CN108911715B - 一种具有坚硬致密外壳的闭孔泡沫陶瓷及其制备方法 - Google Patents

一种具有坚硬致密外壳的闭孔泡沫陶瓷及其制备方法 Download PDF

Info

Publication number
CN108911715B
CN108911715B CN201810887685.4A CN201810887685A CN108911715B CN 108911715 B CN108911715 B CN 108911715B CN 201810887685 A CN201810887685 A CN 201810887685A CN 108911715 B CN108911715 B CN 108911715B
Authority
CN
China
Prior art keywords
closed
hard
cell
ceramic
foamed ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810887685.4A
Other languages
English (en)
Other versions
CN108911715A (zh
Inventor
李向明
李睿
郑梦瑶
原国健
孟振
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Jiasuyuan Environmental Protection Technology Co ltd
Original Assignee
Yantai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yantai University filed Critical Yantai University
Priority to CN201810887685.4A priority Critical patent/CN108911715B/zh
Publication of CN108911715A publication Critical patent/CN108911715A/zh
Application granted granted Critical
Publication of CN108911715B publication Critical patent/CN108911715B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3472Alkali metal alumino-silicates other than clay, e.g. spodumene, alkali feldspars such as albite or orthoclase, micas such as muscovite, zeolites such as natrolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种具有坚硬致密外壳的闭孔泡沫陶瓷制备方法,将石英砂、碳酸钙、碳化硅、滑石粉、钠长石或钾长石按重量比例混合,经球磨混合均匀后,加水搅拌并填充至模具中,最后1150~1250℃下高温烧结,冷却后得到具有坚硬致密外壳的闭孔泡沫陶瓷。采用本发明的技术制备的闭孔泡沫陶瓷内部为泡沫结构,表面具有一层厚度为1~2mm的坚硬致密外壳,该结构一方面使闭孔泡沫陶瓷具有全封闭的气孔,使其同时具有优异的保温、隔热、防水效果,另一方面使闭孔泡沫陶瓷具有较高的抗压强度和表面硬度,保证闭孔泡沫陶瓷制品在运输和使用过程中的可靠性。另外,本发明的制备技术无需模压,且烧结温度相对较低,可大幅降低闭孔泡沫陶瓷制品的制造成本。

