CN104477994A - 一种钽酸钠的制备方法 - Google Patents

一种钽酸钠的制备方法 Download PDF

Info

Publication number
CN104477994A
CN104477994A CN201410766965.1A CN201410766965A CN104477994A CN 104477994 A CN104477994 A CN 104477994A CN 201410766965 A CN201410766965 A CN 201410766965A CN 104477994 A CN104477994 A CN 104477994A
Authority
CN
China
Prior art keywords
reaction
sodium
product
preparation
naoh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410766965.1A
Other languages
English (en)
Inventor
徐学文
王赛
白英豪
唐成春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Technology
Original Assignee
Hebei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Technology filed Critical Hebei University of Technology
Priority to CN201410766965.1A priority Critical patent/CN104477994A/zh
Publication of CN104477994A publication Critical patent/CN104477994A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/10Constitutive chemical elements of heterogeneous catalysts of Group I (IA or IB) of the Periodic Table
    • B01J2523/12Sodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/50Constitutive chemical elements of heterogeneous catalysts of Group V (VA or VB) of the Periodic Table
    • B01J2523/57Tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/60Constitutive chemical elements of heterogeneous catalysts of Group VI (VIA or VIB) of the Periodic Table
    • B01J2523/68Molybdenum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明为一种钽酸钠的制备方法,该方法包括以下步骤:(1)将氢氧化钠和五氧化二钽混合后研磨,其中,摩尔比为NaOH:Ta2O5=2:1~8:1;(2)将步骤(1)中得到的混合物在500~800℃熔融反应1~10小时;(3)用去离子水和稀酸溶液清洗步骤(2)得到的反应产物,然后再50~180℃烘干即可以得到钽酸钠产物。本发明采用的氢氧化钠熔融法是一种简单、高效的NaTaO3合成方法,并且能够在较温和条件下制备掺杂量可精确控制的掺杂钽酸钠。

Description

一种钽酸钠的制备方法
技术领域
本发明涉及一种光催化剂的制备方法,具体为一种钽酸钠光催化剂的氢氧化钠熔融制备方法。
背景技术
随着社会与经济的高速发展,人类面临着严重的环境污染问题和能源危机。光催化剂被认为是解决这两种难题的关键材料,它既可以用来光催化裂解水制氢,又可以用来光催化降解有机染料。钽酸钠(NaTaO3)是一种性能优异的、紫外光激活的催化剂(H.Kato,A.Kudo,Cata.Lett.1999,58,153-155)。负载NiO的NaTaO3分解纯水制备H2和O2的量子效率达到20-28%(H.Kato,A.Kudo,J.Phys.Chem.B 2001,105,4285-4292)。掺杂被认为是一种有效地调节NaTaO3能带结构的方法,通过掺杂可以获得可见光响应的、高效率的催化剂。目前,单相和掺杂NaTaO3的合成方法主要有高温固相反应法、水热法和溶胶-凝胶法。其中,固相反应法通常以NaHCO3、Ta2O5为原料,经过1200℃、10h高温反应多次才能得到单相的NaTaO3(W.Lin,C.Cheng,C.Hu,H.Teng,Appl.Phys.Lett.2006,89,211904)。这种高温反应过程耗能、耗时,并且产物是催化效率较低的正交相NaTaO3。这种高温固相反应方法尤其不利于N掺杂NaTaO3的合成,因为作为N源的Ta3N5或者TaON通过在700℃即分解。水热法是另一种较简便的NaTaO3纳米颗粒合成方法,研究者通常以Ta2O5和超浓的NaOH溶液([NaOH]≥10M)为原料,在反应釜中经过160~240℃反应12~48h制备具有立方体形貌的NaTaO3纳米颗粒(Y.He,Y.Zhu,N.Wu,J.SolidState Chem.2004,177,3868-3872;J.W.Liu,G.Chen,Z.H.Li,Int.J.Hydrogen Energy,2007,32,2269-2272)。但是,以水热法合成钽酸钠的过程中,反应在水溶液中进行,这样在合成金属离子掺杂的钽酸钠时,掺杂物质通常会溶于水中,不易控制最终产物中掺杂离子的含量。以溶胶-凝胶法制备NaTaO3时,虽然可以在较低的温度下合成单相NaTaO3,但需要采用价格昂贵的TaCl5或Ta(CH3CH2OH)5为钽源,因此这种合成路线的成本较高。因此,迄今为止单相和掺杂的NaTaO3的简易、高效、低成本的制备方法仍然是缺乏的。
发明内容
本发明针对当前制备钽酸钠技术中存在的不足,提供一种钽酸钠的制备方法,该方法采用NaOH熔融法能在较低温度下合成设计化学计量比的掺杂NaTaO3催化剂,不仅克服了固相反应合成NaTaO3时的高温、长时的缺点;而且能够较精确地控制合成的掺杂钽酸钠中掺杂离子的浓度。本发明采用氢氧化钠熔融法具有简单、反应条件温和、低成本的优点。
本发明的技术方案是:
一种钽酸钠的制备方法,该方法包括以下步骤:
(1)将氢氧化钠和五氧化二钽混合后研磨,其中,摩尔比为NaOH:Ta2O5=2:1~8:1;
(2)将步骤(1)中得到的混合物在空气气氛或者保护气氛中以每分钟1~30℃的速率升温至500~800℃,然后在该温度下熔融反应1~10小时,然后降温至室温得到反应产物,
(3)用稀酸溶液和去离子水清洗步骤(2)得到的反应产物,然后再50~180℃烘干即可以得到钽酸钠产物;
所述的稀酸溶液为稀硝酸、稀盐酸或者稀硫酸溶液。
其中,保护气氛为氮气、氩气或两者的混合气体。
本发明的有益效果是:
1.本发明采用的氢氧化钠熔融方法能在较温和的条件下合成了单相。如图1(b)所示,摩尔比为NaOH:Ta2O5=2.5:1混合原料经过500℃、3h的熔融反应就能够得到单相的NaTaO3。在以上合成反应过程中,NaOH既是反应物,又能在此反应温度下熔融,从而提供了液相反应介质。这一合成温度远低于固相反应法合成钽酸钠的温度(1200℃),反应时间也远远短于固相反应所需要的时间(12~36h);与水热反应相比,在本发明的合成方案所需要的设备简单,不需要水热反应中必需的水热釜;与溶胶-凝胶法相比,成本大大降低。因此,本发明采用的氢氧化钠熔融法是一种简单、高效的NaTaO3合成方法。
2.本发明采用的氢氧化钠熔融法能够在较温和条件下制备掺杂量可精确控制的掺杂钽酸钠。如图3所示是以化学式NaTa1-xMoxO3-xNx(x=0,0.01,0.03,0.05,0.1)为目标产物,以NaOH、Ta2O5、Ta3N5和(NH4)6Mo7O24·4H2O为原料(其中,NaOH和Ta2O5的摩尔比为NaOH:Ta2O5=2.5:1)在700℃的N2中反应3h得到产物的XRD图谱。制备的产物为单相的NaTaO3,没有其他杂质相产生。通过EDS图谱分析了制备产物的化学组成(图4),在制备的掺杂的NaTaO3中存在掺杂离子Mo和N。并且,产物中掺杂离子浓度随反应物中掺杂含量的提高而升高,与设计化学式的成分接近。
附图说明
下面结合附图和具体实施对本发明进一步说明。
图1为实例1~9中不同化学计量比和不同温度下合成样品的XRD图谱,其中,图1(a)不同摩尔比的NaOH/Ta2O5经过700℃、3h反应之后得到产物的XRD图谱;图1(b)摩尔比为NaOH:Ta2O5=2.5:1的混合物经过不同温度下3h反应之后得到产物的XRD图谱。
图2为实例6~9中摩尔比为NaOH:Ta2O5=2.5:1的混合物经过不同温度下3h反应之后得到产物的微观结构的扫描照片,图2(a)为500℃,图2(b)为600℃,图2(c)为700℃和图2(d)为800℃,反应气氛为空气。
图3为实例10~14中通过熔融法在700℃的N2中以NaOH,Ta2O5,Ta3N5,(NH4)6Mo7O24·4H2O为原料分别合成的NaTa1-xMoxO3-xNx(x=0,0.01,0.03,0.05和0.1产物的XRD图谱。
图4为实例13中通过熔融法合成的NaTa0.95Mo0.05O2.95N0.05产物EDS图谱。
具体实施方式
实施例1
(1)按照摩尔比NaOH:Ta2O5=2:1称取反应原料氢氧化钠和氧化钽,然后在玛瑙研钵中研磨20min以上,使原料混合均匀。将混合原料置于氧化铝坩埚中,在空气氛围下以每分钟20℃的速率升温至700℃,然后在空气中、700℃熔融反应3h,得到白色固体物质;
(2)将步骤(1)中得到的产物用稀硝酸(体积浓度为10%)溶液清洗4次,再用去离子水清洗4次,以去除多余的NaOH以及可能存在的铝离子。将清洗后得到的白色物质放入60℃的烘干箱中,保温12h,得到白色产物。
实施例2、3、4、5
其他步骤同实施例1,不同之处为将步骤(1)中反应物的摩尔比NaOH:Ta2O5由2:1分别变为8:1、10:1、15:1和20:1。
以上实施例采用X射线衍射仪(XRD)对制备产物的物相组成进行分析,结果如图1(a)所示。当NaOH和Ta2O5的摩尔比为2:1至8:1时,在700℃反应3h可以得到单相的NaTaO3产物;当NaOH和Ta2O5的摩尔比高于10:1时,得到的是非晶相的NaTaO3。因此,采用氢氧化钠熔融法合成NaTaO3时,原料的摩尔比应为NaOH:Ta2O5=2:1~8:1。
实施例6
(1)按照摩尔比NaOH:Ta2O5=2.5:1称取原料氢氧化钠和氧化钽,然后在玛瑙研钵中混合均匀,于氧化铝坩埚中在500℃的空气中反应3h,得到白色固体物质;
(2)同实施例1的步骤(2)。
实施例7、8、9
其他步骤同实施例6,不同之处为将步骤(1)中反应温度由500℃分别变为600、700和800℃。
图1(b)摩尔比NaOH:Ta2O5=2.5:1的混合原料在不同温度下熔融反应得到产物的XRD图谱。在500℃熔融反应3h就可以得到单相的NaTaO3,随着反应温度逐渐升高至800℃,得到的单相NaTaO3产物的X射线衍射峰的半峰宽逐渐变窄,表明随着温度升高产物的结晶度增大。图2是以上不同温度反应得到产物的微观结构的扫描照片。在500和600℃熔融反应产物具有不规则的片状结构;当反应温度升高到700℃时,产物中出现立方颗粒形貌;当反应温度进一步升高到800℃时,反应产物具有规则的立方体或者产物体形貌,产物的尺寸分布在100~300nm之间。
实施例10
(1)按照设计的化学式NaTa1-xMoxO3-xNx(x=0.01,即设计的化学式为NaTa0.99Mo0.01O2.99N0.01)称取NaOH、Ta2O5、(NH4)6Mo7O24·4H2O和Ta3N5原料,其中NaOH和Ta2O5的摩尔比为2.5:1,Mo和N的掺杂量为x=0.01。将原料在玛瑙研钵中混合均匀,然后放入氧化铝坩埚中,在700℃的N2中反应3h,得到不同颜色的反应产物;
(2)将步骤(1)中得到的产物用稀硝酸和去离子水反复清洗8次以上,然后在60℃的烘干箱中干燥得到产物。
实施例11、12、13、14
其他步骤同实施例10,不同之处为将步骤(1)中掺杂量x=0.01改为x=0,0.03,0.05和0.1。随着Mo和N掺杂量的升高,得到掺杂NaTaO3样品的颜色逐渐由白色变为浅绿色和灰绿色,即样品颜色随掺杂浓度的增大而逐渐加深,这也说明了产物中掺杂物质浓度的变化。
如图3所示,当掺杂含量x≤0.05时,得到了单相的NaTaO3样品,并没有其他杂质相出现。在NaTa0.95Mo0.05O2.95N0.05样品EDS图谱中(图4),可以观察到明显的属于Mo和N的特征峰存在,说明掺杂的Mo和N进入到了NaTaO3的晶格位置。进一步的EDS分析结果表明,当x=0.01,0.03,0.05和0.1时,制备不同掺杂量的NaTaO3:Mo,N样品的化学式分别为NaTa0.998Mo0.007O2.986N0.009,NaTa0.984Mo0.027O2.965N0.027,NaTa0.962Mo0.045O2.943N0.048和NaTa0.917Mo0.076O2.898N0.083,实际产物的化学计量比基本与设计的化学计量比相近,微小的偏差可能是由EDS测试误差导致的。
实施例15、16
将实施例8(原料摩尔比NaOH:Ta2O5=2.5:1,反应温度为700℃)步骤(1)中的熔融反应时间分别改为1和10h,其他各项操作均与实施例8相同,得到产物同实施例8。
实施例17
将实施例8(原料摩尔比NaOH:Ta2O5=2.5:1,反应温度为700℃)步骤(1)中的反应气氛改为氩气,其他各项操作均与实施例8相同,得到产物同实施例8。
实施例18、19
将实施例8(原料摩尔比NaOH:Ta2O5=2.5:1,反应温度为700℃)步骤(2)中的烘干温度改为50和180℃,其他各项操作均与实施例8相同,得到产物同实施例8。
实施例21、22
将实施例8(原料摩尔比NaOH:Ta2O5=2.5:1,反应温度为700℃)步骤(2)中的稀硝酸溶液分别改为体积浓度为10%的稀盐酸和稀硫酸溶液,其他各项操作均与实施例8相同,得到产物同实施例8。
本发明未尽事宜为公知技术。

Claims (2)

1.一种钽酸钠的制备方法,其特征为该方法包括以下步骤:
(1)将氢氧化钠和五氧化二钽混合后研磨,其中,摩尔比为NaOH:Ta2O5=2:1~8:1;
(2)将步骤(1)中得到的混合物在空气气氛或者保护气氛中以每分钟1~30℃的速率升温至500~800℃,然后在该温度下熔融反应1~10小时,然后降温至室温得到反应产物,
(3)用稀酸溶液和去离子水清洗步骤(2)得到的反应产物,然后再50~180℃烘干即可以得到钽酸钠产物;
所述的稀酸溶液为稀硝酸、稀盐酸或者稀硫酸溶液。
2.如权利要求1所述的钽酸钠的制备方法,其特征为保护气氛为氮气、氩气或两者的混合气体。
CN201410766965.1A 2014-12-11 2014-12-11 一种钽酸钠的制备方法 Pending CN104477994A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410766965.1A CN104477994A (zh) 2014-12-11 2014-12-11 一种钽酸钠的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410766965.1A CN104477994A (zh) 2014-12-11 2014-12-11 一种钽酸钠的制备方法

Publications (1)

Publication Number Publication Date
CN104477994A true CN104477994A (zh) 2015-04-01

Family

ID=52752638

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410766965.1A Pending CN104477994A (zh) 2014-12-11 2014-12-11 一种钽酸钠的制备方法

Country Status (1)

Country Link
CN (1) CN104477994A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112973665A (zh) * 2019-12-02 2021-06-18 南京工业大学 一种低温制备高性能单晶SrTaO2N光阳极的方法
CN114768851A (zh) * 2022-04-18 2022-07-22 西安交通大学苏州研究院 一种钽系氮氧化物核壳结构异质结及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1597097A (zh) * 2004-08-30 2005-03-23 南京大学 高比表面的钽酸盐和铌酸盐光催化剂的制备方法
CN1699186A (zh) * 2004-05-21 2005-11-23 南京大学 稳定的水溶性的铌和钽前体的制备方法及应用
JP2006088019A (ja) * 2004-09-22 2006-04-06 Science Univ Of Tokyo 硝酸イオン存在下の酸化的雰囲気においてIr酸化物系助触媒を担持させた光触媒およびその製造方法
CN102527372A (zh) * 2011-12-19 2012-07-04 陕西科技大学 水热法制备氮掺杂钽酸钠光催化剂粉体的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1699186A (zh) * 2004-05-21 2005-11-23 南京大学 稳定的水溶性的铌和钽前体的制备方法及应用
CN1597097A (zh) * 2004-08-30 2005-03-23 南京大学 高比表面的钽酸盐和铌酸盐光催化剂的制备方法
JP2006088019A (ja) * 2004-09-22 2006-04-06 Science Univ Of Tokyo 硝酸イオン存在下の酸化的雰囲気においてIr酸化物系助触媒を担持させた光触媒およびその製造方法
CN102527372A (zh) * 2011-12-19 2012-07-04 陕西科技大学 水热法制备氮掺杂钽酸钠光催化剂粉体的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KENGO SHIBATA等: "Preparation of needle- and plate- like NaTaO3 by molten NaOH method", 《JOURNAL OF THE CERAMIC SOCIETY OF JAPAN》, vol. 121, no. 1, 21 December 2013 (2013-12-21), pages 109 - 112 *
刘大锐: "《中国博士学位论文全文数据库 工程科技Ⅰ辑》", 15 September 2011, article "N、S掺杂NaTaO3及SrFeO3的制备与光催化性能研究", pages: 52 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112973665A (zh) * 2019-12-02 2021-06-18 南京工业大学 一种低温制备高性能单晶SrTaO2N光阳极的方法
CN112973665B (zh) * 2019-12-02 2023-08-15 南京工业大学 一种低温制备高性能单晶SrTaO2N光阳极的方法
CN114768851A (zh) * 2022-04-18 2022-07-22 西安交通大学苏州研究院 一种钽系氮氧化物核壳结构异质结及其制备方法与应用
CN114768851B (zh) * 2022-04-18 2023-09-22 西安交通大学苏州研究院 一种钽系氮氧化物核壳结构异质结及其制备方法与应用

Similar Documents

Publication Publication Date Title
CN113372108B (zh) 一种具有良好光吸收性能的高熵陶瓷材料的制备方法
CN101549890B (zh) 钴酸镍纳米颗粒的溶剂热合成方法
CN101113010A (zh) 微波辅助制备氧化铈纳米粒子的方法
CN104511293A (zh) 一种氯氧化铋-钛酸铁铋复合光催化剂及其制备方法
CN101845668B (zh) 一种纳米硼酸镍晶须的制备方法
CN105645470A (zh) 一种三氧化钼纳米薄片的制备方法
Wang et al. Hydrothermal preparation of perovskite structures DyCrO 3 and HoCrO 3
CN104925863A (zh) 单斜晶系结构二氧化钒粉体的制备方法
CN104475142A (zh) 一种可见光响应的掺杂钽酸钠及其制备方法
Fang et al. Rapid microwave-assisted sol-gel synthesis and exceptional visible light photocatalytic activities of Bi12TiO20
CN104477994A (zh) 一种钽酸钠的制备方法
Dong et al. Increasing doping solubility of RE3+ ions in fergusonite BiVO4 via pressure-induced phase transition
Li et al. Synthesis and thermal decomposition of nitrate-free boehmite nanocrystals by supercritical hydrothermal conditions
CN102275944A (zh) 一种新的闪烁硅酸铋粉体的制备方法
CN104803422B (zh) 一种纳米级铁铝尖晶石的制备方法
Zhang et al. One-pot molten salt synthesis of CdNb2O6/Cd2Nb2O7 heterojunction photocatalysts with enhanced photocatalytic properties
CN100534904C (zh) 采用熔盐煅烧法制备纳米Al2O3的方法
CN103708495A (zh) 纳米棒状颗粒有序组装的zsm-5沸石分子筛的制备方法
CN103553032A (zh) 制备还原氧化石墨烯/二氧化铈纳米块复合物的方法
CN106830005A (zh) 无溶剂路线高温快速合成eu‑1沸石分子筛的方法
CN110817927A (zh) 用燃烧法制备质轻多孔的纳米氧化铈
CN102120183A (zh) 一种铈基稀土二元一维氧化物固溶体的制备方法
CN103112881B (zh) 高效制备铝酸镧粉末的方法
Ovalle-Encinia et al. Nanosized lithium aluminate (γ-LiAlO2) synthesized by EDTA-citrate complexing method, using different thermal conditions
Orlova et al. Investigation of zirconium phosphate Zr 3 (PO 4) 4 during heating

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20150401