CN104446635A - 一种闭孔型多孔氧化铝隔热陶瓷的制备方法 - Google Patents

一种闭孔型多孔氧化铝隔热陶瓷的制备方法 Download PDF

Info

Publication number
CN104446635A
CN104446635A CN201410627847.2A CN201410627847A CN104446635A CN 104446635 A CN104446635 A CN 104446635A CN 201410627847 A CN201410627847 A CN 201410627847A CN 104446635 A CN104446635 A CN 104446635A
Authority
CN
China
Prior art keywords
obturator
alumina
thermal insulation
porous alumina
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410627847.2A
Other languages
English (en)
Other versions
CN104446635B (zh
Inventor
殷小玮
韩美康
成来飞
任飒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201410627847.2A priority Critical patent/CN104446635B/zh
Publication of CN104446635A publication Critical patent/CN104446635A/zh
Application granted granted Critical
Publication of CN104446635B publication Critical patent/CN104446635B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明涉及一种闭孔型多孔氧化铝隔热陶瓷的制备方法,将水热合成的核壳结构粉体作为造孔剂添加到氧化铝浆料中制备氧化铝陶瓷,在陶瓷坯体的烧结过程中,内核碳球氧化除掉,外壳氧化铝层与氧化铝基体烧结致密,并与烧结助剂形成镁铝尖晶石,钉扎于晶界。制得的氧化铝陶瓷成功引入了闭气孔,其闭气孔率达10%-60%,开口气孔率低于5%,陶瓷热导率达到0.1W/(m·K),使用温度超过1400℃。解决目前发泡法制备多孔陶瓷工艺复杂、添加剂过多以及制品易粉化等诸多缺点。

Description

一种闭孔型多孔氧化铝隔热陶瓷的制备方法
技术领域
本发明属于多孔陶瓷的制备方法,涉及一种闭孔型多孔氧化铝隔热陶瓷的制备方法。
背景技术
隔热材料广泛应用于窑炉以及高温设备的内衬、绝热层等部位,轻质、高强、耐高温的隔热陶瓷是当今发展的重点。在现有的各种材质的隔热材料中,按原料划分有氧化锆质、硅质、镁质、高铝质等,其中氧化铝隔热材料的种类最多,如氧化铝纤维、高铝质隔热砖、氧化铝空心球制品等。与普通的隔热材料相比,氧化铝隔热材料具有体积密度低、荷重软化温度高、耐压强度高、热容量低等特点,且其原料丰富,性价比高,被认为是最有发展前景的轻质高温隔热材料。
提高陶瓷材料的闭气孔率是改善材料隔热性能的有效手段。多孔陶瓷的制备方法有添加造孔剂、发泡法、冷冻干燥、凝胶注模及三维打印等,但是多数造孔工艺只能在陶瓷材料中产生开口气孔,到目前为止,闭孔型多孔陶瓷的制备广泛采用的是发泡工艺。发泡法能有效的在陶瓷坯体中产生闭孔结构,但是由于发泡剂的引入,增加了工艺的复杂性,且陶瓷孔结构的可控性较差(如孔径不易控制,气孔大小不一;气孔率过高,力学性能降低等),制备的多孔陶瓷易出现粉化剥落现象。
文献1“杜景红,张林,甘国友等.一种利用凝胶-发泡法制备氧化铝多孔陶瓷的方法,中国,CN102432332B[P].2014”公开了一种制备高性能的闭孔隔热氧化铝陶瓷的方法。该方法将凝胶注模工艺与发泡法相结合,所制备陶瓷的闭孔气孔率为37-67%,强度为8-124MPa。该方法引入有机单体、分散剂、发泡剂、稳泡剂等多种有机原料,工艺过程复杂,不易控制。
文献2“袁磊,和珍宝,于坤.超塑性高温发泡制备闭孔多孔Al2O3基陶瓷[J].东北大学学报,2013,34:939-943.”公开了一种制备闭孔氧化铝陶瓷的方法。该方法采用SiC作为高温发泡剂并分散于陶瓷坯体中,所制备材料闭孔气孔率为13.2%,开孔气孔率为1.3%。此方法制备的Al2O3陶瓷在烧结后存在SiO2相,降低了隔热陶瓷的使用温度。
综上所述,采用发泡工艺制备多孔陶瓷存在工艺过程控制和高温隔热性能等问题。因此,研究组分和结构可控、高温隔热性能优异、低污染的制备工艺,是当今轻质高温隔热陶瓷发展的趋势,目前尚无采用Al2O3C核壳材料作造孔剂制备闭孔型氧化铝隔热陶瓷的报道。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种闭孔型多孔氧化铝隔热陶瓷的制备方法,解决目前发泡法制备多孔陶瓷工艺复杂、添加剂过多以及制品易粉化等诸多缺点。
技术方案
一种闭孔型多孔氧化铝隔热陶瓷的制备方法,其特征在于步骤如下:
步骤1:将铝盐和葡萄糖按质量比2/5~3/5溶解于去离子水中,成无色透明溶液,溶液浓度为0.4mol/L;将溶液密封于高压反应釜,反应釜内胆填充度为60%-80%,升温至160℃~180℃,保温16h~24h,反应结束后自然冷却至室温得到沉淀产物;
步骤2:将沉淀产物置于马弗炉中,氩气气氛保护,升温至900~1200℃,保温2~4h后随炉冷却,得到Al2O3C核壳结构粉体;
步骤3:将α-Al2O3粉和烧结助剂混合球磨10-24h后得到浆料,其中烧结助剂为两者总量的5~10%的质量分数;将超声分散处理后的Al2O3C粉体加入浆料中,其中Al2O3C粉体为两者总量的1~10%的质量分数;机械搅拌5~10h,制得预混料;将预混料干燥后研磨,置于模具中通过轴向模压和冷等静压压制成型,得到陶瓷坯体,其中轴向模压和冷等静压的压力分别为10-20MPa和200-250MPa;
步骤4:将陶瓷坯体置于马弗炉中,升温速度2~5℃/min,烧结温度为1400~1500℃,保温时间为2-5h,保温结束后自然冷却至室温,得到闭孔型多孔氧化铝隔热陶瓷。
所述铝盐为Al(NO3)3·9H2O或Al2(SO4)3·18H2O。
所述烧结助剂为氧化镁或氧化镁和氧化钛的混合物。
所述氧化镁的粒径为0.1~5μm。
所述氧化钛为金红石型物相,粒径为0.1-1μm。
所述α-Al2O3的氧化铝粉的粒径为0.1-5μm。
有益效果
本发明提出的一种闭孔型多孔氧化铝隔热陶瓷的制备方法,将水热合成的核壳结构粉体作为造孔剂添加到氧化铝浆料中制备氧化铝陶瓷,在陶瓷坯体的烧结过程中,内核碳球氧化除掉,外壳氧化铝层与氧化铝基体烧结致密,并与烧结助剂形成镁铝尖晶石,钉扎于晶界。制得的氧化铝陶瓷成功引入了闭气孔,其闭气孔率达10%-60%,开口气孔率低于5%,陶瓷热导率达到0.1W/(m·K),使用温度超过1400℃。
本发明的有益效果为:(1)通过在氧化铝浆料中引入核壳结构造孔剂,达到了在氧化铝陶瓷产生闭气孔的目的,为制备闭孔型多孔陶瓷提供了新思路;(2)与发泡法制备闭孔陶瓷相比,该方法无发泡剂、催化剂、分散剂等有机添加剂,安全环保,工艺简单;(3)所制得多孔氧化铝陶瓷中闭孔气孔率可控,最高达60%,且开气孔率远低于目前公开的相关隔热陶瓷的开气孔率;(4)陶瓷制品的隔热性能优异,达到高温隔热陶瓷的使用要求。
附图说明
图1是本发明方法的工艺流程图
图2是实施例1中Al2O3C粉体(前驱体A)的TEM照片
图3(a)是实施例1中所制备氧化铝陶瓷的断面SEM照片,图3(b)是陶瓷闭孔结构SEM照片
图4是实施例1中氧化铝陶瓷的XRD图谱
具体实施方式
现结合实施例、附图对本发明作进一步描述:
实施实例1:
(1)将4g的Al(NO3)3·9H2O和10g的葡萄糖溶解于140mL去离子水中,搅拌至无色透明溶液,置于200mL水热反应釜中。
(2)将三组密封后的水热反应釜置于鼓风干燥箱中,升温至160℃,保温时间分别为16h、20h和24h,反应结束后自然冷却至室温。
(3)打开水热反应釜,产物通过抽滤收集,然后分别用去离子水和无水乙醇洗涤数次;将收集沉淀于干燥箱中60℃干燥,将黑色沉淀置于马弗炉中900℃热处理2h(氩气气氛),得前驱体A。前驱体形貌如图2所示。
(4)将Al2O3粉和MgO按质量比9:1在无水乙醇中混合后置于行星式球磨机球磨10h,制得Al2O3浆料B。
(5)将前驱体A置于浆料B中(质量比A:B=1:99),超声30min后机械搅拌5h,60℃干燥制得预混料;将预混料研磨后置于40mm×30mm模具中,之后于模压机下20MPa保压3min,得到陶瓷坯体。
(6)将陶瓷坯体置于马弗炉中,升温至500℃,保温2h,除掉碳,然后升温至1500℃,保温2h,保温结束后自然冷却至室温,制得多孔氧化铝陶瓷;图3为陶瓷断面形貌,图4为陶瓷制品物相,有氧化铝和镁铝尖晶石两相。
将试样加工成Φ=12.6mm的圆片测量其热导率及平均密度。测得多孔氧化铝陶瓷的平均密度为3.33g/cm3,闭气孔率为14.2%,开气孔率为1%,试样在1000℃下热导率为3.9W/(m·K)。
实施实例2:
(1)将3g的Al2(SO4)3·18H2O和5g的葡萄糖溶解于80mL去离子水中,搅拌至无色透明溶液,置于100mL水热反应釜中。
(2)将三组密封后的水热反应釜置于鼓风干燥箱中,升温至180℃,保温时间分别为16h、20h和24h,反应结束后自然冷却至室温。
(3)打开水热反应釜,产物通过抽滤收集,然后分别用去离子水和无水乙醇洗涤数次;将收集产物于干燥箱中60℃干燥得到前驱体A。
(4)将Al2O3粉、MgO和TiO2按质量比95:4:1在无水乙醇中混合后置于行星式球磨机球磨10h,制得Al2O3浆料B。
(5)将前驱体A置于浆料B中(质量比A:B=1:99),超声30min后机械搅拌5h,60℃干燥制得预混料;将预混料研磨后置于40mm×30mm模具中,之后于模压机下20MPa保压3min,得到陶瓷坯体。
(6)将陶瓷坯体置于马弗炉中,升温至500℃,保温2h,除掉碳,然后升温至1450℃,保温3h,保温结束后自然冷却至室温,制得多孔氧化铝陶瓷。
实施实例3:
(1)将2g的Al(NO3)3·9H2O和5g的葡萄糖溶解于60mL去离子水中,搅拌至无色透明溶液,置于100mL水热反应釜中。
(2)将密封后的水热反应釜置于鼓风干燥箱中,升温至160℃,保温24h,反应结束后自然冷却至室温。
(3)打开水热反应釜,产物通过抽滤收集,然后分别用去离子水和无水乙醇洗涤数次;将收集产物于干燥箱中60℃干燥得到黑色沉淀;将黑色沉淀置于马弗炉中1200℃热处理2h(氩气气氛),得前驱体A。
(4)将Al2O3粉、MgO和TiO2按质量比90:9:1在无水乙醇中混合后置于行星式球磨机球磨10h,制得Al2O3浆料B。
(5)将前驱体A置于浆料B中(质量比A:B=10:90),超声30min后机械搅拌5h,60℃干燥制得预混料;将预混料研磨后置于40mm×30mm模具中,于模压机下10MPa保压3min,之后冷等静压200MPa,保压2min,得到陶瓷坯体。
(6)将陶瓷坯体置于马弗炉中,升温至500℃,保温2h,除掉碳,然后升温至1400℃,保温5h,保温结束后自然冷却至室温,制得多孔氧化铝陶瓷。
将试样加工成Φ=12.6mm的圆片测量其热导率及气孔率。测得多孔氧化铝陶瓷的闭气孔率为58%,开气孔率为1.7%,试样热导率为0.1W/(m·K)。
实施实例4:
(1)将2g的Al(NO3)3·9H2O和5g的葡萄糖溶解于70mL去离子水中,搅拌至无色透明溶液,置于100mL水热反应釜中。
(2)将密封后的水热反应釜置于鼓风干燥箱中,升温至180℃,保温24h,反应结束后自然冷却至室温。
(3)打开水热反应釜,产物通过抽滤收集,然后分别用去离子水和无水乙醇洗涤数次;将收集产物于干燥箱中60℃干燥得到前驱体A。
(4)将Al2O3粉、MgO和TiO2按质量比90:9:1在无水乙醇中混合后置于行星式球磨机球磨10h,制得Al2O3浆料B。
(5)将前驱体A置于浆料B中(质量比A:B=1:99),超声分散1h,60℃干燥制得预混料;将预混料研磨后置于40mm×30mm模具中,于模压机下10MPa保压3min,冷等静压250MPa保压2min,得到陶瓷坯体。
(6)将陶瓷坯体置于马弗炉中,升温至1500℃,保温3h,保温结束后自然冷却至室温,制得多孔氧化铝陶瓷。

Claims (6)

1.一种闭孔型多孔氧化铝隔热陶瓷的制备方法,其特征在于步骤如下:
步骤1:将铝盐和葡萄糖按质量比2/5~3/5溶解于去离子水中,成无色透明溶液,溶液浓度为0.4mol/L;将溶液密封于高压反应釜,反应釜内胆填充度为60%-80%,升温至160℃~180℃,保温16h~24h,反应结束后自然冷却至室温得到沉淀产物;
步骤2:将沉淀产物置于马弗炉中,氩气气氛保护,升温至900~1200℃,保温2~4h后随炉冷却,得到Al2O3C核壳结构粉体;
步骤3:将α-Al2O3粉和烧结助剂混合球磨10-24h后得到浆料,其中烧结助剂为两者总量的5~10%的质量分数;将超声分散处理后的Al2O3C粉体加入浆料中,其中Al2O3C粉体为两者总量的1~10%的质量分数;机械搅拌5~10h,制得预混料;将预混料干燥后研磨,置于模具中通过轴向模压和冷等静压压制成型,得到陶瓷坯体,其中轴向模压和冷等静压的压力分别为10-20MPa和200-250MPa;
步骤4:将陶瓷坯体置于马弗炉中,升温速度2~5℃/min,烧结温度为1400~1500℃,保温时间为2-5h,保温结束后自然冷却至室温,得到闭孔型多孔氧化铝隔热陶瓷。
2.根据权利要求1所述闭孔型多孔氧化铝隔热陶瓷的制备方法,其特征在于:所述铝盐为Al(NO3)3·9H2O或Al2(SO4)3·18H2O。
3.根据权利要求1所述闭孔型多孔氧化铝隔热陶瓷的制备方法,其特征在于:所述烧结助剂为氧化镁或氧化镁和氧化钛的混合物。
4.根据权利要求3所述闭孔型多孔氧化铝隔热陶瓷的制备方法,其特征在于:所述氧化镁的粒径为0.1~5μm。
5.根据权利要求3所述闭孔型多孔氧化铝隔热陶瓷的制备方法,其特征在于:所述氧化钛为金红石型物相,粒径为0.1-1μm。
6.根据权利要求1所述闭孔型多孔氧化铝隔热陶瓷的制备方法,其特征在于:所述α-Al2O3的氧化铝粉的粒径为0.1-5μm。
CN201410627847.2A 2014-11-10 2014-11-10 一种闭孔型多孔氧化铝隔热陶瓷的制备方法 Active CN104446635B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410627847.2A CN104446635B (zh) 2014-11-10 2014-11-10 一种闭孔型多孔氧化铝隔热陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410627847.2A CN104446635B (zh) 2014-11-10 2014-11-10 一种闭孔型多孔氧化铝隔热陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN104446635A true CN104446635A (zh) 2015-03-25
CN104446635B CN104446635B (zh) 2016-05-18

Family

ID=52893479

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410627847.2A Active CN104446635B (zh) 2014-11-10 2014-11-10 一种闭孔型多孔氧化铝隔热陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN104446635B (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105481355A (zh) * 2015-12-25 2016-04-13 江苏和腾热工装备科技有限公司 一种氧化锆纤维增强的氧化铝闭孔泡沫陶瓷及其制备方法
CN105541306A (zh) * 2015-12-25 2016-05-04 江苏和腾热工装备科技有限公司 一种氧化铝纤维增强的氧化铝闭孔泡沫陶瓷及其制备方法
CN105669241A (zh) * 2015-12-29 2016-06-15 西北工业大学 闭孔结构轻质耐火刚玉的制备方法
CN105693265A (zh) * 2016-01-11 2016-06-22 中国计量学院 一种制备氧化铝基多孔陶瓷膜的方法
CN108383551A (zh) * 2018-04-17 2018-08-10 山东理工大学 一种氧化铝-磷酸铝层状保温陶瓷的制备方法
CN108892484A (zh) * 2018-06-27 2018-11-27 合肥尚强电气科技有限公司 一种灵敏度提升的光敏电阻
CN109053161A (zh) * 2018-08-31 2018-12-21 武汉科技大学 一种直接发泡Al2O3-AlN多孔复合材料及其制备方法
CN110997598A (zh) * 2017-08-14 2020-04-10 日产自动车株式会社 隔热部件和其制造方法
CN112939585A (zh) * 2021-04-09 2021-06-11 湖北中烟工业有限责任公司 一种Al2O3多孔陶瓷的制备方法及应用
CN112979307A (zh) * 2021-04-06 2021-06-18 济南大学 钛酸铝陶瓷前体料和钛酸铝致密陶瓷及其制造方法
CN113105218A (zh) * 2021-05-28 2021-07-13 武汉科技大学 一种氧化铝陶瓷材料及其制备方法
CN113149621A (zh) * 2021-05-28 2021-07-23 武汉科技大学 一种节能型钢包工作衬浇注料及其制备方法
CN113213898A (zh) * 2021-05-28 2021-08-06 武汉科技大学 一种低导热烧结刚玉耐火骨料及其制备方法
CN113233917A (zh) * 2021-05-28 2021-08-10 武汉科技大学 一种纳米核壳结构成孔剂及其制备方法
CN115385671A (zh) * 2022-09-19 2022-11-25 萍乡学院 一种轻质陶瓷球及其制备方法
CN116375495A (zh) * 2023-04-20 2023-07-04 宜兴市凯宏陶瓷有限公司 一种黑色微孔透气抗静电陶瓷板的制备方法
CN116496101A (zh) * 2023-04-24 2023-07-28 武汉科技大学 一种低导热微闭孔富铝尖晶石材料及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2732108C2 (ru) * 2018-11-29 2020-09-11 Общество с ограниченной ответственностью "Газпром трансгаз Ухта" Способ получения пористого керамического материала с высокой стойкостью к воздействию температуры и давления в агрессивных кислотных и щелочных средах

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101734909A (zh) * 2008-11-27 2010-06-16 天津工业大学 一种高孔隙率氧化铝多孔陶瓷的制备方法
CN101792327A (zh) * 2010-02-09 2010-08-04 武汉理工大学 一种氧化铝基多孔陶瓷材料的制备方法
CN103606660A (zh) * 2013-11-06 2014-02-26 中国科学院化学研究所 氧化铝包覆型颗粒及其制备方法与应用
CN103936400A (zh) * 2014-03-19 2014-07-23 湖北工业大学 一种氧化铝基多孔陶瓷保温材料及制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101734909A (zh) * 2008-11-27 2010-06-16 天津工业大学 一种高孔隙率氧化铝多孔陶瓷的制备方法
CN101792327A (zh) * 2010-02-09 2010-08-04 武汉理工大学 一种氧化铝基多孔陶瓷材料的制备方法
CN103606660A (zh) * 2013-11-06 2014-02-26 中国科学院化学研究所 氧化铝包覆型颗粒及其制备方法与应用
CN103936400A (zh) * 2014-03-19 2014-07-23 湖北工业大学 一种氧化铝基多孔陶瓷保温材料及制备方法

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105541306A (zh) * 2015-12-25 2016-05-04 江苏和腾热工装备科技有限公司 一种氧化铝纤维增强的氧化铝闭孔泡沫陶瓷及其制备方法
CN105481355B (zh) * 2015-12-25 2018-01-23 江苏和腾热工装备科技有限公司 一种氧化锆纤维增强的氧化铝闭孔泡沫陶瓷及其制备方法
CN105481355A (zh) * 2015-12-25 2016-04-13 江苏和腾热工装备科技有限公司 一种氧化锆纤维增强的氧化铝闭孔泡沫陶瓷及其制备方法
CN105669241A (zh) * 2015-12-29 2016-06-15 西北工业大学 闭孔结构轻质耐火刚玉的制备方法
CN105693265A (zh) * 2016-01-11 2016-06-22 中国计量学院 一种制备氧化铝基多孔陶瓷膜的方法
CN105693265B (zh) * 2016-01-11 2018-04-20 中国计量学院 一种制备氧化铝基多孔陶瓷膜的方法
CN110997598A (zh) * 2017-08-14 2020-04-10 日产自动车株式会社 隔热部件和其制造方法
CN108383551A (zh) * 2018-04-17 2018-08-10 山东理工大学 一种氧化铝-磷酸铝层状保温陶瓷的制备方法
CN108892484A (zh) * 2018-06-27 2018-11-27 合肥尚强电气科技有限公司 一种灵敏度提升的光敏电阻
CN109053161A (zh) * 2018-08-31 2018-12-21 武汉科技大学 一种直接发泡Al2O3-AlN多孔复合材料及其制备方法
CN112979307A (zh) * 2021-04-06 2021-06-18 济南大学 钛酸铝陶瓷前体料和钛酸铝致密陶瓷及其制造方法
CN112939585A (zh) * 2021-04-09 2021-06-11 湖北中烟工业有限责任公司 一种Al2O3多孔陶瓷的制备方法及应用
CN112939585B (zh) * 2021-04-09 2022-03-04 湖北中烟工业有限责任公司 一种Al2O3多孔陶瓷的制备方法及应用
CN113105218A (zh) * 2021-05-28 2021-07-13 武汉科技大学 一种氧化铝陶瓷材料及其制备方法
CN113149621A (zh) * 2021-05-28 2021-07-23 武汉科技大学 一种节能型钢包工作衬浇注料及其制备方法
CN113213898A (zh) * 2021-05-28 2021-08-06 武汉科技大学 一种低导热烧结刚玉耐火骨料及其制备方法
CN113233917A (zh) * 2021-05-28 2021-08-10 武汉科技大学 一种纳米核壳结构成孔剂及其制备方法
CN115385671A (zh) * 2022-09-19 2022-11-25 萍乡学院 一种轻质陶瓷球及其制备方法
CN115385671B (zh) * 2022-09-19 2023-08-11 萍乡学院 一种轻质陶瓷球及其制备方法
CN116375495A (zh) * 2023-04-20 2023-07-04 宜兴市凯宏陶瓷有限公司 一种黑色微孔透气抗静电陶瓷板的制备方法
CN116375495B (zh) * 2023-04-20 2024-05-03 宜兴市凯宏陶瓷有限公司 一种黑色透气抗静电陶瓷板的制备方法
CN116496101A (zh) * 2023-04-24 2023-07-28 武汉科技大学 一种低导热微闭孔富铝尖晶石材料及其制备方法

Also Published As

Publication number Publication date
CN104446635B (zh) 2016-05-18

Similar Documents

Publication Publication Date Title
CN104446635B (zh) 一种闭孔型多孔氧化铝隔热陶瓷的制备方法
CN101037345B (zh) 凝胶冷冻干燥法制备莫来石多孔陶瓷的方法
CN103145438B (zh) 仿生梯度多孔陶瓷材料的制备方法
CN101759430B (zh) 一种制备多孔莫来石的方法
CN107285787A (zh) 一种轻量化刚玉‑镁铝尖晶石耐火材料及其制备方法
CN104402441B (zh) 一种低温快速烧结制备碳化硼陶瓷材料的方法
CN101215183A (zh) 一种多孔氮化硅陶瓷的制备方法
CN103467072B (zh) 一种轻质微孔刚玉陶瓷的制备方法
CN101747075A (zh) 多孔导电max相陶瓷及其制备方法和用途
CN110981528B (zh) 一种定向多孔氮化铝陶瓷及其快速制备方法
CN107602127B (zh) SiC空心球及其制备方法
CN105967668A (zh) 一种基于稻壳堇青石-莫来石多孔陶瓷的制备方法
Zhang et al. Foam gel-casting preparation of SiC bonded ZrB2 porous ceramics for high-performance thermal insulation
CN103833383A (zh) 一种闭孔结构的刚玉-镁铝尖晶石质耐火骨料及制备方法
CN112759418B (zh) 氮化硅晶须增强的刚玉多孔陶瓷过滤器及其制备方法
CN105439620A (zh) 放电等离子烧结制备多孔氮化硅的方法
CN105084364B (zh) 一种多孔碳化硅球形粉末的制备工艺
CN107445594B (zh) 纳米孔径的多孔方镁石-镁橄榄石陶瓷材料及其制备方法
CN101805201B (zh) 一种高抗热震性多孔碳化硅陶瓷的制备方法
CN108083811B (zh) 一种双梯度多孔陶瓷材料及其制备方法
CN103804010A (zh) 一种多孔赛隆复相陶瓷及其制备方法
Higashiwada et al. Effect of additives on the pore evolution of zirconia based ceramic foams after sintering
CN104418608A (zh) 碳化硅多孔陶瓷的低温烧成方法
CN108409308B (zh) 一种梯度组成微孔刚玉-尖晶石材料及其制备方法
CN108911715B (zh) 一种具有坚硬致密外壳的闭孔泡沫陶瓷及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant