酵母提取物-5.0g/L、氯化钠(NaCl)-5.0g/L,pH 7.0±0.2的培养基中发育和生长。培养物在37℃下在发酵罐中生长约24小时。在琼脂平板上划线之后测试培养物的纯度。通过革兰氏染色、使用特异性抗体的凝集试验来检查身份(identity)。当在600nm下测量的OD达到80±10时收获培养物。
实施例2:不使用任何酒精的多糖的纯化
以上提到的细菌荚膜多糖的收获的细菌培养物通过使用离心分离接着收集上清液来处理。多糖使用阳离子化合物十六烷基三甲基溴化铵(西曲溴铵)通过疏水相互作用来从上清液中沉淀。实现了不采用如氯仿、酚等刺激性化学品的多糖的分离和纯化。本文所有纯化步骤中使用的原材料(缓冲溶液、消毒液、溶解剂、清洗剂等)也不包含任何痕量的酒精成分。在本方法中,使用Triton-X114以双层分离法去除内毒素,其中内毒素停留在中间层并且多糖在顶层。进一步,使用无菌管线来实现多糖级分的收集但不离心。
实施例2.1:多糖的沉淀和收集
使用连续离心或通过批式(batch mode)离心在4℃下在8000rpm以上离心收获的细菌培养物,并且收集上清液。进一步,使用两次沉淀和收集方法来纯化它们。
第一次沉淀和收集方法包括在冷却条件下使用100KD截止膜使上清液浓缩至原始上清液体积的40倍。在搅拌下将10%十六烷基三甲基溴化铵的溶液添加至浓缩的上清液并且在室温持续搅拌条件下孵育保持3小时。粗多糖沉淀物以3L/min的流速加样并且收集到5.0μ深度过滤器上。
实施例2.2:从粗多糖沉淀物去除蛋白质和核酸杂质
用充足的冷的注射用水(WFI)清洗收集的粗多糖沉淀物,直到滤液的电导率为零。进一步使用冷的0.5M NaCl溶解沉淀物并且收集出来。进一步用WFI稀释多糖样品以达到0.2M NaCl浓度。在4℃下以4000rpm离心样品30分钟,弃去所产生的沉淀并且收集上清液并且进一步针对10mM磷酸缓冲盐水在pH 7.0渗滤以获得部分纯化的多糖。
实施例2.3:从部分纯化的多糖中去除内毒素杂质
通过添加triton-X114以相分离使部分纯化的多糖样品经受内毒素去除。在添加triton-X114之后,在静止条件下将反应样品在30±3℃下保持孵育。收集包含无内毒素的多糖的上层,并加样到离子交换柱(XAD基质)上以去除triton X114的残留物。收集来自柱的多糖洗脱液并且进一步针对20mM PBS缓冲液在pH 7.0渗滤。最终的纯化的多糖体(polysaccharidebulk)使用0.22μm囊式过滤器来无菌过滤并且进一步于2-8℃储存。
实施例3:有限使用酒精的多糖的纯化
如上所述,本发明的目的之一是改进PRP的大规模纯化和随后的缀合方法,以便提高疫苗生产的成本效益比。在细胞从发酵液中分离之后,将包含PRP的培养物上清液与已知量的西曲溴铵混合,并且允许所产生的PRP-西曲溴铵沉淀络合物经过指定的深度过滤器。几乎90-95%的此络合物保持被捕集在过滤器的孔中。由于PRP-西曲溴铵络合物在水中不可溶,利用此性质通过由热水(37℃)全面清洗过滤器。此步骤不仅去除相当量的蛋白质而且还冲走未络合的西曲溴铵和其他不需要的培养基成分。一旦进料(feed)的电导率达到水的电导率,PRP-西曲溴铵络合物在NaCl溶液中洗脱。为了将西曲溴铵与PRP分离,使两体积的无水乙醇缓慢地与PRP-西曲溴铵溶液混合。当乙醇的浓度达到浊点时,PRP盐析出溶液并且形成重沉淀物沉积。在允许混合物沉降3-4小时之后,在乙醇中包含西曲溴铵的上清液被缓慢倾析并且将沉淀的PRP溶解在已知体积的恰当缓冲液中。尽管在此阶段蛋白质和核酸含量几乎被减少至建议的药典水平,但内毒素的水平仍然保持远远高于预期存在于最终PRP整体物质(bulk substance)的水平。如上所述,现有技术已经描述了去除内毒素的几种方法,然而,这些方法既冗长又成本效益较少或具有无保证的再现性、艰难并且产生不期望的废物。为了应对该挑战,我们引入通过采用使用表面活性剂Triton x114的水性两相胶束系统去除内毒素的新颖方法。在内毒素从重组蛋白和核酸制剂去除中使用Triton x 114是广泛使用的方法,但迄今为止其还没有用于荚膜多糖的情况中。用于从多糖去除内毒素的此技术的已知实例是用于未知的克雷伯氏菌属(Klebsiella Sp)的解毒。然而,此技术在疫苗制造中大规模的操作和使用既未被报道也未被记载。
使用Tritonx114去除内毒素依赖于以下事实:在低浓度下,此非离子型去污剂在低温(低于20℃)下可混溶于水性缓冲溶液中,但当包含tritonx114的溶液被升温超过20℃(浊点)时,其聚集成形成单独相的胶束结构,所述单独相使如内毒素的疏水分子隔离。内毒素富含相然后可以被机械地分离,这留下亲水多糖(无内毒素)在水相中。在本领域迄今为止已知的所有方法中已经使用一些独立的解离和溶解步骤用于内毒素去除,然而,本发明中描述的方法可以同时实现这两个过程(内毒素的解离和溶解),导致减少的处理循环以及增加的回收率。此外,乙醇的使用也被降低几百升,由此使本发明成为更加环境友好的方法。把乙醇沉淀在已知方法中的使用与本发明的方法相比,其中我们看到,在当前已知方法的情况中乙醇沉淀的步骤重复两次持续总数至少48小时。
