CN107445594B - 纳米孔径的多孔方镁石-镁橄榄石陶瓷材料及其制备方法 - Google Patents

纳米孔径的多孔方镁石-镁橄榄石陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN107445594B
CN107445594B CN201710633569.5A CN201710633569A CN107445594B CN 107445594 B CN107445594 B CN 107445594B CN 201710633569 A CN201710633569 A CN 201710633569A CN 107445594 B CN107445594 B CN 107445594B
Authority
CN
China
Prior art keywords
ceramic material
forsterite
periclase
nano
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710633569.5A
Other languages
English (en)
Other versions
CN107445594A (zh
Inventor
鄢文
吴贵圆
马三宝
李楠
李亚伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Science and Engineering WUSE
Original Assignee
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Science and Engineering WUSE filed Critical Wuhan University of Science and Engineering WUSE
Priority to CN201710633569.5A priority Critical patent/CN107445594B/zh
Publication of CN107445594A publication Critical patent/CN107445594A/zh
Application granted granted Critical
Publication of CN107445594B publication Critical patent/CN107445594B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/20Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in magnesium oxide, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6267Pyrolysis, carbonisation or auto-combustion reactions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/08Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种纳米孔径的多孔方镁石‑镁橄榄石陶瓷材料及其制备方法。其技术方案是:将菱镁矿细粉依次升温至600~800℃和800~1200℃,分别保温,得到高孔隙率的氧化镁粉体。按高孔隙率的氧化镁粉体为65~95wt%、硅溶胶为0.1~18wt%和二氧化硅微粉为0.1~22wt%,将高孔隙率的氧化镁粉体置于真空搅拌机中,在2.0kPa以下将硅溶胶和二氧化硅微粉倒入真空搅拌机中,搅拌,得到混合料。将混合料升温至110~220℃,保温,机压成型;干燥;然后在800~1200℃和1400~1600℃条件下分别保温,即得纳米孔径的多孔方镁石‑镁橄榄石陶瓷材料。本发明制备成本低廉,所制备的纳米孔径的多孔方镁石‑镁橄榄石陶瓷材料孔径为纳米级,具有体积密度小、导热系数低和强度高的特点。

Description

纳米孔径的多孔方镁石-镁橄榄石陶瓷材料及其制备方法
技术领域
本发明属于多孔方镁石-镁橄榄石陶瓷材料技术领域。尤其涉及一种纳米孔径的多孔方镁石-镁橄榄石陶瓷材料及其制备方法。
背景技术
随着社会经济的高速发展,能源与资源逐渐消耗殆尽,节能减排已经成为全球关注的热点之一。多孔陶瓷具有较低的导热系数和体积密度,是隔热耐火材料主要品种之一,对高温工业的节能降耗起着关键作用,已受到耐火材料研究者越来越多的关注。方镁石-镁橄榄石材料具有优异的高温力学性能和良好的化学稳定性,广泛用于玻璃窑、水泥窑等高温窑炉,因此,研究多孔方镁石-镁橄榄石陶瓷材料对高温工业的节能降耗具有现实意义。
目前关于多孔方镁石-镁橄榄石陶瓷材料的研究已有一定的进展,如“一种方镁石-橄榄石轻质保温耐火材料及其生产方法(CN1704384A)”专利技术,以菱镁矿粉、轻烧氧化镁粉和氧化硅粉为原料,以锯末、煤粉为造孔剂,制备的轻质方镁石-镁橄榄石耐火材料虽有其优点,但缺点是制品气孔孔径较大,且造孔剂完全燃烧后生成CO2,会造成二次污染;另如以镁橄榄石砂、镁砂和菱镁矿为原料(郑连营,王健东.玻璃窑用轻质镁橄榄石砖的研制.耐火材料,2012,49(2):129~13l),制备了镁橄榄石隔热材料,但该技术对原料的要求较高,其材料气孔孔径较大、孔径分布极不均、强度较低;又如“一种多孔镁橄榄石-镁黄长石复合陶瓷材料及其制备方法(CN201410362125.9)”专利技术,以白云石粉、硅石粉和菱镁矿粉为原料,制备了强度较高的多孔镁橄榄石-镁黄长石质陶瓷材料,但该陶瓷材料气孔的孔径较大、耐火度较低、强度较低。
发明内容
本发明旨在克服现有技术缺陷,目的是提供一种制备成本低廉的纳米孔径的多孔方镁石-镁橄榄石陶瓷材料的制备方法,所制备的纳米孔径的多孔方镁石-镁橄榄石陶瓷材料孔径为纳米级、体积密度小、导热系数低和强度高。
为实现上述目的,本发明采用的技术方案的步骤是:
步骤一、先将菱镁矿细粉以1~2℃/min的速率升温至600~800℃,保温1~4小时;再以2~3℃/min的速率升温至800~1200℃,保温1~5小时,冷却,得到高孔隙率的氧化镁粉体。
步骤二、按所述高孔隙率的氧化镁粉体为65~95wt%、硅溶胶为0.1~18wt%和二氧化硅微粉为0.1~22wt%,先将所述高孔隙率的氧化镁粉体置于真空搅拌机中,抽真空至2.0kPa以下,再将硅溶胶和二氧化硅微粉倒入真空搅拌机中,搅拌15~30分钟,关闭抽真空系统,得到混合料。
步骤三、将所述混合料升温至110~220℃,保温2~5h,冷却,在30~100MPa条件下机压成型;成型后的坯体于110~150℃条件下干燥12~36小时;然后以2~3℃/min的速率升温至800~1200℃,保温1~5小时;再以3~5℃/min速率升温至1400~1600℃,保温3~8小时,冷却,即得纳米孔径的多孔方镁石-镁橄榄石陶瓷材料。
所述菱镁矿细粉粒径小于0.088mm,所述菱镁矿细粉的MgO含量为42~50wt%。
所述硅溶胶的SiO2含量为30~40wt%。
所述二氧化硅微粉粒径小于0.002m,所述二氧化硅微粉的SiO2含量大于96wt%。
由于采用上述技术方案,本发明与现有技术相比具有如下积极效果:
本发明利用菱镁矿细粉在600~800℃条件下原位分解产生纳米级气孔,形成的氧化镁微晶在800~1200℃时发生表面扩散和蒸发-凝聚物质传输过程,使得氧化镁微晶之间产生一定的颈部链接,限制了烧结中后期的颗粒重排,得到了高孔隙率的氧化镁粉体,以它为原料会得到体积密度小和导热系数低的纳米孔径的多孔方镁石-镁橄榄石陶瓷材料。
本发明向高孔隙率的氧化镁粉体中引入硅溶胶,在真空条件下让硅溶胶中SiO2富集在颗粒颈部,通过高温下原位反应生成镁橄榄石颈部,阻碍氧化镁颗粒在高温烧结过程中的重排。
本发明向高孔隙率的氧化镁粉体中加入二氧化硅微粉以填充氧化镁粉体间的空隙,一方面会使会使氧化镁粉体间的气孔纳米化,提高了制品的强度,另一方面与氧化镁原位反应形成的镁橄榄石颈部连接,阻止了氧化镁颗粒在高温烧结过程中的重排,从而得到了纳米孔径的多孔方镁石-镁橄榄石陶瓷材料。
本发明所制备的纳米孔径的多孔方镁石-镁橄榄石陶瓷材料经检测:显气孔率为25~51%;体积密度为1.61~2.30g/cm3;平均孔径为500nm~1500nm;耐压强度为50~150 MPa;物相组成为方镁石和镁橄榄石。
因此,本发明制备成本低廉,所制备的纳米孔径的多孔方镁石-镁橄榄石陶瓷材料孔径为纳米级,具有体积密度小、导热系数低和强度高的特点。
具体实施方式
下面结合具体实施方式对本发明作进一步的描述,并非对其保护范围的限制。
为避免重复,先将本具体实施方式中的硅溶胶统一描述如下,实施例中不再赘述:
所述菱镁矿细粉的MgO含量为42~50wt%。
所述硅溶胶的SiO2含量为30~40wt%。
所述二氧化硅微粉的SiO2含量大于96wt%。
实施例1
一种纳米孔径的多孔方镁石-镁橄榄石陶瓷材料及其制备方法。本实施例所述制备方法的步骤是:
步骤一、先将菱镁矿细粉以1~2℃/min的速率升温至600~800℃,保温1~2小时;再以2~3℃/min的速率升温至800~1000℃,保温1~3小时,冷却,得到高孔隙率的氧化镁粉体。
步骤二、按所述高孔隙率的氧化镁粉体为65~75wt%、硅溶胶为8~18wt%和二氧化硅微粉为12~22wt%,先将所述高孔隙率的氧化镁粉体置于真空搅拌机中,抽真空至2.0kPa以下,再将硅溶胶和二氧化硅微粉倒入真空搅拌机中,搅拌15~30分钟,关闭抽真空系统,得到混合料。
步骤三、将所述混合料升温至110~220℃,保温2~5h,冷却,在30~60MPa条件下机压成型;成型后的坯体于110~150℃条件下干燥12~24小时;然后以2~3℃/min的速率升温至800~1000℃,保温1~3小时;再以4~5℃/min速率升温至1400~1500℃,保温3~5小时,冷却,即得纳米孔径的多孔方镁石-镁橄榄石陶瓷材料。
本实施例所述菱镁矿细粉粒径小于0.088mm;所述二氧化硅微粉粒径小于0.002mm。
本实施例制备的纳米孔径的多孔方镁石-镁橄榄石陶瓷材料:显气孔率为40~51%;体积密度为1.61~1.92g/cm3;平均孔径为500~1200nm;耐压强度为50~80MPa;物相组成为方镁石和镁橄榄石。
实施例2
一种纳米孔径的多孔方镁石-镁橄榄石陶瓷材料及其制备方法。本实施例所述制备方法的步骤是:
步骤一、先将菱镁矿细粉以1~2℃/min的速率升温至600~800℃,保温2~3小时;再以2~3℃/min的速率升温至1000~1200℃,保温1~3小时,冷却,得到高孔隙率的氧化镁粉体。
步骤二、按所述高孔隙率的氧化镁粉体为73~83wt%、硅溶胶为7~15wt%和二氧化硅微粉为4~13wt%,先将所述高孔隙率的氧化镁粉体置于真空搅拌机中,抽真空至1.5kPa以下,再将硅溶胶和二氧化硅微粉倒入真空搅拌机中,搅拌15~30分钟,关闭抽真空系统,得到混合料。
步骤三、将所述混合料升温至110~220℃,保温2~5h,冷却,在60~80MPa条件下机压成型;成型后的坯体于110~150℃条件下干燥16~28小时;然后以2~3℃/min的速率升温至1000~1200℃,保温1~3小时;再以4~5℃/min速率升温至1400~1500℃,保温4~7小时,冷却,即得纳米孔径的多孔方镁石-镁橄榄石陶瓷材料。
本实施例所述菱镁矿细粉粒径小于0.044mm;所述氢氧化铝微粉粒径小于0.002mm。
本实施例制备的纳米孔径的多孔方镁石-镁橄榄石陶瓷材料:显气孔率为35~45%;体积密度为1.78~2.06g/cm3;平均孔径为900~1500nm;耐压强度为70~100MPa;物相组成为方镁石和镁橄榄石。
实施例3
一种纳米孔径的多孔方镁石-镁橄榄石陶瓷材料及其制备方法。本实施例所述制备方法的步骤是:
步骤一、先将菱镁矿细粉以1~2℃/min的速率升温至600~800℃,保温2~4小时;再以2~3℃/min的速率升温至800~1000℃,保温3~5小时,冷却,得到高孔隙率的氧化镁粉体。
步骤二、按所述高孔隙率的氧化镁粉体为78~88wt%、硅溶胶为2~10wt%和二氧化硅微粉为3~12wt%,先将所述高孔隙率的氧化镁粉体置于真空搅拌机中,抽真空至0.5kPa以下,再将硅溶胶和二氧化硅微粉倒入真空搅拌机中,搅拌15~30分钟,关闭抽真空系统,得到混合料。
步骤三、将所述混合料升温至110~220℃,保温2~5h,冷却,在70~90MPa条件下机压成型;成型后的坯体于110~150℃条件下干燥20~32小时;然后以2~3℃/min的速率升温至800~1000℃,保温3~5小时;再以3~4℃/min速率升温至1500~1600℃,保温5~8小时,冷却,即得纳米孔径的多孔方镁石-镁橄榄石陶瓷材料。
本实施例所述菱镁矿细粉粒径为0.022~0.074mm;所述二氧化硅微粉粒径小于0.001mm。
本实施例制备的纳米孔径的多孔方镁石-镁橄榄石陶瓷材料:显气孔率为30~40%;体积密度为1.92~2.19g/cm3;平均孔径为700~1200nm;耐压强度为80~120MPa;物相组成为方镁石和镁橄榄石。
实施例4
一种纳米孔径的多孔方镁石-镁橄榄石陶瓷材料及其制备方法。本实施例所述制备方法的步骤是:
步骤一、先将菱镁矿细粉以1~2℃/min的速率升温至600~800℃,保温3~4小时;再以2~3℃/min的速率升温至1000~1200℃,保温3~5小时,冷却,得到高孔隙率的氧化镁粉体。
步骤二、按所述高孔隙率的氧化镁粉体为85~95wt%、硅溶胶为0.1~9wt%和二氧化硅微粉为0.1~8wt%,先将所述高孔隙率的氧化镁粉体置于真空搅拌机中,抽真空至1.0kPa以下,再将硅溶胶和二氧化硅微粉倒入真空搅拌机中,搅拌15~30分钟,关闭抽真空系统,得到混合料。
步骤三、将所述混合料升温至110~220℃,保温2~5h,冷却,在80~100MPa条件下机压成型;成型后的坯体于110~150℃条件下干燥24~36小时;然后以2~3℃/min的速率升温至1000~1200℃,保温3~5小时;再以3~4℃/min速率升温至1500~1600℃,保温4~8小时,冷却,即得纳米孔径的多孔方镁石-镁橄榄石陶瓷材料。
本实施例所述菱镁矿细粉粒径小于0.074mm;所述二氧化硅微粉粒径小于0.001mm。
本实施例制备的纳米孔径的多孔方镁石-镁橄榄石陶瓷材料:显气孔率为25~35%;体积密度为2.06~2.30g/cm3;平均孔径为500~1000nm;耐压强度为100~150MPa;物相组成为方镁石和镁橄榄石。
本具体实施方式与现有技术相比具有如下积极效果:
本具体实施方式利用菱镁矿细粉在600~800℃条件下原位分解产生纳米级气孔,形成的氧化镁微晶在800~1200℃时发生表面扩散和蒸发-凝聚物质传输过程,使得氧化镁微晶之间产生一定的颈部链接,限制了烧结中后期的颗粒重排,得到了高孔隙率的氧化镁粉体,以它为原料会得到体积密度小和导热系数低的纳米孔径的多孔方镁石-镁橄榄石陶瓷材料。
本具体实施方式向高孔隙率的氧化镁粉体中引入硅溶胶,在真空条件下让硅溶胶中SiO2富集在颗粒颈部,通过高温下原位反应生成镁橄榄石颈部,阻碍氧化镁颗粒在高温烧结过程中的重排。
本具体实施方式向高孔隙率的氧化镁粉体中加入二氧化硅微粉以填充氧化镁粉体间的空隙,一方面会使会使氧化镁粉体间的气孔纳米化,提高了制品的强度,另一方面与氧化镁原位反应形成的镁橄榄石颈部连接,阻止了氧化镁颗粒在高温烧结过程中的重排,从而得到了纳米孔径的多孔方镁石-镁橄榄石陶瓷材料。
本具体实施方式所制备的纳米孔径的多孔方镁石-镁橄榄石陶瓷材料经检测:显气孔率为25~51%;体积密度为1.61~2.30g/cm3;平均孔径为500nm~1500nm;耐压强度为50~150 MPa;物相组成为方镁石和镁橄榄石。
因此,本具体实施方式制备成本低廉,所制备的纳米孔径的多孔方镁石-镁橄榄石陶瓷材料孔径为纳米级,具有体积密度小、导热系数低和强度高的特点。

Claims (5)

1.一种纳米孔径的多孔方镁石-镁橄榄石陶瓷材料的制备方法,其特征在于所述制备方法的步骤是:
步骤一、先将菱镁矿细粉以1~2℃/min的速率升温至600~800℃,保温1~4小时;再以2~3℃/min的速率升温至800~1200℃,保温1~5小时,冷却,得到高孔隙率的氧化镁粉体;
步骤二、按所述高孔隙率的氧化镁粉体为65~95wt%、硅溶胶为0.1~18wt%和二氧化硅微粉为0.1~22wt%,先将所述高孔隙率的氧化镁粉体置于真空搅拌机中,抽真空至2.0kPa以下,再将硅溶胶和二氧化硅微粉倒入真空搅拌机中,搅拌15~30分钟,关闭抽真空系统,得到混合料;
步骤三、将所述混合料升温至110~220℃,保温2~5h,冷却,在30~100MPa条件下机压成型;成型后的坯体于110~150℃条件下干燥12~36小时;然后以2~3℃/min的速率升温至800~1200℃,保温1~5小时;再以3~5℃/min速率升温至1400~1600℃,保温3~8小时,冷却,即得纳米孔径的多孔方镁石-镁橄榄石陶瓷材料。
2.根据权利要求1所述的纳米孔径的多孔方镁石-镁橄榄石陶瓷材料的制备方法,其特征在于所述菱镁矿细粉粒径小于0.088mm,所述菱镁矿细粉的MgO含量为42~50wt%。
3.根据权利要求1所述的纳米孔径的多孔方镁石-镁橄榄石陶瓷材料的制备方法,其特征在于所述硅溶胶的SiO2含量为30~40wt%。
4.根据权利要求1所述的纳米孔径的多孔方镁石-镁橄榄石陶瓷材料的制备方法,其特征在于所述二氧化硅微粉粒径小于0.002mm,所述二氧化硅微粉SiO2含量大于96wt%。
5.一种纳米孔径的多孔方镁石-镁橄榄石陶瓷材料,其特征在于所述纳米孔径的多孔方镁石-镁橄榄石陶瓷材料是根据权利要求1~4项中任一项所述纳米孔径的多孔方镁石-镁橄榄石陶瓷材料的制备方法所制备的纳米孔径的多孔方镁石-镁橄榄石陶瓷材料。
CN201710633569.5A 2017-07-28 2017-07-28 纳米孔径的多孔方镁石-镁橄榄石陶瓷材料及其制备方法 Active CN107445594B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710633569.5A CN107445594B (zh) 2017-07-28 2017-07-28 纳米孔径的多孔方镁石-镁橄榄石陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710633569.5A CN107445594B (zh) 2017-07-28 2017-07-28 纳米孔径的多孔方镁石-镁橄榄石陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN107445594A CN107445594A (zh) 2017-12-08
CN107445594B true CN107445594B (zh) 2020-04-24

Family

ID=60490554

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710633569.5A Active CN107445594B (zh) 2017-07-28 2017-07-28 纳米孔径的多孔方镁石-镁橄榄石陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107445594B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110981462B (zh) * 2019-12-30 2021-12-03 武汉科技大学 一种多孔方镁石-镁铁铝复合尖晶石陶瓷材料及其制备方法
CN113402286B (zh) * 2021-07-21 2022-06-03 东北大学 一种高致密方镁石-镁橄榄石复合耐火陶瓷及其制备方法
CN116675555B (zh) * 2023-05-24 2024-05-28 武汉理工大学 一种硅藻土基分级多孔隔热陶瓷及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103804002A (zh) * 2014-02-21 2014-05-21 武汉科技大学 一种轻质刚玉-莫来石耐火砖及其制备方法
CN103864434A (zh) * 2014-02-21 2014-06-18 武汉科技大学 水泥回转窑用轻量化方镁石-镁铝尖晶石耐火材料及其制备方法
CN104086206A (zh) * 2014-07-28 2014-10-08 武汉科技大学 多孔方镁石-镁橄榄石-尖晶石复合陶瓷材料及其制备方法
CN104140246A (zh) * 2014-07-28 2014-11-12 武汉科技大学 多孔镁橄榄石-镁黄长石复合陶瓷材料及其制备方法
CN106431435A (zh) * 2016-09-22 2017-02-22 郑州大学 一种多孔方镁石‑镁橄榄石复相材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103804002A (zh) * 2014-02-21 2014-05-21 武汉科技大学 一种轻质刚玉-莫来石耐火砖及其制备方法
CN103864434A (zh) * 2014-02-21 2014-06-18 武汉科技大学 水泥回转窑用轻量化方镁石-镁铝尖晶石耐火材料及其制备方法
CN104086206A (zh) * 2014-07-28 2014-10-08 武汉科技大学 多孔方镁石-镁橄榄石-尖晶石复合陶瓷材料及其制备方法
CN104140246A (zh) * 2014-07-28 2014-11-12 武汉科技大学 多孔镁橄榄石-镁黄长石复合陶瓷材料及其制备方法
CN106431435A (zh) * 2016-09-22 2017-02-22 郑州大学 一种多孔方镁石‑镁橄榄石复相材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
影响菱镁矿煅烧氧化镁粉活性的因素;崔崇等;《武汉工业大学学报》;19930930;第15卷(第3期);全文 *

Also Published As

Publication number Publication date
CN107445594A (zh) 2017-12-08

Similar Documents

Publication Publication Date Title
CN107285806B (zh) 纳米孔径的多孔刚玉-镁铝尖晶石陶瓷及其制备方法
CN107445594B (zh) 纳米孔径的多孔方镁石-镁橄榄石陶瓷材料及其制备方法
CN103922778B (zh) 三维氧化铝纤维织物增强氧化物陶瓷及其制备方法
CN107382286B (zh) 一种纳米孔径的多孔刚玉-莫来石陶瓷及其制备方法
CN103922768B (zh) 一种功能复合型氧化锆耐火制品及其制备方法
CN102167621B (zh) 一种氧化铝空心球轻质隔热砖及其制备方法
CN105884394A (zh) 一种低温制备多孔碳化硅支撑体的方法
CN105272189A (zh) 一种微孔莫来石陶瓷分离膜支撑体及其制备方法
CN102659398A (zh) 一种制备轻质镁铝尖晶石隔热材料的方法
CN107973619A (zh) 莫来石-钙长石-刚玉复相微孔隔热材料及其制备方法
CN112062515B (zh) 一种利用碳化硅制备的高强地聚合物闭孔发泡材料及其制备方法
CN104291759A (zh) 一种陶瓷纤维增强耐热绝缘保温板的制备方法
CN115838290A (zh) 一种无压液相烧结碳化硅陶瓷及其制备方法
CN108017397A (zh) 含石英砂的耐火砖及其制备方法
CN104072142A (zh) 一种氧化物结合SiC多孔陶瓷的制备方法
CN106431434A (zh) 一种闭孔型矾土基莫来石材料及其制备方法
CN106431435A (zh) 一种多孔方镁石‑镁橄榄石复相材料及其制备方法
CN103787670A (zh) 一种中间包透气砖的制备方法
CN108793911A (zh) 一种利用发泡法制备镁质轻质骨料的方法
CN108002851A (zh) 含莫来石的耐火砖及其制备方法
CN106316448A (zh) 一种稻壳基微孔轻质耐火材料及其制备方法
CN110711543A (zh) 一种纤维复合碳化硼-氧化铝气凝胶材料的制备方法
CN108017398A (zh) 含偏高岭土的耐火砖及其制备方法
CN102951924B (zh) 一种利用热致相分离技术制备多孔陶瓷的方法
CN111410540A (zh) 一种定向孔结构多孔氮化硅陶瓷的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant