CN104377242A - Ldmos器件及其制造方法 - Google Patents

Ldmos器件及其制造方法 Download PDF

Info

Publication number
CN104377242A
CN104377242A CN201310349663.XA CN201310349663A CN104377242A CN 104377242 A CN104377242 A CN 104377242A CN 201310349663 A CN201310349663 A CN 201310349663A CN 104377242 A CN104377242 A CN 104377242A
Authority
CN
China
Prior art keywords
region
field oxygen
oxygen
silicon
local field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310349663.XA
Other languages
English (en)
Inventor
金锋
石晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Original Assignee
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huahong Grace Semiconductor Manufacturing Corp filed Critical Shanghai Huahong Grace Semiconductor Manufacturing Corp
Priority to CN201310349663.XA priority Critical patent/CN104377242A/zh
Publication of CN104377242A publication Critical patent/CN104377242A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0882Disposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66659Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明公开了一种LDMOS器件,形成于硅衬底上,由浅沟槽场氧隔离出有源区,位于沟道区和漏区之间的漂移区中漏区场氧采用局部场氧,局部场氧由局部场氧区域的硅被刻蚀一定深度后局部场氧化形成,局部场氧的深度由局部场氧区域的硅被刻蚀的深度定义。本发明还公开了一种LDMOS器件的制造方法。本发明的漏区局部场氧较圆滑的底部,从而能够消除漏区场氧底部电流和电场集中的问题,从而能提高器件的击穿电压;也能够缩短器件的漏区电流路径的长度,从而能够降低器件的比导通电阻,提高器件的电流性能。