根据本领域当前采用的PRP纯化方法,通过离心、浓缩和渗滤的后细胞分离进行10小时,接着西曲溴铵沉淀20小时,然后采用乙醇沉淀20小时,接着DOC沉淀20小时,并且又第二次采用乙醇沉淀24小时。其后,进行7小时的浓缩、渗滤和无菌过滤。随后,进行低真空干燥8天的时期,以得到适合于制备疫苗的PRP。因此,我们看到,本领域已知的目前采用的方法需要总共大约12天或288小时来完成全部过程。其明显是非常冗长的过程并且该方法还与高成本有关。
然而,根据本发明,通过离心、西曲溴铵沉淀和经过深度过滤器的后细胞分离花费7小时,接着仅4小时的乙醇沉淀。其后,沉淀物在PBS中的溶解以及使用TritonX114的水性两相分离(aqueous two phase separation)花费16小时,并且然后水相的收集和经过XAD柱需要仅3小时,接着无菌过滤2小时。因此,相对于已知方法中需要的288小时,即12天,PRP的纯化以及回收的总过程在仅32小时(大约2天)内实现。此外,因为该方法仅涉及4小时的乙醇沉淀,因此,与当前采用的方法中涉及几乎2-3天的重复的乙醇沉淀过程相比,本方法更加环境友好、成本有效并且使酒精残留物在最终产品的机会最小化至零。
在以上公开的涉及Hib的荚膜多糖PRP的纯化的以上两种方法(没有酒精和具有有限量的酒精)中,观察到700升的生产批次大小获得70-80gm的粗PRP,其在经历纯化过程之后,产生适合于疫苗配制的进一步阶段的约40-50gm的PRP纯化体(purified bulk)被回收。这导致纯化的PRP多糖的50%至60%的回收率。因此,公开的纯化方法即使不使用酒精或使用大大减少量的酒精,也给出相当大的收率,从而使该方法成为费时较少、环境友好并且经济上更便宜的方法来纯化和获得纯荚膜多糖用于疫苗制剂。
最终,当对纯化的PRP测试质量属性时,发现对于Hib PRP整体物质,与通过WHO的推荐规范完全一致,这在以下实施例中呈现。
实施例3:载体蛋白的纯化
根据本发明,载体蛋白的纯化在不存在酒精下完成。在本文所有纯化步骤中使用的原材料(缓冲溶液、消毒液、溶解剂、清洗剂等)也不包含任何痕量的酒精材料。使用SEC HPLC UV检测器在280nm分析最终的纯化的破伤风类毒素和CRM197。
TT(破伤风类毒素):在收获之后,毒素在37℃下保持4周的孵育并且在室温下保持2周。通过用硫酸铵沉淀(15%W/V)处理来去除杂质。收集上清液并且弃去沉淀物。通过添加37%(w/v)硫酸铵来沉淀破伤风蛋白质并且在0.5M NaCl溶液中溶解。溶液最终用生理盐水来渗滤。测量抗原纯度和甲醛含量。使样品经受用于纯度的SEC HPLC测试并且进一步测试毒性逆转的不存在。还在SDS PAGE上来检查纯度并且示出对应于150KD标准的单个主条带(图12)。
CRM197:在收获之后,用以pH 7.8±0.2的0.03M Tris-HCl缓冲的0.5M等渗蔗糖温和地清洗细胞。离心分离以完全去除痕量的缓冲的蔗糖溶液。在冷水中快速重悬细胞用于渗透休克,并且涡旋或搅动全部内容物。蛋白质由于此处理完全进入周质部分。蛋白质是~67KD蛋白质,并且其在C-末端处携带His标签并且被纯化为均质的。蛋白质通过色谱技术来纯化。测试样品的DNA和内毒素含量,SEC HPLC测试纯度并且进一步测试毒性逆转的不存在。还在SDS PAGE上来检查纯度(图13)并且已经示出对应于67KD标准的单个主条带。根据制剂要求将纯化的蛋白质储存于2-8℃。
实施例4:纯化的细菌CPS的定性和定量分析
源自脑膜炎奈瑟菌、b型流感嗜血杆菌、伤寒沙门菌、肺炎链球菌的最终纯化的多糖使用用于确定产品纯度的尺寸排阻高效液相色谱(SECHPLC)来分析。结果在附图2至11中给出,其示出用于缀合的多糖和蛋白质的纯度。所有的多糖使用尺寸排阻高效液相色谱系统(SEC HPLC)的RID检测器来测量。HPLC谱图中尖锐且单一的峰的存在证实了每种情况下仅期望的多糖的存在,并且否定了样品中任何其他杂质存在的所有可能机会。
根据制剂要求,将纯化的多糖储存于2-8℃或被冻干并且储存于-20℃。
表1.脑膜炎奈瑟菌血清组A、C、Y、W135多糖的结果
表1(图2、3、4和5)描述了纯化的脑膜炎奈瑟菌A、C、Y、W135多糖的结果。所有血清组A、C、Y和W135的核酸和蛋白质含量小于1%。血清组的磷含量为87mg/g多糖,然而剩余的血清组不包含磷。发现血清组C的唾液酸含量为850mg/g多糖、610g/g多糖以及620g/g纯化的多糖。发现血清组A的O-乙酰基含量为2.2mmole/g纯化的多糖、对于血清组C为1.9mmole/g多糖、0.45mmole/g纯化的多糖、0.62mmole/g的纯化的多糖。
表2.2型伤寒沙门菌多糖的结果
表2(图6和图7)描述了纯化的2型伤寒沙门菌多糖的结果。纯化的2型伤寒沙门菌的核酸含量显示为8.02mg/g、6.32mg/g纯化的多糖。水分含量显示为2.14%并且O-乙酰基含量显示为2.18mmol/g的纯化的多糖。内毒素小于150IU/μg纯化的多糖,150IU/μg纯化的多糖为容许的极限。
表3.b型流感嗜血杆菌多糖的结果
表3(图8和图9)描述了纯化的b型流感嗜血杆菌多糖的结果。核酸含量小于1%并且蛋白质含量也小于1%。磷含量小于7.52%。为特殊测试的核糖含量显示为33.32%。内毒素含量小于25EU/μg PRP。
表4.肺炎链球菌血清型4、6B、9V、14、18C、19F和23F多糖的结果
在所有血清型(4、6B、9V、14、18C、19F、23F)的最终纯化的多糖中的核酸含量和蛋白质含量小于1%。磷含量在0.38至3.75mg/g纯化的多糖的范围中。总的氮含量在0.63至5.9mg/g纯化的多糖的范围中。唾液酸和O-乙酰基仅在血清型9V和血清组14中发现。发现在血清型9V中的唾液酸为12%并且在血清型14中为14%。发现O-乙酰基含量为1.5mmole/g、1.62mmole/g纯化的多糖。
表5.纯化的破伤风梭菌类毒素的结果
获得的纯化的破伤风类毒素的抗原纯度为1800Lf/mg蛋白质氮,并且发现游离甲醛为0.05g/L。(表5)
表6.纯化的CRM197蛋白质的结果
CRM 197蛋白质在SDS PAGE上的纯度显示>95%并且核酸含量小于1%。内毒素含量小于100EU/mg蛋白质。(表6)
实施例5:多糖与载体蛋白的缀合
根据本发明,多糖选自:脑膜炎奈瑟菌血清组A、C、Y、W135,b型流感嗜血杆菌;2型伤寒沙门菌;肺炎链球菌血清型4、6B、9V、14、18C、19F和23F。使用载体蛋白(也根据本发明衍生的破伤风类毒素或CRM197)来完成多糖的缀合,其在控制条件下进行并且缀合的整个过程中没有使用酒精。
一旦确定PRP整体物质满足所有质量要求,需要具有可靠的方法来产生免疫-缀合物,该方法又是可再现的、温和的,其维持多糖和载体蛋白的表位完整性。对于达到这些目标,本发明的第二方面涉及用于制造成功的免疫-缀合物的有利方法。根据本发明所公开和实行的新颖缀合技术依赖于发现溴化氰(CNBr)可以在中性pH下在三乙胺(TEA)的存在下非常有效地氰化(cyanalate)多糖的羟基。在此pH下,不仅氰酸酯非常稳定而且亚氨基甲酸酯和氨基甲酸酯的形成也几乎可以忽略。此氰基-转移的方法由此避免所有的碱依赖性、不期望的副反应,使其对于制造免疫-缀合物成为温和、易于进行并且可再现的有前景的方法。
根据本领域现状中通常采用的方法,溴化氰(CNBr)被用于在碱性pH条件(pH 10-11)下在氢氧化钠的存在下使Hib-PRP缀合至破伤风类毒素,所述溴化氰与羟基反应以形成氰酸酯。在缀合过程期间形成的氰酸酯需要为高度稳定的,其可以进一步得到水解并且导致在碱性条件(pH10-11)存在下不必要的亚胺基甲酸酯、环酰亚胺亚氨基甲酸酯(cyclic imidoimidocarbamate)或N-取代的亚氨基甲酸酯或N-取代的氨基甲酸酯的形成,这是极其不期望的。因为氰酸酯比环亚氨基甲酸酯更有反应性,胺将大部分与酯反应,产生异脲衍生物;并且部分地与较少反应性的亚氨基甲酸酯反应,产生取代的亚氨基甲酸酯。
在TEA介导的活化中,TEA对CNBr起作用来形成高度反应性的三乙铵氰络合物(triethylammoniumitrile complex)以产生活性氰基,并且由于反应介质的pH保持中性,防止了活性氰酸酯的水解。每个PRP重复单元具有潜在地适合于被CNBr活化并最终通过ADH连接改性的五个羟基。
在我们的实验中观察到,使用TEA代替NaOH作为转移试剂的CNBr表面活化导致较高的活性羟基并且从而随后较高的PRP-TT免疫-缀合物的收率,几乎等于30%至40%的免疫-缀合物。通过此新的缀合方法产生的PRP-TT缀合物的初步测试在临床前研究中显示良好的免疫应答。此外,其还充分满足WHO规定的指南下需要的规格。用于纯化、内毒素去除和免疫缀合物形成的新颖方法还已经被用来产生新颖组合物,该组合物负责针对Hib的感染激发免疫原性以及所述感染与其他细菌和病毒感染组合的预防及其治疗。
实施例6:多糖蛋白质缀合物的形成
根据本发明,疫苗被配制为天然多糖以及多糖缀合疫苗两者。多糖选自:脑膜炎奈瑟菌血清组A、C、Y、W135;b型流感嗜血杆菌;2型伤寒沙门菌;肺炎链球菌血清型4、6B、9V、14、18C、19F和23F。Hib-PRP-TT缀合疫苗用根据本发明的恰当的稳定剂来配制。配制在控制条件下进行并且在整个过程中没有为任何目的而使用酒精。也没有使用任何源自任何动物来源的原材料作为缓冲液。稳定剂如蔗糖、海藻糖、麦芽糖和乳糖被用于制剂。脑膜炎球菌A的多糖和脑膜炎球菌A的多糖缀合物两者被配制为液体并且然后经受冻干。脑膜炎奈瑟菌血清组C、Y、W135的多糖被配制为液体形式,用或不用佐剂但不经受冷冻干燥。肺炎球菌血清型被制备为液体,用或不用佐剂(磷酸铝或氢氧化铝),不用防腐剂。配制的多糖和多糖缀合疫苗被储存于2-8℃并且显示具有在25℃下六个月的良好的稳定性,以及在37℃下1个月和在2-8℃下2年的良好的稳定性。
Claims (11)
1.疫苗组合物,其用于预防由脑膜炎奈瑟菌(N.meningitidis)、'b'型流感嗜血杆菌(Meningitidis,Haemophilus influenzae type'b')、伤寒沙门菌(Salmonella typhi)、肺炎链球菌(Streptococcal pneumonia)引起的感染,所述疫苗组合物在合适佐剂存在下或不存在下包含脑膜炎奈瑟菌、'b'型流感嗜血杆菌、伤寒沙门菌、肺炎链球菌的荚膜多糖作为抗原,和包含糖类的组合作为稳定剂,所述荚膜多糖缀合至载体蛋白,所述载体蛋白选自白喉类毒素和破伤风毒素;所述糖类选自蔗糖、葡萄糖、乳糖、麦芽糖和海藻糖,其中所述疫苗制剂不包含任何动物成分和酒精。
2.根据权利要求1所述的疫苗组合物,其中所述抗原是脑膜炎奈瑟菌的荚膜多糖,所述脑膜炎奈瑟菌由在培养基中没有任何动物来源存在下培养的脑膜炎奈瑟菌血清型A、C、Y、W135组成。
3.根据权利要求1所述的疫苗组合物,其中所述抗原是'b'型流感嗜血杆菌的荚膜多糖,所述'b'型流感嗜血杆菌的荚膜多糖由在培养基中没有任何动物来源存在下培养的'b'型流感嗜血杆菌-磷酸多聚核糖基核糖醇(Hib-PRP)组成。
4.根据权利要求1所述的疫苗组合物,其中所述抗原是2型伤寒沙门菌的荚膜多糖,所述2型伤寒沙门菌的荚膜多糖由在培养基中没有任何动物来源存在下培养的Vi多糖组成。
5.根据权利要求1所述的疫苗制剂,其中所述肺炎链球菌的抗原荚膜多糖由在培养基中没有任何动物来源存在下培养的选自肺炎链球菌4、肺炎链球菌6B、9V、14、18C、19F和23F的血清型组成。
6.由粗收获物纯化荚膜多糖、去除荚膜多糖的内毒素和回收荚膜多糖的方法,所述方法不涉及酒精,包括以下步骤:
a.在冷却条件下使用100Kd截止膜以8000转每分钟(RPM)离心培养物,并且收集上清液;
b.通过连续模式离心分离或批式离心分离使所述上清液浓缩至其原始尺寸的四分之一;
c.将10%十六烷基三甲基溴化铵(西曲溴铵)添加至步骤b的浓缩的上清液,并且在搅拌条件下室温将其孵育3小时;
d.以3L/分钟的流速将步骤c的上清液加样到深度过滤器上,直到西曲溴铵沉淀物被收集,并且在室温下使用注射用水(WFI)清洗所述沉淀物,直到滤液的电导率为0;
e.溶解步骤b的沉淀物,并且使用0.5M NaCl洗脱以给出多糖洗脱液;
f.用WFI添加至步骤e的所述多糖洗脱液,稀释以得到0.2M NaCl浓度来收集所述上清液,接着针对10mM pH 7的磷酸缓冲盐水(PBS)渗滤所述上清液以获得部分纯化的荚膜多糖;
g.使用Triton X114相分离技术去除步骤f的所述部分纯化的荚膜多糖的内毒素;
h.在静止条件下在30±3℃下孵育反应样品并且收集上层,并且加样到离子交换XAD基质上以去除残留的triton X114;
i.使用20mM pH 7的PBS缓冲液渗滤步骤h的荚膜多糖洗脱液;
j.使用0.22μm囊式过滤器无菌过滤步骤i的多糖,以获得经纯化的荚膜体多糖。
7.'b'型流感嗜血杆菌的磷酸多聚核糖基核糖醇(Hib-PRP)的荚膜多糖的纯化、内毒素去除和回收的方法,所述方法包括:
a.西曲溴铵沉淀以及经过深度过滤器;
b.乙醇沉淀4小时;
c.沉淀物在PBS缓冲液中溶解,接着使用TritonX114水性两相分离;
d.收集水相,并且使所述部分纯化的多糖经过XAD4柱,接着无菌过滤以获得纯化的Hib-PRP多糖。
8.根据权利要求5、6和7所述的方法,其中从粗Hib-PRP中的纯化的Hib-PRP的回收率为40%-50%。
9.根据权利要求6和7所述的方法,其中所述纯化的Hib-PRP的回收在细胞收获后32小时内完成,包括回收过程中涉及的持续最长4小时的乙醇沉淀。
10.选自破伤风类毒素和CRM 197的缀合蛋白质的纯化的方法,其中所述缀合蛋白质的纯化不涉及酒精的使用。
11.将Hib-PRP多糖缀合至缀合蛋白质的方法,所述缀合蛋白质选自破伤风类毒素和CRM 197,所述方法通过双官能连接配体己二酸二酰肼(ADH),使用三乙醇胺在中性pH下在溴化氰的存在下来进行,以便防止氰酸酯碱性水解为尿素杂质。
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IN2754CH2012 | 2012-07-07 | ||
IN2754/CHE/2012 | 2012-07-07 | ||
IN2317/CHE/2012 | 2012-07-11 | ||
IN2317CH2012 | 2012-07-11 | ||
PCT/IN2013/000418 WO2014009971A2 (en) | 2012-07-07 | 2013-07-08 | Non-alcoholic vaccine compositions free from animal- origin and process for preparation thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104487086A true CN104487086A (zh) | 2015-04-01 |
CN104487086B CN104487086B (zh) | 2019-08-30 |
Family
ID=49111507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201380036198.2A Active CN104487086B (zh) | 2012-07-07 | 2013-07-08 | 无动物源的不含酒精的疫苗组合物及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104487086B (zh) |
WO (1) | WO2014009971A2 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108690816A (zh) * | 2017-04-12 | 2018-10-23 | 成都生物制品研究所有限责任公司 | 一种a群奈瑟氏脑膜炎球菌的非动物源培养基及其培养方法 |
CN112646747A (zh) * | 2021-01-08 | 2021-04-13 | 苏州微超生物科技有限公司 | 破伤风梭状芽孢杆菌培养基 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015029056A1 (en) | 2013-08-24 | 2015-03-05 | Bharat Biotech International Limited | A bacterial vaccine and methods for manufacture thereof |
US11160855B2 (en) | 2014-01-21 | 2021-11-02 | Pfizer Inc. | Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof |
CN104387491B (zh) * | 2014-11-25 | 2017-12-05 | 中国医学科学院医学生物学研究所 | 一种b型流感嗜血杆菌荚膜多糖的制备方法 |
CN106146679B (zh) * | 2015-04-23 | 2019-02-01 | 中国医学科学院医学生物学研究所 | 一种纯化细菌荚膜多糖的方法 |
US10543266B2 (en) * | 2015-07-04 | 2020-01-28 | Bharat Biotech International Ltd. | Polysaccharide vaccine formulations and processes for industrial production of bacterial polysaccharides |
EP4309670A3 (en) | 2016-09-02 | 2024-07-17 | Sanofi Pasteur, Inc. | Neisseria meningitidis vaccine |
US20210070890A1 (en) | 2019-09-06 | 2021-03-11 | Serum Institute Of India Private Limited | Method for obtaining purified bacterial polysaccharides |
BR102019021510A2 (pt) * | 2019-10-14 | 2022-01-25 | Instituto Butantan | Processo de produção, recuperação e purificação de polissacarídeo capsular poliribosil-ribitol-fosfato (prp) e uso do mesmo |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1188418A (zh) * | 1995-06-23 | 1998-07-22 | 史密斯克莱·比奇曼生物公司 | 含有吸附于磷酸铝上的多糖缀合抗原的疫苗组合物 |
WO2001005997A2 (en) * | 1999-07-16 | 2001-01-25 | Massachusetts Institute Of Technology | Method for production of tetanus toxin using media substantially free of animal products |
CN1383384A (zh) * | 2000-07-05 | 2002-12-04 | 绿十字疫苗株式会社 | 包括白喉类毒素、破伤风类毒素、全细胞百日咳和乙型肝炎表面抗原的四价联合疫苗及其制备方法 |
WO2005103230A2 (en) * | 2004-04-22 | 2005-11-03 | Chiron Srl | Soy peptone as a nitrogen source in preparing meningococcal conjugates |
WO2006042542A2 (en) * | 2004-10-19 | 2006-04-27 | Statens Serum Institut | Production of tetanus, diphtheria, and pertussis toxins and toxoids using fermentation media containing no components of animal or soy origin |
CN101065149A (zh) * | 2004-01-29 | 2007-10-31 | 比奥辛耐克斯公司 | 氨基-氧基官能团在制备疫苗结合物中的应用 |
CN101180079A (zh) * | 2005-04-08 | 2008-05-14 | 惠氏公司 | 多价肺炎球菌多糖-蛋白质缀合物组合物 |
CN101374548A (zh) * | 2005-12-22 | 2009-02-25 | 葛兰素史密丝克莱恩生物有限公司 | 含有肺炎链球菌荚膜多糖缀合物的疫苗 |
CN101405028A (zh) * | 2006-03-17 | 2009-04-08 | 美国政府健康及人类服务部 | 制备复合的多价免疫原性结合物的方法 |
CN101524535A (zh) * | 2001-06-20 | 2009-09-09 | 诺华疫苗和诊断有限公司 | 溶解和结合荚膜多糖的疫苗 |
WO2011148382A1 (en) * | 2010-05-28 | 2011-12-01 | Biological E Limited | An improved process for the purification of capsular polysaccharides of haemophilus influenza - b, neisseria meningitis such as serotypes a, c, y and w-135, and other similar related capsular polysaccharides produced from both gram negative and gram positive microorganisms using aluminium phosphate with alcohol. |
CN102504042A (zh) * | 2011-11-17 | 2012-06-20 | 成都欧林生物科技股份有限公司 | 一种去除细菌荚膜多糖中内毒素的方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4220717A (en) | 1977-12-22 | 1980-09-02 | American Cyanamid Company | Isolation and purification of polyribosyl ribitol phosphate from Haemophilus influenzae type b. |
US4644059A (en) | 1982-07-06 | 1987-02-17 | Connaught Laboratories, Inc. | Haemophilus influenzae B polysaccharide-diptheria toxoid conjugate vaccine |
US5192540A (en) | 1988-04-19 | 1993-03-09 | American Cyanamid Company | Haemophilus influenzae type b oxidized polysaccharide-outer membrane protein conjugate vaccine |
US5045456A (en) | 1989-06-12 | 1991-09-03 | Merck & Co., Inc. | Process for removing bacterial endotoxin from gram-negative polysaccharides |
WO1998032873A1 (de) | 1997-01-24 | 1998-07-30 | Schweiz. Serum- & Impfinstitut Bern | Neues verfahren zur isolierung von polysacchariden |
FR2791895B1 (fr) * | 1999-03-23 | 2001-06-15 | Pasteur Merieux Serums Vacc | Utilisation de trehalose pour stabiliser un vaccin liquide |
ES2307553T3 (es) * | 1999-12-02 | 2008-12-01 | Novartis Vaccines And Diagnostics, Inc. | Composiciones y procedimientos para estabilizar moleculas biologicas tras liofilizacion. |
GB0313916D0 (en) * | 2003-06-16 | 2003-07-23 | Glaxosmithkline Biolog Sa | Vaccine composition |
ATE460498T1 (de) | 2003-09-11 | 2010-03-15 | Staat Der Nederlanden Vert Doo | Verfahren zur herstellung eines kapselpolysaccharids zur verwendung in konjugat- impfstoffen |
FR2918671B1 (fr) * | 2007-07-10 | 2010-10-15 | Sanofi Pasteur | Milieu de culture d'haemophilus influenzae type b. |
-
2013
- 2013-07-08 CN CN201380036198.2A patent/CN104487086B/zh active Active
- 2013-07-08 WO PCT/IN2013/000418 patent/WO2014009971A2/en active Application Filing
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1188418A (zh) * | 1995-06-23 | 1998-07-22 | 史密斯克莱·比奇曼生物公司 | 含有吸附于磷酸铝上的多糖缀合抗原的疫苗组合物 |
WO2001005997A2 (en) * | 1999-07-16 | 2001-01-25 | Massachusetts Institute Of Technology | Method for production of tetanus toxin using media substantially free of animal products |
CN1383384A (zh) * | 2000-07-05 | 2002-12-04 | 绿十字疫苗株式会社 | 包括白喉类毒素、破伤风类毒素、全细胞百日咳和乙型肝炎表面抗原的四价联合疫苗及其制备方法 |
CN101524535A (zh) * | 2001-06-20 | 2009-09-09 | 诺华疫苗和诊断有限公司 | 溶解和结合荚膜多糖的疫苗 |
CN101065149A (zh) * | 2004-01-29 | 2007-10-31 | 比奥辛耐克斯公司 | 氨基-氧基官能团在制备疫苗结合物中的应用 |
WO2005103230A2 (en) * | 2004-04-22 | 2005-11-03 | Chiron Srl | Soy peptone as a nitrogen source in preparing meningococcal conjugates |
WO2006042542A2 (en) * | 2004-10-19 | 2006-04-27 | Statens Serum Institut | Production of tetanus, diphtheria, and pertussis toxins and toxoids using fermentation media containing no components of animal or soy origin |
CN101180079A (zh) * | 2005-04-08 | 2008-05-14 | 惠氏公司 | 多价肺炎球菌多糖-蛋白质缀合物组合物 |
CN101374548A (zh) * | 2005-12-22 | 2009-02-25 | 葛兰素史密丝克莱恩生物有限公司 | 含有肺炎链球菌荚膜多糖缀合物的疫苗 |
CN101405028A (zh) * | 2006-03-17 | 2009-04-08 | 美国政府健康及人类服务部 | 制备复合的多价免疫原性结合物的方法 |
WO2011148382A1 (en) * | 2010-05-28 | 2011-12-01 | Biological E Limited | An improved process for the purification of capsular polysaccharides of haemophilus influenza - b, neisseria meningitis such as serotypes a, c, y and w-135, and other similar related capsular polysaccharides produced from both gram negative and gram positive microorganisms using aluminium phosphate with alcohol. |
CN102504042A (zh) * | 2011-11-17 | 2012-06-20 | 成都欧林生物科技股份有限公司 | 一种去除细菌荚膜多糖中内毒素的方法 |
Non-Patent Citations (7)
Title |
---|
ZHIGANG JIN,等: "《Preparation and Characterization of Group A Meningococcal Capsular Polysaccharide Conjugates and Evaluation of Their Immunogenicity in Mice》", 《INFECTION AND IMMUNITY》 * |
刘方蕾,等: "《A群奈瑟氏脑膜炎球菌荚膜多糖2破伤风类毒素结合疫苗的制备及其免疫原性研究》", 《微生物学免疫学进展》 * |
张新妹,等: "《欧洲药典推荐的溶液和培养基》", 《中国药品标准》 * |
曾戎: "《多糖基高分子-药物轭合物的设计、合成、表征和评价》", 31 May 2011 * |
杨耀,等: "《b型流感嗜血杆菌多糖结合疫苗的研制》", 《中国生物制品学杂志》 * |
王雪薇,等: "《Triton X-114 萃取法去除脑膜炎球菌荚膜多糖中的内毒素》", 《中国生物制品学杂志》 * |
秦敏: "《CDAP活化多糖制备副甲多糖结合疫苗》", 《第八次全国生物制品学术会议论文汇编2004-2005》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108690816A (zh) * | 2017-04-12 | 2018-10-23 | 成都生物制品研究所有限责任公司 | 一种a群奈瑟氏脑膜炎球菌的非动物源培养基及其培养方法 |
CN112646747A (zh) * | 2021-01-08 | 2021-04-13 | 苏州微超生物科技有限公司 | 破伤风梭状芽孢杆菌培养基 |
CN112646747B (zh) * | 2021-01-08 | 2024-03-15 | 苏州聚微生物科技有限公司 | 破伤风梭状芽孢杆菌培养基 |
Also Published As
Publication number | Publication date |
---|---|
WO2014009971A2 (en) | 2014-01-16 |
WO2014009971A3 (en) | 2014-08-28 |
CN104487086B (zh) | 2019-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104487086A (zh) | 无动物源的不含酒精的疫苗组合物及其制备方法 | |
CN104936615B (zh) | 高产量的细菌多糖的制备 | |
US7491517B2 (en) | Method of producing meningococcal meningitis vaccine for Neisseria meningitidis serotypes A,C,Y, and W-135 | |
CN107427568A (zh) | 用于肺炎球菌疫苗中的免疫原性组合物 | |
CN101146829A (zh) | 链球菌荚膜多糖的纯化 | |
KR102565771B1 (ko) | 박테리아 협막 폴리사카라이드 기반 제제로부터의 불순물의 제거 방법 | |
KR101161033B1 (ko) | 컨쥬게이트 백신에 사용하기 위한 피막 다당류의 제조 방법 | |
JP2005532415A (ja) | スタフィロコッカス・アウレウスエキソポリサッカライド及び方法 | |
CN105031634A (zh) | A群c群脑膜炎球菌多糖结合疫苗活化工艺 | |
CN110198735A (zh) | 用于肺炎球菌疫苗中的免疫原性组合物 | |
CN101724085B (zh) | 一种荚膜多糖纯化方法 | |
JP2018514624A (ja) | 微生物莢膜多糖類からタンパク質および他の不純物を分離するための方法 | |
CN103747798A (zh) | 包含聚阳离子的蛋白质基质疫苗组合物 | |
US10011662B2 (en) | Downstream process for purifying polysaccharides | |
WO2011148382A1 (en) | An improved process for the purification of capsular polysaccharides of haemophilus influenza - b, neisseria meningitis such as serotypes a, c, y and w-135, and other similar related capsular polysaccharides produced from both gram negative and gram positive microorganisms using aluminium phosphate with alcohol. | |
CN102935226B (zh) | 伤寒甲型副伤寒结合疫苗及其制备方法 | |
CN103933559B (zh) | 志贺氏菌多价结合疫苗 | |
KR102028693B1 (ko) | 스트렙토코커스 뉴모니아 협막 다당체의 생산방법 | |
US10172928B2 (en) | Purification of streptococcal capsular polysaccharide | |
RU2407792C1 (ru) | СПОСОБ ПОЛУЧЕНИЯ IgAl-ПРОТЕАЗЫ ИЗ КУЛЬТУРЫ NEISSERIA MENINGITIDIS СЕРОГРУППЫ А И ИММУНОГЕННЫЙ ПРЕПАРАТ НА ЕЕ ОСНОВЕ | |
CN106109486A (zh) | 一种组合物及其制备方法与应用 | |
WO2024062494A1 (en) | Method for the purification of capsular polysaccharides | |
Al-Musawi et al. | Partial purification of capsular polysaccharide 5 (CP5) from Methicillin-resistant Staphylococcus aureus (MRSA) isolates in Iraq | |
WO2024110839A2 (en) | Immunogenic compositions comprising conjugated capsular saccharide antigens and uses thereof | |
KR20200007903A (ko) | 세균성 다당류의 생산 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |