CN116496101A - 一种低导热微闭孔富铝尖晶石材料及其制备方法 - Google Patents

一种低导热微闭孔富铝尖晶石材料及其制备方法 Download PDF

Info

Publication number
CN116496101A
CN116496101A CN202310446931.3A CN202310446931A CN116496101A CN 116496101 A CN116496101 A CN 116496101A CN 202310446931 A CN202310446931 A CN 202310446931A CN 116496101 A CN116496101 A CN 116496101A
Authority
CN
China
Prior art keywords
parts
mass
heat
aluminum
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310446931.3A
Other languages
English (en)
Other versions
CN116496101B (zh
Inventor
付绿平
齐莘迪
张义博
唐少鹏
顾华志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Science and Engineering WUSE
Original Assignee
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Science and Engineering WUSE filed Critical Wuhan University of Science and Engineering WUSE
Priority to CN202310446931.3A priority Critical patent/CN116496101B/zh
Publication of CN116496101A publication Critical patent/CN116496101A/zh
Application granted granted Critical
Publication of CN116496101B publication Critical patent/CN116496101B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • C04B35/443Magnesium aluminate spinel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63488Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种低导热微闭孔富铝尖晶石材料及其制备方法,涉及耐火材料技术领域。所述材料制备方法包括将80~90质量份铝源、10~20质量份镁源、0.3~2质量份纳米添加剂和5~20质量份淀粉造孔剂混合,加入60~80质量份的水,混匀,烘干,球磨;然后在混合粉体中加入1~3质量份的粘结剂,混匀,机压成型;于80~110℃条件下固化干燥12~24小时,在1700~1900℃保温1~6小时,自然冷却,即得。本发明制备方法工艺简单、成本低廉、适合工业化生产,所得低导热微闭孔富铝尖晶石材料呈现单一富铝尖晶石相,具有显气孔率低、闭口气孔率较高、孔径较小、热导率较低、抗熔渣性能好及热震稳定性能较强的特点。

Description

一种低导热微闭孔富铝尖晶石材料及其制备方法
技术领域
本发明涉及耐火材料技术领域,更具体的说是涉及一种低导热微闭孔富铝尖晶石材料及其制备方法。
背景技术
耐火材料是保证高温工业运行和技术发展必不可少的基础材料,对高温过程节能减排具有关键作用,随着科技发展,现代高温工业亟需提供具有隔热、长寿、高效、经济、安全的优质耐火材料作为保障。因此,开发低导热长寿型高品质耐火材料,支撑高温工业绿色低碳高质量发展,迫在眉睫。
“重质耐火材料轻量化”是提升高温炉衬隔热性能的重要途径。通过引入具有一定气孔率的轻量耐火骨料代替传统致密骨料,可以降低耐火材料的热容量和导热系数,达到保温隔热、节能降耗的目的。Al2O3-MgO质耐火材料是耐火材料中重要的品种,被广泛地应用于冶金、建材、石化等行业。其中,当MgO/Al2O3比小于1时(即富铝尖晶石),材料中存在大量Mg2+离子空位,能吸收大量的金属阳离子(Fe3+、Fe2+、Mn2+等),且易于渣反应生成CA6、CA2等矿物相,从而增大渣的粘度,抑制渣的渗透,适合由于钢包内衬浇注料、透气转、座砖等部位。因此,制备可在工作层使用的低导热微闭孔富铝尖晶石材料有着良好的应用前景。
目前,低导热微闭孔富铝尖晶石材料制备的主要难点在于两个方面。第一,富铝镁铝尖晶石的形成通常依赖于较高活性的原料、高温、高压等环境。目前制备耐火材料时采用的原料活性通常较低,导致高温下反应不充分、形成的固溶体晶格不稳固,冷却过程中较易发生脱溶,最终成为复相材料。“一种富铝尖晶石及其制备方法”(CN 114685171A)专利技术,将活性氧化铝、镁源、金属卤化物及氧化锆分散混合后搅拌成浆料,将浆料喷雾干燥后在1000~1500℃下煅烧7~10h制备得到富铝尖晶石,但流程复杂成本较高,且得到的富铝尖晶石为尖晶石-刚玉复相。“一种高纯度富铝铝镁尖晶石的制备方法”(CN114804168A)专利技术,以γ相氧化铝细粉和结晶氧化镁细粉为原料经过预热后,利用富含二氧化碳的水幕喷淋制得浆料并压滤成滤饼,经过热处理后自然冷却得到富铝尖晶石,但采用工艺较复杂,生产成本高,不适用于耐火材料的生产。第二,材料烧结过程中,Al2O3、MgO组分反应会伴随较大的体积变化,如何减小体积变化带来的不利影响,并形成微-纳米尺度闭合孔结构。“纳米孔径的多孔刚玉-镁铝尖晶石陶瓷及其制备方法”(ZL201710632852.6)专利技术以氢氧化铝细粉、氯化镁溶液和菱镁矿微粉为原料,采用原位分解法制备得到了纳米孔径的多孔刚玉-镁铝尖晶石陶瓷,但是显气孔率过大,对于材料抗熔渣性能不利。
因此,如何提供一种工艺简单、显气孔率低的低导热微闭孔富铝尖晶石材料是本领域技术人员亟需解决的问题。
发明内容
本发明旨在克服现有技术缺陷,任务是提供一种低导热微闭孔富铝尖晶石材料的制备方法。该制备方法工艺简单、成本低廉、适合工业化生产,用该方法制备的低导热微闭孔富铝尖晶石材料呈现单一富铝尖晶石相,显气孔率低、闭口气孔率较高、孔径较小、热导率较低、抗熔渣性能好及热震稳定性能较强。为了实现上述目的,本发明采用如下技术方案:
一种低导热微闭孔富铝尖晶石材料,包括以下质量份的原料:80~90份铝源、10~20份镁源、0.3~2份纳米添加剂、5~20份淀粉造孔剂、1~3份粘结剂和60~80水;
其中,所述铝源为工业氧化铝、活性α-Al2O3和γ-Al2O3中的一种或多种;
所述镁源为菱镁矿、镁砂和水镁石中的一种或多种;
所述纳米添加剂为纳米氧化锆、纳米氧化锌和纳米氧化钛中的一种或多种;
所述粘结剂为聚乙二醇和聚乙烯醇中的一种或多种。
作为优选的技术方案,所述铝源的Al2O3含量>99wt%、粒径D50为1~10μm;所述镁源粒径D50为3~10μm;所述淀粉造孔剂的粒径D50为10~40μm;所述纳米添加剂粒径D50为20~100nm。
本发明的另一目的是,提供上述低导热微闭孔富铝尖晶石材料的制备方法,包括以下步骤:
S1:将80~90质量份铝源、10~20质量份镁源、0.3~2质量份纳米添加剂和5~20质量份淀粉造孔剂混合,加入60~80质量份的水,混匀,烘干,球磨,得混合粉体;
S2:在混合粉体中加入1~3质量份的粘结剂,混匀,机压成型;
S3:于80~110℃条件下固化干燥12~24小时,在1700~1900℃保温1~6小时,自然冷却,制得低导热微闭孔富铝尖晶石材料。
作为优选的技术方案,S1所述烘干的温度为110℃。
作为优选的技术方案,S2所述机压成型的压强为50~150MPa。
本发明的又一目的是,提供一种权利要求1或2所述低导热微闭孔富铝尖晶石材料或权利要求3-5任一所述制备方法制备的低导热微闭孔富铝尖晶石材料的应用。
作为优选的技术方案,所述应用为下列之一:
A制备耐火材料;
B制备隔热材料。
经由上述的技术方案可知,本发明与现有技术相比具有如下积极效果:
(1)本发明引入纳米添加剂,一方面,与尖晶石置换固溶产生阳离子空位,提高烧结活性与固溶程度,此外,纳米添加剂钉扎作用可以防止富铝尖晶石在冷却过程中发生脱溶而转变为复相材料,从而稳固富铝尖晶石晶格,获得单一富铝尖晶石相;另一方面,在烧结过程中,在纳米添加剂对颈部应力的促进作用下,使得晶界快速扩散,并将气孔封闭在晶粒内部,形成闭口气孔。在两方面作用下,获得显气孔率低、闭口气孔率高、具有单一富铝尖晶石相材料。
(2)本发明所制备的低导热微闭孔富铝尖晶石材料中呈现单一富铝尖晶石相,其本质是一种固溶体,固溶体中溶剂与溶质的性质不一致,导致晶体结构变化,声子散射程度增大,声子自由程减小,也会降低材料的导热系数。此外,材料中含有大量微-纳米尺度闭合孔结构,也可以降低材料导热系数。因此,本发明所制备的材料具有导热系数低的特点。
(3)由于微-纳米尺度闭合孔与外界接触面积较小以及尖晶石可以将大量的金属阳离子(Fe3+、Fe2+、Mn2+等)吸收到结构中形成广泛固溶体的特性,因此保证了材料具有优良的抗熔渣性能;此外,细小且分布均匀的闭口气孔能够抵消高温下材料热膨胀带来的体积效应,且单一相的富铝尖晶石使得材料热膨胀系数不匹配得到缓解,从而提升材料的热震稳定性能。
(4)本发明所用原料均为常见原料,来源广泛,且价格低廉;采用一次成型、烧成的工艺制备低导热微闭孔富铝尖晶石材料,整体生产流程简单,生产效率高,生产过程中对设备的要求较低;具有工艺简单、成本低廉、适合工业化生产的特点。