Description

LDMOS器件及其制造方法
技术领域
本发明涉及半导体集成电路制造领域,特别是涉及一种LDMOS器件;本发明还涉及一种LDMOS器件的制造方法。 
背景技术
浅槽隔离(STI)技术引入可以有效缩短有源区之间的距离从而进行有效场氧隔离,大大增加了集成度,但在STI工艺中集成LDMOS器件的话,LDMOS器件的漏区同样存在STI,这个时候由于STI底部的形貌容易造成LDMOS器件在STI底部击穿,降低了LDMOS器件的击穿电压,同时由于STI的形貌造成LDMOS器件导通时电流沿着STI和硅界面流通,电流路径较长,导致LDMOS器件的导通电阻较高。如图1所示,是现有第一种LDMOS器件的结构示意图;现有第一种LDMOS器件是在STI工艺中传统的LDMOS结构,以N型LDMOS器件为例进行说明如下,现有第一种LDMOS器件包括:硅衬底100,N型掺杂的漂移区101,P型掺杂的沟道区102,浅沟槽隔离用的浅沟槽场氧103,浅沟槽场氧103用于隔离出有源区;多晶硅栅104,多晶硅栅104和硅衬底100的表面隔离有栅介质层如栅氧化层,在横向上所述多晶硅栅104从所述沟道区102延伸到所述漂移区101上方,被所述多晶硅栅104覆盖的所述沟道区102用于形成沟道;所述多晶硅栅104的第一侧面位于所述沟道区上方、第二侧面位于所述漂移区101上方。N+掺杂的源区105b和漏区105a,源区105b和所述多晶硅栅104的第一侧面自对准。所述漏区105a形成于所述漂移区101中。漏区浅沟槽场氧103a形成于漏区105a到漂移区101和沟道区102的边界之间的漂移区101中,且漏区浅沟槽场氧103a和漂移区101和沟道区102的边界相隔一段距离。多晶硅栅104延伸到漏区浅沟槽场氧103a上方并作为多晶硅场板。从漂移区101和沟道区102的边界到漏区105a之间的整个区域109为LDMOS器件的漏区扩展区。漏区浅沟槽场氧103a和用于隔离出有源区的浅沟槽场氧103的结构相同。现有第一种结构会带来如下两个问题:第一问题为,如图2所示,现有第一种LDMOS器件的电流路径示意图,LDMOS器件的电流路径将会沿着漏区浅沟槽场氧103a侧壁和底部走,这样电流走的路径会很长,导致漏区的电阻较大,LDMOS器件的线性区电流较小,影响LDMOS器件的能力。第二个问题为,如 图2所示,在漏区浅沟槽场氧103a底部的角上即虚线框所示区域A,由于漏区浅沟槽场氧103a形貌的特点造成区域A的角上会形成80度~88度的角度,这个角度的存在会让电流流经这里时产生电流积聚,在耐压时会造成电场的集中,导致击穿电压较低;如图3所示,是现有第一种LDMOS器件的碰撞电离仿真图,虚线框所示区域A1为图2中的区域A处的仿真,虚线框所示区域A2为区域A1的放大图,可以看到图2的区域A的角上的碰撞电离仿真情况,颜色越深代表碰撞电离越厉害,也就是电场越集中,区域A位置是碰撞电离比较厉害的区域,而区域A的角上是最厉害的,这里的电场最集中,最容易发生击穿。由于区域A角上是80度~88度的角度,存在一个相对的尖端,在尖端电场集中会使得击穿电压的下降。 
如图4所示,是现有第二种LDMOS器件的结构示意图;现有第二种LDMOS器件是对图1所示的现有第一种LDMOS器件的优化,和现有第一种LDMOS器件的唯一区别为,现有第二种LDMOS器件的漏区浅沟槽场氧103a的深度浅于用于隔离出有源区的浅沟槽场氧103的深度,通过图2可知,漏区浅沟槽场氧103a的深度的减少会使得现有第二种LDMOS器件的整个电流路径比现有第一种LDMOS器件的要短,这样能解决现有第一种LDMOS器件所存在的第一个问题,但同样是STI的工艺,对于现有第一种LDMOS器件所存在的区域A造成的电流/电场集中问题即第二个问题仍无法解决。 
发明内容
本发明所要解决的技术问题是提供一种LDMOS器件,能提高器件的击穿电压,降低器件的比导通电阻。为此,本发明还提供一种LDMOS器件的制造方法。 
为解决上述技术问题,本发明提供的LDMOS器件形成于硅衬底上,由浅沟槽场氧隔离出有源区,所述LDMOS器件包括: 
漂移区,由形成于所述硅衬底中的第一导电类型掺杂区组成。 
沟道区,由形成于所述硅衬底中的第二导电类型掺杂区组成;所述漂移区和所述沟道区横向接触。 
形成于所述硅衬底上方的多晶硅栅,所述多晶硅栅和所述硅衬底表面隔离有栅介质层,在横向上所述多晶硅栅从所述沟道区延伸到所述漂移区上方,被所述多晶硅栅覆盖的所述沟道区用于形成沟道;所述多晶硅栅的第一侧面位于所述沟道区上方、第二侧面位于所述漂移区上方。 
由第一导电类型的重掺杂区组成的源区和漏区,所述源区形成于所述沟道区中并 和所述多晶硅栅的第一侧面自对准,所述漏区形成于所述漂移区中。 
由第二导电类型的重掺杂区组成的衬底引出区,所述衬底引出区形成于所述沟道区中并用于将所述沟道区引出,所述衬底引出区和所述源区横向接触且离所述多晶硅栅的第一侧面更远。 
第一浅沟槽场氧和第二浅沟槽场氧,所述第一浅沟槽场氧和所述衬底引出区横向接触且离所述多晶硅栅的第一侧面更远,所述第二浅沟槽场氧和所述漏区横向接触且离所述多晶硅栅的第二侧面更远,所述第一浅沟槽场氧和所述第二浅沟槽场氧围绕并隔离出所述LDMOS器件的有源区。 
局部场氧,位于所述沟道区和所述漏区之间的所述漂移区中,所述局部场氧和所述漏区横向接触,所述局部场氧和所述沟道区相隔一段距离;所述多晶硅栅延伸到所述局部场氧上方。 
所述局部场氧由局部场氧区域的硅被刻蚀一定深度后局部场氧化形成,所述局部场氧的深度由所述局部场氧区域的硅被刻蚀的深度定义,所述局部场氧的深度越深、所述LDMOS器件的击穿电压越高。 
进一步的改进是,所述局部场氧区域的硅被刻蚀的深度为10埃~1000埃;所述局部场氧的深度为500埃~3000埃。 
进一步的改进是,所述LDMOS器件为N型器件,所述第一导电类型为N型,所述第二导电类型为P型;或者,所述LDMOS器件为P型器件,所述第一导电类型为P型,所述第二导电类型为N型。 
为解决上述技术问题,本发明提供的LDMOS器件的制造方法采用如下步骤形成所述局部场氧和所述浅沟槽场氧: 
步骤一、在所述硅衬底上淀积氮化硅膜层。 
步骤二、用光刻工艺形成的第一光刻胶图形定义出所述局部场氧区域的位置,将所述局部场氧区域的所述氮化硅膜层刻蚀掉并露出所述硅衬底表面。 
步骤三、去除所述第一光刻胶图形,利用所述氮化硅膜层作为阻挡层,将所述局部场氧区域的硅刻蚀一定深度。 
步骤四、采用局部场氧化工艺对硅刻蚀后的所述局部场氧区域进行局部氧化生长并形成所述局部场氧,所述局部场氧的深度由步骤三中所述局部场氧区域的硅被刻蚀的深度定义,所述局部场氧区域的硅被刻蚀的深度越深、所述局部场氧的深度越深。 
步骤五、用光刻工艺形成的第二光刻胶图形定义出浅沟槽场氧区域的位置,将所述浅沟槽场氧区域的所述氮化硅膜层刻蚀掉制作露出所述硅衬底表面,对所述浅沟槽场氧区域的硅进行刻蚀形成浅沟槽。 
步骤六、去除所述第二光刻胶图形,采用氧化物淀积工艺将所述浅沟槽填充并形成所述浅沟槽场氧;进行平坦化处理,使得所述浅沟槽场氧和所述局部场氧的顶部表面和所述硅衬底的顶部表面相平。 
进一步的改进是,步骤三中所述局部场氧区域的硅被刻蚀的深度为10埃~1000埃。 
进一步的改进是,步骤四中所述局部场氧的深度为500埃~3000埃。 
进一步的改进是,还包括如下步骤来形成所述LDMOS器件: 
步骤七、采用第一导电类型离子注入工艺在所述硅衬底中形成所述漂移区。 
步骤八、采用第二导电类型离子注入工艺在所述硅衬底中形成所述沟道区。 
步骤九、在所述硅衬底表面依次形成所述栅介质层和所述多晶硅栅。 
步骤十、进行第一导电类型的重掺杂离子注入同时形成所述源区和所述漏区。 
步骤十一、进行第二导电类型的重掺杂离子注入形成的所述衬底引出区。 
本发明LDMOS器件的漏区场氧采用局部场氧,和浅沟槽场氧相比,局部场氧较圆滑的底部,从而能够消除现有技术中漏区场氧采用浅沟槽场氧时在浅沟槽场氧的底部尖角处产生电流和电场集中的问题,从而能实现局部场氧底部的电流和电场均匀分布,也能使器件的碰撞电离区分布均匀并提高器件的击穿电压。 
本发明的LDMOS器件的漏区的局部场氧的深度能够通过硅刻蚀的深度来调节,从而能够实现器件的击穿电压大小可调。 
本发明LDMOS器件的漏区场氧采用局部场氧也能够缩短器件的漏区电流路径的长度,从而能够降低器件的比导通电阻,提高器件的电流性能。 
附图说明
下面结合附图和具体实施方式对本发明作进一步详细的说明: 
图1是现有第一种LDMOS器件的结构示意图; 
图2是现有第一种LDMOS器件的电流路径示意图; 
图3是现有第一种LDMOS器件的碰撞电离仿真图; 
图4是现有第二种LDMOS器件的结构示意图; 
图5A是本发明实施例LDMOS器件的结构示意图; 
图5B是本发明实施例LDMOS器件的电流路径示意图; 
图6是本发明实施例LDMOS器件的碰撞电离仿真图; 
图7-图13是本发明实施例LDMOS器件的制造方法的各步骤中的器件结构示意图; 
图14是现有第一和二种LDMOS器件和本发明实施例LDMOS器件的击穿电压和比导通电阻的比较曲线。 
具体实施方式
如图5A所示,是本发明实施例LDMOS器件的结构示意图;本发明实施例LDMOS器件形成于硅衬底200上,由浅沟槽场氧203隔离出有源区,所述LDMOS器件包括: 
漂移区201,由形成于所述硅衬底200中的第一导电类型掺杂区组成。 
沟道区202,由形成于所述硅衬底200中的第二导电类型掺杂区组成;所述漂移区201和所述沟道区202横向接触。 
形成于所述硅衬底200上方的多晶硅栅204,所述多晶硅栅204和所述硅衬底200表面隔离有栅介质层如栅氧化层,在横向上所述多晶硅栅204从所述沟道区202延伸到所述漂移区201上方,被所述多晶硅栅204覆盖的所述沟道区202用于形成沟道;所述多晶硅栅204的第一侧面位于所述沟道区202上方、第二侧面位于所述漂移区201上方。 
由第一导电类型的重掺杂区组成的源区205b和漏区205a,所述源区205b形成于所述沟道区202中并和所述多晶硅栅204的第一侧面自对准,所述漏区205a形成于所述漂移区201中。 
由第二导电类型的重掺杂区组成的衬底引出区206,所述衬底引出区206形成于所述沟道区202中并用于将所述沟道区202引出,所述衬底引出区206和所述源区205b横向接触且离所述多晶硅栅204的第一侧面更远。 
第一浅沟槽场氧203和第二浅沟槽场氧203,所述第一浅沟槽场氧203和所述衬底引出区206横向接触且离所述多晶硅栅204的第一侧面更远,所述第二浅沟槽场氧203和所述漏区205a横向接触且离所述多晶硅栅204的第二侧面更远,所述第一浅沟槽场氧203和所述第二浅沟槽场氧203围绕并隔离出所述LDMOS器件的有源区。 
局部场氧203a,位于所述沟道区202和所述漏区205a之间的所述漂移区201中,所述局部场氧203a和所述漏区205a横向接触,所述局部场氧203a和所述沟道区202 相隔一段距离;所述多晶硅栅204延伸到所述局部场氧203a上方。 
所述局部场氧203a由局部场氧区域的硅被刻蚀一定深度后局部场氧203a化形成,所述局部场氧203a的深度由所述局部场氧区域的硅被刻蚀的深度定义,所述局部场氧203a的深度越深、所述LDMOS器件的击穿电压越高。在较佳实施例中,所述局部场氧区域的硅被刻蚀的深度为10埃~1000埃;所述局部场氧203a的深度为500埃~3000埃。从漂移区201和沟道区202的边界到漏区205a之间的整个区域209为LDMOS器件的漏区扩展区。 
本发明实施例LDMOS器件即能为N型器件,也能为P型器件。当所述LDMOS器件为N型器件时,所述第一导电类型为N型,所述第二导电类型为P型;当所述LDMOS器件为P型器件时,所述第一导电类型为P型,所述第二导电类型为N型。 
如图5B所示,是本发明实施例LDMOS器件的电流路径示意图;可以看出所述局部场氧203a的底部较为圆滑,避免了所述浅沟槽场氧203的底部的尖角结构,所以电流在所述局部场氧203a的底部不会出现积聚的现象,而是较为平均,故能够避免电流和电场集中、使局部场氧底部的电流和电场均匀,也能使器件的碰撞电离区分布均匀并提高器件的击穿电压。 
图5B中Ld表示所述局部场氧203a的深度,该深度Ld能够通过硅刻蚀的深度来调节,从而能够实现器件的击穿电压大小可调。 
另外,比较图5B和图2可知,电流通过局部场氧的底部的路径显然要比通过浅沟槽场氧的底部路径要短,所以本发明实施例能够缩短器件的漏区电流路径的长度,从而能够降低器件的比导通电阻,提高器件的电流性能。 
如图6所示,是本发明实施例LDMOS器件的碰撞电离仿真图;可以看出,本发明实施例碰撞电离区分布更均匀,没有出现局部集中的问题;另外,通过电流分布的仿真也可以看出本发明实施例电流在局部场氧的底部分布比现有器件电流在浅沟槽场氧的底部分布的通路更宽更均匀。 
如图14所示,是现有第一和二种LDMOS器件和本发明实施例LDMOS器件的击穿电压和比导通电阻的比较曲线,可以看出本发明实施例LDMOS器件的击穿电压(BV)最高,比导通电阻(Rsp)最小。 
如图7至图13所示,是本发明实施例LDMOS器件的制造方法的各步骤中的器件结构示意图;本发明实施例LDMOS器件的制造方法采用如下步骤形成所述局部场氧 203a和所述浅沟槽场氧203: 
步骤一、如图7所示,在所述硅衬底200上淀积氮化硅膜层301。所述氮化硅膜层301的厚度为100埃~500埃。 
步骤二、如图8所示,用光刻工艺形成的第一光刻胶图形302定义出所述局部场氧区域303a的位置,将所述局部场氧区域303a的所述氮化硅膜层301刻蚀掉并露出所述硅衬底200表面。 
步骤三、如图9所示,去除所述第一光刻胶图形302,利用所述氮化硅膜层301作为阻挡层,将所述局部场氧区域303a的硅刻蚀一定深度D。较佳为,深度D的大小为10埃~1000埃。 
步骤四、如图10所示,采用局部场氧203a化工艺对硅刻蚀后的所述局部场氧区域303a进行局部氧化(LOCOS)生长并形成所述局部场氧203a,所述局部场氧203a的深度由步骤三中所述局部场氧区域303a的硅被刻蚀的深度D定义,所述局部场氧区域303a的硅被刻蚀的深度D越深、所述局部场氧203a的深度越深。 
本发明通过硅被刻蚀的深度D来定义局部场氧203a的深度,能够避免采用控制局部氧化生长的时间来控制局部场氧203a的深度的弊端,具体为:如果用控制局部氧化生长的时间来局部场氧203a的厚度的话,会造成鸟嘴过长,长出的鸟嘴区域氧化膜很薄,这样多晶硅栅204和漏区205a间的大电场会在这个薄弱区域集中,反而导致击穿电压下降。 
步骤五、如图11所示,用光刻工艺形成的第二光刻胶图形304定义出浅沟槽场氧区域的位置,将所述浅沟槽场氧区域的所述氮化硅膜层301刻蚀掉制作露出所述硅衬底200表面,对所述浅沟槽场氧区域的硅进行刻蚀形成浅沟槽305a。所述浅沟槽305a的深度为3000埃~4000埃、所述浅沟槽305a的底部角度为70度~90度。 
步骤六、如图12所示,去除所述第二光刻胶图形304,采用氧化物淀积工艺形成氧化层305将所述浅沟槽305a填充并形成所述浅沟槽场氧203;如图13所示,进行平坦化处理,使得所述浅沟槽场氧203和所述局部场氧203a的顶部表面和所述硅衬底200的顶部表面相平。较佳为,研磨后的所述局部场氧203a的深度为500埃~3000埃。 
之后采用标准LDMOS工艺流程来形成完整的LDMOS器件,具体为还包括如下步骤来形成所述LDMOS器件: 
步骤七、如图5A所示,采用第一导电类型离子注入工艺在所述硅衬底200中形成所述漂移区201。 
步骤八、如图5A所示,采用第二导电类型离子注入工艺在所述硅衬底200中形成所述沟道区202。 
步骤九、如图5A所示,在所述硅衬底200表面依次形成所述栅介质层和所述多晶硅栅204。 
步骤十、如图5A所示,进行第一导电类型的重掺杂离子注入同时形成所述源区205b和所述漏区205a。 
步骤十一、如图5A所示,进行第二导电类型的重掺杂离子注入形成的所述衬底引出区206。最后,形成金属接触引出源极、漏极、栅极和衬底电极。 
以上通过具体实施例对本发明进行了详细的说明,但这些并非构成对本发明的限制。在不脱离本发明原理的情况下,本领域的技术人员还可做出许多变形和改进,这些也应视为本发明的保护范围。 

Claims (7)

1.一种LDMOS器件,其特征在于,LDMOS器件形成于硅衬底上,由浅沟槽场氧隔离出有源区,所述LDMOS器件包括:
漂移区,由形成于所述硅衬底中的第一导电类型掺杂区组成;
沟道区,由形成于所述硅衬底中的第二导电类型掺杂区组成;所述漂移区和所述沟道区横向接触;
形成于所述硅衬底上方的多晶硅栅,所述多晶硅栅和所述硅衬底表面隔离有栅介质层,在横向上所述多晶硅栅从所述沟道区延伸到所述漂移区上方,被所述多晶硅栅覆盖的所述沟道区用于形成沟道;所述多晶硅栅的第一侧面位于所述沟道区上方、第二侧面位于所述漂移区上方;
由第一导电类型的重掺杂区组成的源区和漏区,所述源区形成于所述沟道区中并和所述多晶硅栅的第一侧面自对准,所述漏区形成于所述漂移区中;
由第二导电类型的重掺杂区组成的衬底引出区,所述衬底引出区形成于所述沟道区中并用于将所述沟道区引出,所述衬底引出区和所述源区横向接触且离所述多晶硅栅的第一侧面更远;
第一浅沟槽场氧和第二浅沟槽场氧,所述第一浅沟槽场氧和所述衬底引出区横向接触且离所述多晶硅栅的第一侧面更远,所述第二浅沟槽场氧和所述漏区横向接触且离所述多晶硅栅的第二侧面更远,所述第一浅沟槽场氧和所述第二浅沟槽场氧围绕并隔离出所述LDMOS器件的有源区;
局部场氧,位于所述沟道区和所述漏区之间的所述漂移区中,所述局部场氧和所述漏区横向接触,所述局部场氧和所述沟道区相隔一段距离;所述多晶硅栅延伸到所述局部场氧上方;
所述局部场氧由局部场氧区域的硅被刻蚀一定深度后局部场氧化形成,所述局部场氧的深度由所述局部场氧区域的硅被刻蚀的深度定义,所述局部场氧的深度越深、所述LDMOS器件的击穿电压越高。
2.如权利要求1所述的LDMOS器件,其特征在于:所述局部场氧区域的硅被刻蚀的深度为10埃~1000埃;所述局部场氧的深度为500埃~3000埃。
3.如权利要求1所述的LDMOS器件,其特征在于:所述LDMOS器件为N型器件,所述第一导电类型为N型,所述第二导电类型为P型;或者,所述LDMOS器件为P型器件,所述第一导电类型为P型,所述第二导电类型为N型。
4.一种制造如权利要求1所述的LDMOS器件的方法,其特征在于,采用如下步骤形成所述局部场氧和所述浅沟槽场氧:
步骤一、在所述硅衬底上淀积氮化硅膜层;
步骤二、用光刻工艺形成的第一光刻胶图形定义出所述局部场氧区域的位置,将所述局部场氧区域的所述氮化硅膜层刻蚀掉并露出所述硅衬底表面;
步骤三、去除所述第一光刻胶图形,利用所述氮化硅膜层作为阻挡层,将所述局部场氧区域的硅刻蚀一定深度;
步骤四、采用局部场氧化工艺对硅刻蚀后的所述局部场氧区域进行局部氧化生长并形成所述局部场氧,所述局部场氧的深度由步骤三中所述局部场氧区域的硅被刻蚀的深度定义,所述局部场氧区域的硅被刻蚀的深度越深、所述局部场氧的深度越深;
步骤五、用光刻工艺形成的第二光刻胶图形定义出浅沟槽场氧区域的位置,将所述浅沟槽场氧区域的所述氮化硅膜层刻蚀掉制作露出所述硅衬底表面,对所述浅沟槽场氧区域的硅进行刻蚀形成浅沟槽;
步骤六、去除所述第二光刻胶图形,采用氧化物淀积工艺将所述浅沟槽填充并形成所述浅沟槽场氧;进行平坦化处理,使得所述浅沟槽场氧和所述局部场氧的顶部表面和所述硅衬底的顶部表面相平。
5.如权利要求4所述的方法,其特征在于:步骤三中所述局部场氧区域的硅被刻蚀的深度为10埃~1000埃。
6.如权利要求4所述的方法,其特征在于:步骤四中所述局部场氧的深度为500埃~3000埃。
7.如权利要求4所述的方法,其特征在于,还包括如下步骤来形成所述LDMOS器件:
步骤七、采用第一导电类型离子注入工艺在所述硅衬底中形成所述漂移区;
步骤八、采用第二导电类型离子注入工艺在所述硅衬底中形成所述沟道区;
步骤九、在所述硅衬底表面依次形成所述栅介质层和所述多晶硅栅;
步骤十、进行第一导电类型的重掺杂离子注入同时形成所述源区和所述漏区;
步骤十一、进行第二导电类型的重掺杂离子注入形成的所述衬底引出区。
CN201310349663.XA 2013-08-12 2013-08-12 Ldmos器件及其制造方法 Pending CN104377242A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310349663.XA CN104377242A (zh) 2013-08-12 2013-08-12 Ldmos器件及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310349663.XA CN104377242A (zh) 2013-08-12 2013-08-12 Ldmos器件及其制造方法

Publications (1)

Publication Number Publication Date
CN104377242A true CN104377242A (zh) 2015-02-25

Family

ID=52556027

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310349663.XA Pending CN104377242A (zh) 2013-08-12 2013-08-12 Ldmos器件及其制造方法

Country Status (1)

Country Link
CN (1) CN104377242A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110473908A (zh) * 2019-08-29 2019-11-19 杭州电子科技大学温州研究院有限公司 一种具有梯形氧化槽的绝缘层上硅ldmos晶体管
CN110767548A (zh) * 2018-07-25 2020-02-07 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
CN111354644A (zh) * 2020-04-10 2020-06-30 上海华虹宏力半导体制造有限公司 Ldmos器件及其制造方法
CN111785617A (zh) * 2020-06-11 2020-10-16 上海华虹宏力半导体制造有限公司 Ldmos的制造方法
CN112309865A (zh) * 2019-08-01 2021-02-02 无锡华润上华科技有限公司 横向扩散金属氧化物半导体器件及其制造方法
CN112447854A (zh) * 2020-11-27 2021-03-05 华虹半导体(无锡)有限公司 Esd器件和包含其的集成电路
CN114512407A (zh) * 2022-04-20 2022-05-17 北京芯可鉴科技有限公司 Ldmosfet的制作方法及结构
CN117253925A (zh) * 2023-11-20 2023-12-19 深圳天狼芯半导体有限公司 一种具有凹槽场板的sti型ldmos及制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1734786A (zh) * 2004-08-11 2006-02-15 台湾积体电路制造股份有限公司 晶体管及其形成方法
CN101375404A (zh) * 2005-12-19 2009-02-25 Nxp股份有限公司 具有sti区的非对称场效应半导体器件
US20100127321A1 (en) * 2008-11-24 2010-05-27 Kwang Young Ko Semiconductor and Manufacturing Method for the Same
CN101819937A (zh) * 2009-05-29 2010-09-01 杭州矽力杰半导体技术有限公司 横向双扩散金属氧化物半导体晶体管的制造方法
US8049254B2 (en) * 2006-04-20 2011-11-01 Texas Instruments Incorporated Semiconductor device with gate-undercutting recessed region
CN102891180A (zh) * 2011-08-23 2013-01-23 成都芯源系统有限公司 一种包含mosfet器件的半导体器件和制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1734786A (zh) * 2004-08-11 2006-02-15 台湾积体电路制造股份有限公司 晶体管及其形成方法
CN101375404A (zh) * 2005-12-19 2009-02-25 Nxp股份有限公司 具有sti区的非对称场效应半导体器件
US8049254B2 (en) * 2006-04-20 2011-11-01 Texas Instruments Incorporated Semiconductor device with gate-undercutting recessed region
US20100127321A1 (en) * 2008-11-24 2010-05-27 Kwang Young Ko Semiconductor and Manufacturing Method for the Same
CN101819937A (zh) * 2009-05-29 2010-09-01 杭州矽力杰半导体技术有限公司 横向双扩散金属氧化物半导体晶体管的制造方法
CN102891180A (zh) * 2011-08-23 2013-01-23 成都芯源系统有限公司 一种包含mosfet器件的半导体器件和制作方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110767548A (zh) * 2018-07-25 2020-02-07 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
CN110767548B (zh) * 2018-07-25 2024-03-01 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
CN112309865A (zh) * 2019-08-01 2021-02-02 无锡华润上华科技有限公司 横向扩散金属氧化物半导体器件及其制造方法
CN110473908A (zh) * 2019-08-29 2019-11-19 杭州电子科技大学温州研究院有限公司 一种具有梯形氧化槽的绝缘层上硅ldmos晶体管
CN110473908B (zh) * 2019-08-29 2023-01-17 杭州电子科技大学温州研究院有限公司 一种具有梯形氧化槽的绝缘层上硅ldmos晶体管
CN111354644A (zh) * 2020-04-10 2020-06-30 上海华虹宏力半导体制造有限公司 Ldmos器件及其制造方法
CN111785617A (zh) * 2020-06-11 2020-10-16 上海华虹宏力半导体制造有限公司 Ldmos的制造方法
CN112447854A (zh) * 2020-11-27 2021-03-05 华虹半导体(无锡)有限公司 Esd器件和包含其的集成电路
CN112447854B (zh) * 2020-11-27 2023-03-07 华虹半导体(无锡)有限公司 Esd器件和包含其的集成电路
CN114512407A (zh) * 2022-04-20 2022-05-17 北京芯可鉴科技有限公司 Ldmosfet的制作方法及结构
CN117253925A (zh) * 2023-11-20 2023-12-19 深圳天狼芯半导体有限公司 一种具有凹槽场板的sti型ldmos及制备方法

Similar Documents

Publication Publication Date Title
CN104377242A (zh) Ldmos器件及其制造方法
JP5089284B2 (ja) 省スペース型のエッジ構造を有する半導体素子
CN109920854B (zh) Mosfet器件
CN102194858B (zh) 半导体装置
CN101969050B (zh) 一种绝缘体上硅可集成大电流n型组合半导体器件
CN102569373B (zh) 一种具有低导通饱和压降的igbt及其制造方法
CN105070759A (zh) Nldmos器件及其制造方法
CN104992977A (zh) Nldmos器件及其制造方法
CN102044563A (zh) Ldmos器件及其制造方法
CN104979404A (zh) 一种具有阶梯场氧的横向双扩散金属氧化物半导体场效应管
CN103050541A (zh) 一种射频ldmos器件及其制造方法
CN104409507B (zh) 低导通电阻vdmos器件及制备方法
CN107123684A (zh) 一种具有宽带隙材料与硅材料复合垂直双扩散金属氧化物半导体场效应管
CN107093623A (zh) 一种具有宽带隙衬底材料的垂直双扩散金属氧化物半导体场效应管
CN105633142B (zh) 一种抑制关态电流的隧穿场效应晶体管
KR101315699B1 (ko) 초접합 트렌치 구조를 갖는 파워 모스펫 및 그 제조방법
CN107644903B (zh) 具有高抗短路能力的沟槽栅igbt器件及其制备方法
CN103855206A (zh) 绝缘栅双极晶体管及其制造方法
CN103681817A (zh) Igbt器件及其制作方法
CN109461769B (zh) 一种沟槽栅igbt器件结构及其制作方法
CN103715237A (zh) 半导体装置以及半导体装置的制造方法
CN101447432A (zh) 双扩散场效应晶体管制造方法
US8530967B2 (en) Lateral insulated-gate bipolar transistor and manufacturing method thereof
CN104282689A (zh) 嵌入frd的igbt器件及制造方法
CN209104157U (zh) 一种沟槽栅igbt器件结构

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20150225

RJ01 Rejection of invention patent application after publication