Description

一种具有坚硬致密外壳的闭孔泡沫陶瓷及其制备方法
技术领域
本发明属于材料技术领域,具体涉及一种具有坚硬致密外壳的闭孔泡沫陶瓷及其制备方法。
背景技术
泡沫陶瓷分为开孔型和闭孔型。开孔泡沫陶瓷内部具有三维连通的孔道,表面孔对外部空气敞开。截至目前,开孔泡沫陶瓷的制备工艺已成熟,制品性能稳定且应用广泛。闭孔泡沫陶瓷内部的孔彼此独立不连通或连通性很差,表面孔对外部空气封闭。由于具有闭孔特点,闭孔泡沫陶瓷不但保温隔热效果优于开孔泡沫陶瓷,而且具有很好的防水性能,是建筑节能领域中用作外墙体和地下工程的保温、防水、防腐理想的一体化材料。为了实现上述应用,闭孔泡沫陶瓷须同时具有较高的闭气孔率、抗压强度和表面硬度,以保证其制品的保温、隔热、防水效果以及在运输和使用过程中的可靠性。
文献1“高温发泡陶瓷的烧成工艺与性能. 新型建筑材料,11(1997),No. 19-21”公开了一种闭孔泡沫陶瓷的制备方法。以湖北钟祥的一种主要成分为二氧化硅的瓷砂主料,以氧化钙、氧化镁和氧化钠含量较高的碎玻璃为性能改良剂,以三氧化二铁为发泡剂,碳粉为还原剂,经搅拌混合、加水练泥、塑性成形后在1100℃~1250℃烧结,制备出密度为0.77~1.14 g/cm3,导热系数为0.067~0.126 W/(m·K),抗压强度为3.7~4.8 MPa,吸水率为0.47~0.52%的闭孔泡沫陶瓷。该闭孔泡沫陶瓷的优点在于制备温度不高,制造成本较低,但抗压强度不高,根据密度值可知该闭孔泡沫陶瓷的闭气孔率不高,且吸水率数值说明有开气孔存在。
文献2“石英质高温闭孔泡沫陶瓷的制备. 稀有金属材料与工程,8(2007),No.570–574”公开了一种闭孔泡沫陶瓷的制备方法。以石英为主料,包括钾长石、硫酸钙、聚乙烯醇,将各原料混合均匀后冷压成型后在1600℃烧结,制备出总气孔率为63%,闭孔率为58%,抗压强度为4.6MPa,体积密度为0.72 g/cm3,导热系数仅为0.137 W/(m·K)的闭孔泡沫陶瓷。该闭孔泡沫陶瓷的闭气孔率不高,而且有5%的开气孔,抗压强度不高,过高的烧结温度使其制造成本较高。
专利1“一种闭合气孔泡沫陶瓷的制备方法”(申请号:201010150445.X)也公开了一种闭孔泡沫陶瓷的制备方法。以高铝质耐火砖为主料,以硬质粘土、长石、硫酸钙、碳化硅为辅料,将原料按比例配制好,经球磨、压滤、干燥、陈腐后采用30~50MPa模压成型,然后在1350~1400℃空气中烧结,制得闭气孔率75%以上的泡沫陶瓷。该闭孔泡沫陶瓷具有优异的保温隔热性能,但烧结温度较高使其制造成本较高,抗压强度仅为1.0~1.5MPa,可靠性不高,在运输和使用过程中易发生损坏。
综上所述,现有技术制备的闭孔泡沫陶瓷综合性能欠佳,存在的问题主要包括:(1)烧结温度较高,制造成本较高;(2)闭气孔率不高,保温效果不佳;(3)存在开气孔,防水效果欠佳;(4)抗压强度不高,在运输和使用过程中易发生损坏。另外,现有文献虽未公开闭孔泡沫陶瓷的表面硬度,但由于现有技术制备的闭孔泡沫陶瓷内部和表面均为泡沫结构,其表面硬度较低,进一步增加了闭孔泡沫陶瓷在运输和使用过程中发生损坏的几率。
发明内容
基于对现有技术的研究分析,1)为了提高闭孔泡沫陶瓷制品的保温、隔热和防水效果,闭孔泡沫陶瓷应具有更高的闭气孔率和更低的开气孔率;2)为了保证闭孔泡沫陶瓷制品在运输和使用过程中的可靠性,闭孔泡沫陶瓷应具有较高的抗压强度和表面硬度。
为了克服现有技术制备闭孔泡沫陶瓷的不足,解决上述两个技术问题,本发明目的在于提供一种闭气孔率、抗压强度和表面硬度均更高的闭孔泡沫陶瓷及其制备方法。
为实现发明目的之一,提供技术方案如下:
一种具有坚硬致密外壳的闭孔泡沫陶瓷的制备方法,该方法以石英砂为主料,还包括碳酸钙、碳化硅、滑石粉、钠长石(或钾长石),用球磨机将配好的原料球磨混合均匀,加水搅拌后填充至模具中,然后1150~1250℃烧制出综合性能优异的具有坚硬致密外壳的闭孔泡沫陶瓷。
为了实现发明目的之一,进一步的,本发明采用以下的技术解决方案:
一种具有坚硬致密外壳的闭孔泡沫陶瓷的制备方法,包括下述步骤:
(1)原料准备
石英砂、碳酸钙、碳化硅、滑石粉、钠长石、钾长石均为常见市售化学试剂。本发明中上述原料的选用情况如下。
石英砂:选自天津市科密欧化学试剂有限公司,粒径2mm,二氧化硅含量大于98%,其余为钙、钾、钠、铝的氧化物。
碳酸钙:选自天津市科密欧化学试剂有限公司,粒径80μm,工业纯。
碳化硅:选自河南明迈特新材料科技有限公司,粒径20μm,工业纯。
滑石粉:选自天津市致远化学试剂有限公司,粒径20μm,工业纯。
钠长石:选自兴东钾钠矿石粉厂,粒径30μm,工业纯。
钾长石:选自富华纳米新材料有限公司,粒径50μm,工业纯。
(2)混合粉料制备
向每100g石英砂中加入5~15g碳酸钙、2~10g碳化硅、5~8g滑石粉、6~9g钠长石或者7~10g钾长石。然后将混合料倒入氧化锆球磨罐中,每100g混合料加入20~25颗直径为10~15mm的氧化锆球,用行星式球磨机高速球磨1~3小时,球磨时球磨机的公转速度为150~200转/分钟,自转速度为120~180转/分钟,最终得到粒径小于5μm的混合粉料。
需要说明的是:由于采用了高速球磨,因此在选取原料时,无需考虑原料的粒径,若原料粒径较小,混合料只需低速球磨较短时间,若原料粒径较大,可适当提高球磨速度并增加球磨时间。
(3)混合粉料填充
向每100g混合粉料中加入10~15g水,利用混料机搅拌均匀后填充至氧化铝模具中。填料时,根据模具空腔的容积和最终闭孔泡沫陶瓷的所需密度,控制混合粉料的填充体积占模具空腔容积的45~55%。
(4)烧结
将填充了混合粉料的氧化铝模具置于高温炉中,采用5~20℃/分钟的升温速度,在1150~1250℃烧结10~30分钟,然后随炉冷却至室温,打开模具,将烧制好的具有坚硬致密外壳的闭孔泡沫陶瓷取出。
为实现发明目的之二,提供技术方案如下:
上述方法制备的一种具有坚硬致密外壳的闭孔泡沫陶瓷。
上述方法制备的一种具有坚硬致密外壳的闭孔泡沫陶瓷,所述闭孔泡沫陶瓷内部为泡沫结构,表面为一层1~2mm的坚硬致密外壳;并且坚硬致密外壳将内部气孔完全封闭,使之全部成为闭气孔,坚硬致密外壳在提高闭孔泡沫陶瓷保温隔热效果的同时,具有极佳的防水性能。
进一步的,上述的一种具有坚硬致密外壳的闭孔泡沫陶瓷,其坚硬致密外壳显著提高闭孔泡沫陶瓷的抗压强度和表面硬度,降低闭孔泡沫陶瓷制品在运输和使用过程中发生损坏的几率。
相较于现有的制备技术,本发明的制备方法无需模压,烧结温度相对较低,可大幅降低制造成本。
另外,区别于现有技术制备的闭孔泡沫陶瓷,本发明制备的闭孔泡沫陶瓷表面具有一层1~2mm的坚硬致密外壳,该结构的显著优点在于:
(1)表面坚硬致密的外壳将闭孔泡沫陶瓷内部的气孔完全封闭,使之全部成为闭气孔,该结构可显著提高闭孔泡沫陶瓷的保温隔热效果,并使闭孔泡沫陶瓷具有极佳防水性能。
(2)表面坚硬致密的外壳可显著提高闭孔泡沫陶瓷的抗压强度和表面硬度,降低闭孔泡沫陶瓷制品在运输和使用过程中发生损坏的几率,大幅度提高制品的可靠性。
附图说明
图1是本发明具有坚硬致密外壳的闭孔泡沫陶瓷的制备流程图;
图2是本发明实施例1的具有坚硬致密外壳的闭孔泡沫陶瓷表面磨平后的宏观照片;
图3是本发明实施例1的具有坚硬致密外壳的闭孔泡沫陶瓷的微观结构照片;
图4是本发明实施例1的具有坚硬致密外壳的闭孔泡沫陶瓷的外壳SEM照片;
图5是图4陶瓷的外壳SEM照片中区域1的EDS图谱;
图6是本发明实施例1的具有坚硬致密外壳的闭孔泡沫陶瓷的内部泡沫结构的SEM照片;
图7是图6陶瓷的内部泡沫结构的SEM照片中区域2的EDS图谱;
图8是图6陶瓷的内部泡沫结构的SEM照片中区域3的EDS图谱;
图9是本发明实施例1的具有坚硬致密外壳的闭孔泡沫陶瓷的内部泡沫结构和外壳横截面SEM照片,图中虚线为泡沫结构和外壳的分界线。
下面结合附图和实施例对本发明作进一步详细说明。
具体实施方式
下述实施例中的原料准备。
石英砂、碳酸钙、碳化硅、滑石粉、钠长石、钾长石均为常见市售化学试剂,上述原料的选用情况如下:
石英砂:选自天津市科密欧化学试剂有限公司,粒径2mm,二氧化硅含量大于98%,其余为钙、钾、钠、铝的氧化物。
碳酸钙:选自天津市科密欧化学试剂有限公司,粒径80μm,工业纯。
碳化硅:选自河南明迈特新材料科技有限公司,粒径20μm,工业纯。
滑石粉:选自天津市致远化学试剂有限公司,粒径20μm,工业纯。
钠长石:选自兴东钾钠矿石粉厂,粒径30μm,工业纯。
钾长石:选自富华纳米新材料有限公司,粒径50μm,工业纯。
实施例1:
本实施例具有坚硬致密外壳的闭孔泡沫陶瓷的制备流程如图1所示。
向100g石英砂中加入5g碳酸钙,2g碳化硅,5g滑石粉,6g钠长石。将混合料倒入氧化锆球磨罐中,按每100g混合料加入25颗直径为10mm的氧化锆球,利用行星式球磨机高速球磨1小时,球磨时球磨机的公转速度为200转/分钟,自转速度为180转/分钟,得到均匀的混合粉料。按每100g混合粉料中加10g水,利用混料机搅拌均匀后填充至氧化铝模具中。填充时,混合粉料的填充体积占模具空腔的体积的55%。将填充了混合粉料的模具置于高温炉中,采用5℃/分钟的升温速度,在1250℃烧结10分钟,得到具有坚硬致密外壳的闭孔泡沫陶瓷。
在室温环境下测试,该具有坚硬致密外壳的闭孔泡沫陶瓷的闭气孔率为72%,密度为0.71g/cm3,抗压强度为7.5MPa,表面硬度为3.1GPa。
图2为制得的具有坚硬致密外壳的闭孔泡沫陶瓷表面磨平后的宏观照片、图9为制得的具有坚硬致密外壳的闭孔泡沫陶瓷的内部泡沫结构和外壳横截面SEM照片,均显示所制备的陶瓷内部为泡沫结构,同时具有坚硬致密的外壳。
所制得闭孔泡沫陶瓷的内部泡沫结构如图3、图6所示,坚硬致密外壳结构如图4所示。
从图2-4、图6、图9可以看出,制得的具有坚硬致密外壳的闭孔泡沫陶瓷的内部和外壳结构差别显著,内部泡沫结构,同时具有坚硬致密的外表面。
外壳的元素分析如图5所示,内部泡沫结构的元素分析如图7、8所示。通过对比图5和图7、8的元素分析可以发现,外壳和内部泡沫结构中各元素的峰高基本相同,说明所制得陶瓷的内部泡沫和外壳的成分及含量一致。
实施例2:
本实施例具有坚硬致密外壳的闭孔泡沫陶瓷的制备流程如图1所示。
向100g石英砂中加入15g碳酸钙,10g碳化硅,8g滑石粉,9g钠长石。将混合料倒入氧化锆球磨罐中,按每100g混合料加入20颗直径为15mm的氧化锆球,利用行星式球磨机高速球磨3小时,球磨时球磨机的公转速度为150转/分钟,自转速度为120转/分钟,得到均匀的混合粉料。按每100g混合粉料中加15g水,利用混料机搅拌均匀后填充至氧化铝模具中。填充时,混合粉料的填充体积占模具空腔的体积的45%。将填充了混合粉料的模具置于高温炉中,采用20℃/分钟的升温速度,在1200℃烧结20分钟,得到具有坚硬致密外壳的闭孔泡沫陶瓷。
在室温环境下测试,该具有坚硬致密外壳的闭孔泡沫陶瓷的闭气孔率为83%,密度为0.47g/cm3,抗压强度为5.1MPa,表面硬度为1.9GPa。
实施例3:
本实施例具有坚硬致密外壳的闭孔泡沫陶瓷的制备流程如图1所示。
向100g石英砂中加入10g碳酸钙,5g碳化硅,6g滑石粉,7g钾长石。将混合料倒入氧化锆球磨罐中,按每100g混合料加入25颗直径为10mm的氧化锆球,利用行星式球磨机高速球磨2小时,球磨时球磨机的公转速度为200转/分钟,自转速度为180转/分钟,得到均匀的混合粉料。按每100g混合粉料中加12g水,利用混料机搅拌均匀后填充至氧化铝模具中。填充时,混合粉料的填充体积占模具空腔的体积的50%。将填充了混合粉料的模具置于高温炉中,采用10℃/分钟的升温速度,在1150℃烧结30分钟,得到具有坚硬致密外壳的闭孔泡沫陶瓷。
在室温环境下测试,该具有坚硬致密外壳的闭孔泡沫陶瓷的闭气孔率为79%,密度为0.55g/cm3,抗压强度为6.3MPa,表面硬度为2.4GPa。
实施例4:
本实施例具有坚硬致密外壳的闭孔泡沫陶瓷的制备流程如图1所示。
向100g石英砂中加入12g碳酸钙,8g碳化硅,7g滑石粉,10g钾长石。将混合料倒入氧化锆球磨罐中,按每100g混合料加入20颗直径为15mm的氧化锆球,利用行星式球磨机高速球磨3小时,球磨时球磨机的公转速度为150转/分钟,自转速度为120转/分钟,得到均匀的混合粉料。按每100g混合粉料中加15g水,利用混料机搅拌均匀后填充至氧化铝模具中。填充时,混合粉料的填充体积占模具空腔的体积的45%。将填充了混合粉料的模具置于高温炉中,采用10℃/分钟的升温速度,在1200℃烧结10分钟,得到具有坚硬致密外壳的闭孔泡沫陶瓷。
在室温环境下测试,该具有坚硬致密外壳的闭孔泡沫陶瓷的闭气孔率为75%,密度为0.65g/cm3,抗压强度为6.8MPa,表面硬度为2.7GPa。
表 1:实施例1-4与背景技术技术参数对比
Figure 579113DEST_PATH_IMAGE002
实施例1-4制备的具有坚硬致密外壳的闭孔泡沫陶瓷相比现有技术的陶瓷,所述闭孔泡沫陶瓷内部为泡沫结构,表面为一层1~2mm的坚硬致密外壳;并且坚硬致密外壳将内部气孔完全封闭,使之全部成为闭气孔,坚硬致密外壳在提高闭孔泡沫陶瓷保温隔热效果的同时,具有极佳的防水性能。
所述闭孔泡沫陶瓷坚硬致密外壳可显著提高闭孔泡沫陶瓷的抗压强度和表面硬度,降低闭孔泡沫陶瓷制品在运输和使用过程中发生损坏的几率。
结合实施例1-4对本发明分析如下:
本发明的关键性在于混合料的配方及其配比,后期申请人通过检索发现虽然与现有技术如背景技术的文献1、2和专利1具有部分类似的组份,但是出乎申请人意料之外的是本发明确实制备出了与现有技术完全不同物理特性的新陶瓷材料,即具有坚硬致密外壳的闭孔泡沫陶瓷,而且由于坚硬致密外壳的存在,使得所述陶瓷具有较高表面硬度,显著提高陶瓷的抗压强度,并使陶瓷内部气孔全部封闭而成为闭气孔。
随后,申请人对制备的所述陶瓷材料进行了深入的研究,坚硬致密外壳的闭孔泡沫陶瓷的获得关键必然在于混合料的配方及配比,但是随着申请人研究的深入却发现一个有趣的事实。按照所属领域的技术人员的惯常思维,所制备的陶瓷的内部和外部结构所体现出截然不同的两种外部表征结构(如图2、3或图4、6所示,内部泡沫结构和外壳坚硬致密外壁)预示着陶瓷的内部和外部应是两种不同的产物构成,或是说应该具有两种不同的分子元素结构,但实际情况却并非如此,如图5(外壳)和图7、图8(内部泡沫结构的)的EDS图谱显示,EDS图谱中所制得的陶瓷的内部和外部的各元素的相对峰高基本相同,表明所制备的陶瓷外壳和内部泡沫结构虽然外部表征截然不同,但所测区域包含的元素种类和含量是没有区别的,这说明所制得的陶瓷的内部和外部形成的产物是相同的。

Claims (3)

1.一种具有坚硬致密外壳的闭孔泡沫陶瓷的制备方法,其特征在于包括下述步骤:
(1)制备混合粉料
原料按照重量,每100g石英砂中加入5~15g碳酸钙、2~10g碳化硅、5~8g滑石粉、6~9g钠长石或者7~10g钾长石,然后将上述原料混合制得混合料;
将所述混合料倒入氧化锆球磨罐中,每100g所述混合料加入20~25颗直径为10~15mm的氧化锆球,然后,将行星式球磨机高速球磨1~3小时,得到粒径小于5μm的混合粉料,
球磨时,球磨机的公转速度为150~200转/分钟,自转速度为120~180转/分钟;
(2)混合粉料填充
按照每100克所述混合粉料加入10~15克水的比例向所述混合粉料中加水,然后,使用混料机搅拌均匀后填充至氧化铝模具中,填料时,所述混合粉料的填充体积占模具空腔容积的45~55%;
(3)烧结
将填充了混合粉料的氧化铝模具置于高温炉中,按照5~20℃/分钟的升温速度,在1150~1250℃保温10~30分钟,然后随炉冷却至室温,打开模具,将烧制好的具有坚硬致密外壳的闭孔泡沫陶瓷取出即得,
烧制得到的所述具有坚硬致密外壳的闭孔泡沫陶瓷的内部为泡沫结构,表面为一层1~2mm的坚硬致密外壳,并且坚硬致密外壳将内部气孔完全封闭使之全部成为闭气孔。
2.根据权利要求1所述的一种具有坚硬致密外壳的闭孔泡沫陶瓷的制备方法,其特征在于,
石英砂的粒径为2mm,且二氧化硅含量大于98%,
碳酸钙的粒径为80μm,
碳化硅的粒径为20μm,
滑石粉的粒径为20μm,
钠长石的粒径为30μm,
钾长石的粒径为50μm。
3.权利要求1或2所述方法制备的一种具有坚硬致密外壳的闭孔泡沫陶瓷,所述闭孔泡沫陶瓷内部为泡沫结构,表面为一层1~2mm的坚硬致密外壳;并且坚硬致密外壳将内部气孔完全封闭,使之全部成为闭气孔。
CN201810887685.4A 2018-08-06 2018-08-06 一种具有坚硬致密外壳的闭孔泡沫陶瓷及其制备方法 Active CN108911715B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810887685.4A CN108911715B (zh) 2018-08-06 2018-08-06 一种具有坚硬致密外壳的闭孔泡沫陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810887685.4A CN108911715B (zh) 2018-08-06 2018-08-06 一种具有坚硬致密外壳的闭孔泡沫陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN108911715A CN108911715A (zh) 2018-11-30
CN108911715B true CN108911715B (zh) 2021-05-28

Family

ID=64397359

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810887685.4A Active CN108911715B (zh) 2018-08-06 2018-08-06 一种具有坚硬致密外壳的闭孔泡沫陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN108911715B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113121257B (zh) * 2021-05-18 2022-10-14 烟台大学 一种表面致密的超轻全闭孔泡沫陶瓷及其低温烧制方法
CN116283341B (zh) * 2023-01-17 2024-06-04 烟台大学 一种利用SiC低温发泡的闭孔泡沫陶瓷及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101003433A (zh) * 2006-12-26 2007-07-25 毛海燕 一种具有隔热保温功能陶瓷砖及其制备方法
WO2007126178A1 (en) * 2006-05-01 2007-11-08 Shin Jong Jin Bubble ceremic material with low weight and method for preparing thereof
CN102786287A (zh) * 2012-08-23 2012-11-21 江苏金久科技新材料有限公司 采用河道淤泥制备的a1级防火保温材料及其制备方法
CN104649707A (zh) * 2015-01-05 2015-05-27 杭州大和热磁电子有限公司 一种轻质隔音保温多孔陶瓷材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007126178A1 (en) * 2006-05-01 2007-11-08 Shin Jong Jin Bubble ceremic material with low weight and method for preparing thereof
CN101003433A (zh) * 2006-12-26 2007-07-25 毛海燕 一种具有隔热保温功能陶瓷砖及其制备方法
CN102786287A (zh) * 2012-08-23 2012-11-21 江苏金久科技新材料有限公司 采用河道淤泥制备的a1级防火保温材料及其制备方法
CN104649707A (zh) * 2015-01-05 2015-05-27 杭州大和热磁电子有限公司 一种轻质隔音保温多孔陶瓷材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
原料和制备工艺对闭孔石英泡沫陶瓷性能的影响;孙国梁等;《稀有金属材料与工程》;20080131;第37卷(第增刊1期);第463-466页 *

Also Published As

Publication number Publication date
CN108911715A (zh) 2018-11-30

Similar Documents

Publication Publication Date Title
CN113121257B (zh) 一种表面致密的超轻全闭孔泡沫陶瓷及其低温烧制方法
CN103342578B (zh) 利用铁尾矿制备的多孔保温装饰材料及其制备方法
CN103332958B (zh) 一种具有梯度孔结构的泡沫陶瓷及其制备方法
CN107586102A (zh) 一种花岗岩废石粉泡沫陶瓷及其制备方法
CN102617180B (zh) 一种多孔泡沫陶瓷及其制备方法
CN107285806A (zh) 纳米孔径的多孔刚玉‑镁铝尖晶石陶瓷及其制备方法
CN106542843A (zh) 一种利用固体废弃物制备轻质保温墙体材料的方法
CN108911715B (zh) 一种具有坚硬致密外壳的闭孔泡沫陶瓷及其制备方法
CN101955371A (zh) 一种闭合气孔泡沫陶瓷的制备方法
CN110526683A (zh) 一种利用钽铌尾矿制备微晶复合发泡陶瓷保温板的方法
CN108298956B (zh) 一种低收缩密实型劈开砖的制备方法
CN101148343A (zh) 新型梯度复合保温层及其制造方法
CN107010973A (zh) 一种轻质复相多孔隔热耐火材料和莫来石质耐火材料及其制备方法
CN103833383A (zh) 一种闭孔结构的刚玉-镁铝尖晶石质耐火骨料及制备方法
CN101985403A (zh) 发泡石保温板及其制备方法
CN101723595A (zh) 一种陶瓷化泡沫玻璃制品及其制造工艺
CN112010642B (zh) 一种发泡陶瓷二次布料生产工艺
CN111004047A (zh) 发泡陶瓷工业量产的新工艺、发泡陶瓷及其应用、建筑构件
CN104649707A (zh) 一种轻质隔音保温多孔陶瓷材料及其制备方法
CN115819109B (zh) 一种全闭孔泡沫陶瓷及其低温烧制方法
CN102786287B (zh) 采用河道淤泥制备的a1级防火保温材料及其制备方法
CN112266230A (zh) 一种高温微发泡的轻质隔热材料及其制备方法
CN104311109A (zh) 发泡注模、磷酸二氢铝胶结制备泡沫陶瓷的方法
CN109133862A (zh) 利用铁尾矿制备的多孔保温装饰材料及其制备方法
CN111548189A (zh) 一种用陶瓷抛磨废料和高炉矿渣制备发泡陶瓷材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240924

Address after: 274000 Inside Heze Muchenglin Board Industry Co., Ltd., Xuzhuang Industrial Park, Huji Town, Mudan District, Heze City, Shandong Province

Patentee after: Shandong Jiasuyuan Environmental Protection Technology Co.,Ltd.

Country or region after: China

Address before: 264005, Qingquan Road, Laishan District, Shandong, Yantai, 32

Patentee before: Yantai University

Country or region before: China