本发明所制备的低导热微闭孔富铝尖晶石材料经检测:体积密度为3.1~3.35g/cm3,显气孔率为1.4~5.6%,闭气孔率为7.5~12.8%,平均孔径为2.3~4.8μm,800℃下导热系数为2.6~3.2W/(m·K)。
因此,本发明所提供的低导热微闭孔富铝尖晶石材料制备方法工艺简单、成本低廉、适合工业化生产,用该方法制备的低导热微闭孔富铝尖晶石材料呈现单一富铝尖晶石相,具有显气孔率低、闭口气孔率较高、孔径较小、热导率较低、抗熔渣性能好及热震稳定性能较强的特点。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1是本发明实施例1制备的一种低导热微闭孔富铝尖晶石材料的XRD图谱;
图2是本发明实施例1制备的一种低导热微闭孔富铝尖晶石材料的二次电子图;
图3是本发明实施例4制备的另一种低导热微闭孔富铝尖晶石材料的二次电子图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例公开了一种低导热微闭孔富铝尖晶石材料的制备方法,所用原料均为市售可得,对其来源不做具体限定。所用方法如无特别提及,均为常规方法,在此不再一一赘述。本发明实施例所涉及铝源的粒径D50为1~10μm,所述镁源的粒径D50为3~10μm,所述淀粉造孔剂的粒径D50为10~40μm,所述纳米添加剂粒径D50为20~100nm。
实施例1
一种低导热微闭孔富铝尖晶石及其制备方法:
步骤一、将90质量份的工业氧化铝微粉、10质量份的菱镁矿微粉、0.5质量份的纳米氧化锆以及10质量份的淀粉添加剂混合,加入70质量份的水,经30分钟混匀,110℃条件下烘干,30分钟球磨,得混合粉体;
步骤二、在混合粉体中加入1质量份的聚乙烯醇,混匀,在100MPa下机压成型;
步骤三、于110℃条件下固化干燥12小时,在1780℃保温3小时,自然冷却,制得本实施例的低导热微闭孔富铝尖晶石;
本实施例所制备的低导热微闭孔富铝尖晶石经检测:体积密度为3.25g/cm3;显气孔率为3.2%;闭气孔率为11.8%;平均孔径为3.8μm;800℃时导热系数为2.9W/(m·K)。
实施例2
一种低导热微闭孔富铝尖晶石及其制备方法:
步骤一、将85质量份的活性α-Al2O3微粉、15质量份的镁砂微粉、0.3质量份的纳米氧化钛以及10质量份的淀粉添加剂混合,加入70质量份的水,经30分钟混匀,110℃条件下烘干,30分钟球磨,得混合粉体;
步骤二、在混合粉体中加入1质量份的聚乙烯醇,混匀,在150MPa下机压成型;
步骤三、于110℃下干燥固化12小时,在1750℃保温3小时,自然冷却,制得本实施例的低导热微闭孔富铝尖晶石。
本实施例所制备的低导热微闭孔富铝尖晶石经检测:体积密度为3.20g/cm3;显气孔率为4.6%;闭气孔率为10.2%;平均孔径为4.8μm;800℃时导热系数为3.1W/(m·K)。
实施例3
一种低导热微闭孔富铝尖晶石及其制备方法:
步骤一、将90质量份的工业氧化铝微粉和γ-Al2O3微粉的混合粉体、10质量份的水镁石微粉、1.5质量份的纳米氧化锆和纳米氧化钛的混合粉体、以及15质量份的淀粉添加剂混合,加入80质量份的水,经30分钟混匀,110℃条件下烘干,30分钟球磨,得混合粉体;
步骤二、在混合粉体中加入1质量份的聚乙二醇,混匀,在120MPa下机压成型;并在80℃下干燥固化;
步骤三、于110℃下干燥固化12小时,在1800℃保温3小时,自然冷却,制得本实施例的低导热微闭孔富铝尖晶石。
本实施例所制备的本实施例所制备的低导热微闭孔富铝尖晶石经检测:体积密度为3.26g/cm3;显气孔率为1.8%;闭气孔率为12.8%;平均孔径为2.3μm;800℃时导热系数为2.8W/(m·K)。
实施例4
一种低导热微闭孔富铝尖晶石及其制备方法:
步骤一、将80质量份的工业氧化铝微粉、20质量份的水镁石微粉和菱镁矿微粉混合粉体、1质量份的纳米氧化锌以及5质量份的淀粉添加剂混合,加入60质量份的水,经30分钟混匀,110℃条件下烘干,30分钟球磨,得混合粉体;
步骤二、在混合粉体中加入3质量份的聚乙烯醇,混匀,在150MPa下机压成型;
步骤三、于80℃下干燥固化24小时,在1800℃保温2小时,自然冷却,制得本实施例的低导热微闭孔富铝尖晶石。
本实施例所制备的低导热微闭孔富铝尖晶石经检测:体积密度为3.35g/cm3;显气孔率为1.4%;闭气孔率为7.5%;平均孔径为2.9μm;800℃时导热系数为3.2W/(m·K)。
实施例5
一种低导热微闭孔富铝尖晶石及其制备方法:
步骤一、将90质量份的工业氧化铝微粉和活性α-Al2O3微粉及γ-Al2O3微粉的混合粉体、10质量份的水镁石微粉和镁砂微粉及菱镁矿微粉混合粉体、2质量份的纳米氧化锆和纳米氧化钛及纳米氧化锌的混合粉体、以及20质量份的淀粉添加剂混合,加入70质量份的水,经30分钟混匀,110℃条件下烘干,30分钟球磨,得混合粉体;
步骤二、在混合粉体中加入3质量份的聚乙二醇,混匀,在100MPa下机压成型;
步骤三、于80℃下干燥固化24小时,在1700℃保温6小时,自然冷却,制得本实施例的低导热微闭孔富铝尖晶石。
本实施例所制备的微米闭孔富铝尖晶石经检测:体积密度为3.1g/cm3;显气孔率为5.6%;闭气孔率为12.0%;平均孔径为3.1μm;800℃时导热系数为2.6W/(m·K)。
实施例6
一种低导热微闭孔富铝尖晶石及其制备方法:
步骤一、将85质量份的γ-Al2O3微粉、15质量份的菱镁矿微粉、0.75质量份的纳米氧化锆以及10质量份的淀粉添加剂混合,加入60质量份的水,经30分钟混匀,110℃条件下烘干,30分钟球磨,得混合粉体;
步骤二、在混合粉体中加入1.5质量份的聚乙烯醇,混匀,在120MPa下机压成型;
步骤三、于110℃下干燥固化24小时,在1900℃保温1小时,自然冷却,制得本实施例的低导热微闭孔富铝尖晶石;
本实施例所制备的低导热微闭孔富铝尖晶石经检测:体积密度为3.18g/cm3;显气孔率为2.2%;闭气孔率为10.4%;平均孔径为2.6μm;800℃时导热系数为2.8W/(m·K)。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (7)

1.一种低导热微闭孔富铝尖晶石材料,其特征在于,包括以下质量份的原料:80~90份铝源、10~20份镁源、0.3~2份纳米添加剂、5~20份淀粉造孔剂、1~3份粘结剂和60~80水;
其中,所述铝源为工业氧化铝、活性α-Al2O3和γ-Al2O3中的一种或多种;
所述镁源为菱镁矿、镁砂和水镁石中的一种或多种;
所述纳米添加剂为纳米氧化锆、纳米氧化锌和纳米氧化钛中的一种或多种;
所述粘结剂为聚乙二醇和聚乙烯醇中的一种或多种。
2.根据权利要求1所述低导热微闭孔富铝尖晶石材料,其特征在于,所述铝源的Al2O3含量>99wt%、粒径D50为1~10μm;所述镁源粒径D50为3~10μm;所述淀粉造孔剂的粒径D50为10~40μm;所述纳米添加剂粒径D50为20~100nm。
3.权利要求1或2所述低导热微闭孔富铝尖晶石材料的制备方法,其特征在于,包括以下步骤:
S1:将80~90质量份铝源、10~20质量份镁源、0.3~2质量份纳米添加剂和5~20质量份淀粉造孔剂混合,加入60~80质量份的水,混匀,烘干,球磨,得混合粉体;
S2:在混合粉体中加入1~3质量份的粘结剂,混匀,机压成型;
S3:于80~110℃条件下固化干燥12~24小时,在1700~1900℃保温1~6小时,自然冷却,制得低导热微闭孔富铝尖晶石材料。
4.根据权利要求3所述的低导热微闭孔富铝尖晶石材料的制备方法,其特征在于,S1所述烘干的温度为110℃。
5.根据权利要求3所述的低导热微闭孔富铝尖晶石材料的制备方法,其特征在于,S2所述机压成型的压强为50~150MPa。
6.一种权利要求1或2所述低导热微闭孔富铝尖晶石材料或权利要求3~5任一所述制备方法制备的低导热微闭孔富铝尖晶石材料的应用。
7.根据权利要求6所述的应用,其特征在于,所述应用为下列之一:
A制备耐火材料;
B制备隔热材料。
CN202310446931.3A 2023-04-24 2023-04-24 一种低导热微闭孔富铝尖晶石材料及其制备方法 Active CN116496101B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310446931.3A CN116496101B (zh) 2023-04-24 2023-04-24 一种低导热微闭孔富铝尖晶石材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310446931.3A CN116496101B (zh) 2023-04-24 2023-04-24 一种低导热微闭孔富铝尖晶石材料及其制备方法

Publications (2)

Publication Number Publication Date
CN116496101A true CN116496101A (zh) 2023-07-28
CN116496101B CN116496101B (zh) 2024-09-17

Family

ID=87319620

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310446931.3A Active CN116496101B (zh) 2023-04-24 2023-04-24 一种低导热微闭孔富铝尖晶石材料及其制备方法

Country Status (1)

Country Link
CN (1) CN116496101B (zh)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2210438A1 (de) * 1972-03-03 1973-09-06 Siemens Ag Hochporoeser und gasdurchlaessiger keramischer traeger, insbesondere fuer katalysatoren und verfahren zu seiner herstellung
JPH09301766A (ja) * 1996-05-09 1997-11-25 Oomura Taika Kk 多孔質スピネルクリンカー及びその製造方法
CN1915903A (zh) * 2006-07-06 2007-02-21 武汉科技大学 一种多孔尖晶石质陶瓷材料及其制备方法
CN102659398A (zh) * 2012-04-25 2012-09-12 中钢集团洛阳耐火材料研究院有限公司 一种制备轻质镁铝尖晶石隔热材料的方法
CN104446635A (zh) * 2014-11-10 2015-03-25 西北工业大学 一种闭孔型多孔氧化铝隔热陶瓷的制备方法
CN104446543A (zh) * 2014-11-26 2015-03-25 武汉科技大学 一种轻质微闭孔含镁刚玉耐火骨料及其制备方法
CN105237014A (zh) * 2015-11-06 2016-01-13 武汉科技大学 一种轻质微闭孔刚玉复相耐火材料及其制备方法
CN105565795A (zh) * 2015-12-18 2016-05-11 湖南科技大学 一种镁铝尖晶石质高级保温材料的制备方法
CN105645993A (zh) * 2016-01-14 2016-06-08 洛阳三睿宝纳米科技有限公司 一种纳米结构刚玉质泡沫陶瓷材料及其制备方法
CN105669241A (zh) * 2015-12-29 2016-06-15 西北工业大学 闭孔结构轻质耐火刚玉的制备方法
CN106396728A (zh) * 2016-09-08 2017-02-15 河南容安热工新材料有限公司 一种微孔尖晶石的湿法烧结生产方法
CN106946585A (zh) * 2017-03-23 2017-07-14 雷法技术控股有限公司 一种利用人工合成的微孔尖晶石制备低导热镁铝尖晶石耐火砖的方法
CN108409308A (zh) * 2018-04-18 2018-08-17 武汉科技大学 一种梯度组成微孔刚玉-尖晶石材料及其制备方法
CN110540434A (zh) * 2019-09-06 2019-12-06 辽宁科技大学 一种氧化锆溶胶增强镁铝尖晶石多孔陶瓷的制备方法
CN114685171A (zh) * 2022-02-23 2022-07-01 湖北斯曼新材料股份有限公司 一种富铝尖晶石及其制备方法
CN114933473A (zh) * 2022-06-20 2022-08-23 西安建筑科技大学 一种尖晶石-刚玉质轻量耐火材料及其制备方法

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1402206A (en) * 1972-03-03 1975-08-06 Siemens Ag Porous refractory support bodies
DE2210438A1 (de) * 1972-03-03 1973-09-06 Siemens Ag Hochporoeser und gasdurchlaessiger keramischer traeger, insbesondere fuer katalysatoren und verfahren zu seiner herstellung
JPH09301766A (ja) * 1996-05-09 1997-11-25 Oomura Taika Kk 多孔質スピネルクリンカー及びその製造方法
CN1915903A (zh) * 2006-07-06 2007-02-21 武汉科技大学 一种多孔尖晶石质陶瓷材料及其制备方法
CN102659398A (zh) * 2012-04-25 2012-09-12 中钢集团洛阳耐火材料研究院有限公司 一种制备轻质镁铝尖晶石隔热材料的方法
CN104446635A (zh) * 2014-11-10 2015-03-25 西北工业大学 一种闭孔型多孔氧化铝隔热陶瓷的制备方法
CN104446543A (zh) * 2014-11-26 2015-03-25 武汉科技大学 一种轻质微闭孔含镁刚玉耐火骨料及其制备方法
US20180319710A1 (en) * 2015-11-06 2018-11-08 Wuhan University Of Science And Technology Lightweight micro-closed-pore alumina composite refractory material and method preparing same
CN105237014A (zh) * 2015-11-06 2016-01-13 武汉科技大学 一种轻质微闭孔刚玉复相耐火材料及其制备方法
CN105565795A (zh) * 2015-12-18 2016-05-11 湖南科技大学 一种镁铝尖晶石质高级保温材料的制备方法
CN105669241A (zh) * 2015-12-29 2016-06-15 西北工业大学 闭孔结构轻质耐火刚玉的制备方法
CN105645993A (zh) * 2016-01-14 2016-06-08 洛阳三睿宝纳米科技有限公司 一种纳米结构刚玉质泡沫陶瓷材料及其制备方法
CN106396728A (zh) * 2016-09-08 2017-02-15 河南容安热工新材料有限公司 一种微孔尖晶石的湿法烧结生产方法
CN106946585A (zh) * 2017-03-23 2017-07-14 雷法技术控股有限公司 一种利用人工合成的微孔尖晶石制备低导热镁铝尖晶石耐火砖的方法
CN108409308A (zh) * 2018-04-18 2018-08-17 武汉科技大学 一种梯度组成微孔刚玉-尖晶石材料及其制备方法
CN110540434A (zh) * 2019-09-06 2019-12-06 辽宁科技大学 一种氧化锆溶胶增强镁铝尖晶石多孔陶瓷的制备方法
CN114685171A (zh) * 2022-02-23 2022-07-01 湖北斯曼新材料股份有限公司 一种富铝尖晶石及其制备方法
CN114933473A (zh) * 2022-06-20 2022-08-23 西安建筑科技大学 一种尖晶石-刚玉质轻量耐火材料及其制备方法

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
HONGDAN WU ET AL.: "Effect of alumina content on the crystal structure, lattice thermal expansion and thermal conductivity of aluminium-rich spinel solid solutions", MATERIALS CHEMISTRY AND PHYSICS, vol. 288, 8 June 2022 (2022-06-08), pages 1 - 6, XP087107640, DOI: 10.1016/j.matchemphys.2022.126366 *
LEI YUAN ET AL.: "Preparation and characterisation of closed-pore Al2O3-MgAl2O4 refractory aggregate utilising superplasticity", ADVANCES IN APPLIED CERAMICS, vol. 117, no. 3, 31 December 2018 (2018-12-31) *
XINDI QI ET AL.: "A novel low thermal conductivity refractory aggregate for high-temperature applications: Lightweight microporous alumina-rich spinel (Mg0.4Al2.4O4)", CERAMICS INTERNATIONAL, vol. 50, 10 November 2023 (2023-11-10) *
XINDI QI ET AL.: "Enhanced corrosion resistance by simultaneous refinement of pore structures and phase composition: A novel lightweight microporous alumina-rich spinel (Mg0.4Al2.4O4)", JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, vol. 44, 26 September 2023 (2023-09-26) *
YONGSHUN ZOU ET AL.: "Characterisation and properties of low-conductivity microporous magnesia based aggregates with in-situ intergranular spinel phases", CERAMICS INTERNATIONAL, vol. 47, 26 December 2020 (2020-12-26) *
YONGSHUN ZOU ET AL.: "Characterisation and properties of low-conductivity microporous magnesia based aggregates with in-situ intergranular spinel phases: Role of nano-sized intracrystalline pores", CERAMICS INTERNATIONAL, vol. 47, 26 December 2020 (2020-12-26) *
付绿平;顾华志;黄奥;张美杰;李正坤;赵义;: "低导热微孔刚玉骨料的湿法制备及其抗渣机制研究", 耐火材料, no. 06, 15 December 2015 (2015-12-15) *
尹洪峰;党娟灵;辛亚楼;高魁;汤云;袁蝴蝶;: "轻量耐火材料的研究现状与发展趋势", 材料导报, no. 15, 10 August 2018 (2018-08-10) *
张伟;石干;: "富铝尖晶石中刚玉的析晶与固溶", 耐火材料, no. 06, 15 December 2012 (2012-12-15) *
李如椿, 陈永强, 陈嘉庚: "工艺因素对合成镁铝尖晶石性能的影响", 河北理工学院学报, no. 03, 30 August 2005 (2005-08-30) *
李晓星;李远兵;杨传柱;赵雷;范志辉;刘芳;: "电熔镁砂加入量对刚玉-尖晶石轻质隔热材料性能的影响", 耐火材料, no. 03, 15 June 2012 (2012-06-15) *
顾强 等: "添加剂对MA和MgO-MA材料性能的影响", 硅酸盐通报, vol. 36, no. 11, 15 November 2017 (2017-11-15), pages 3665 - 3668 *

Also Published As

Publication number Publication date
CN116496101B (zh) 2024-09-17

Similar Documents

Publication Publication Date Title
EP2999680B1 (en) Porous ceramic article
JP5122527B2 (ja) チタン酸アルミニウムマグネシウムの製造方法
US20100298114A1 (en) Process for producing aluminum titanate-based ceramics
EP3632875A1 (en) Porous ceramic article and method of manufacturing the same
CN107285806B (zh) 纳米孔径的多孔刚玉-镁铝尖晶石陶瓷及其制备方法
JP2010132527A (ja) チタン酸アルミニウム系セラミックスの製造方法
CN111620679A (zh) 一种以熔融二氧化硅为硅源制备高纯莫来石材料的方法
CN110483023B (zh) 一种微孔化刚玉砖及其制备方法
TW201107268A (en) Method for producing aluminum titanate ceramic body
CN112778008A (zh) 钛酸铝多孔陶瓷及其制备方法以及多孔介质燃烧器
CN113185268A (zh) 一种氧化铝陶瓷材料的制备方法及氧化铝陶瓷基片
JP5133208B2 (ja) チタン酸アルミニウム系セラミックスの製造方法
CN111302769A (zh) 一种低铝镁质复合不烧砖及其制备方法
JP5133207B2 (ja) チタン酸アルミニウム系セラミックスの製造方法
CN116496101B (zh) 一种低导热微闭孔富铝尖晶石材料及其制备方法
CN114085082B (zh) 一种碳化硅/黑滑石复合陶瓷膜支撑体及其制备方法
JPH0751459B2 (ja) コージェライト質ハニカム構造体の製造法
CN113979761B (zh) 一种三元复合自修复免烧滑板砖及其制备方法
CN115353372A (zh) 一种锂电正极材料烧结用匣钵及其制备方法
CN114644525A (zh) 添加废弃料的复合匣钵及其制备方法
JP2010235386A (ja) チタン酸アルミニウム系セラミックスの製造方法およびチタン酸アルミニウム系セラミックス
CN114349484A (zh) 一种用于锂电池电极材料煅烧的陶瓷材料及其制备方法
CN113213956A (zh) 综合性能优良、价格适中的镁铝尖晶石砖及其制备方法
CN113149670A (zh) 一种一步法制备致密二铝酸钙耐火熟料的工艺方法
WO2011081217A1 (ja) チタン酸アルミニウム系セラミックスの製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant