CN101969050B - 一种绝缘体上硅可集成大电流n型组合半导体器件 - Google Patents

一种绝缘体上硅可集成大电流n型组合半导体器件 Download PDF

Info

Publication number
CN101969050B
CN101969050B CN201010266405.1A CN201010266405A CN101969050B CN 101969050 B CN101969050 B CN 101969050B CN 201010266405 A CN201010266405 A CN 201010266405A CN 101969050 B CN101969050 B CN 101969050B
Authority
CN
China
Prior art keywords
type
region
area
oxide layer
source region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201010266405.1A
Other languages
English (en)
Other versions
CN101969050A (zh
Inventor
时龙兴
钱钦松
霍昌隆
孙伟锋
陆生礼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201010266405.1A priority Critical patent/CN101969050B/zh
Publication of CN101969050A publication Critical patent/CN101969050A/zh
Priority to US13/819,286 priority patent/US8754442B2/en
Priority to PCT/CN2011/077037 priority patent/WO2012024986A1/zh
Application granted granted Critical
Publication of CN101969050B publication Critical patent/CN101969050B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/74Making of localized buried regions, e.g. buried collector layers, internal connections substrate contacts
    • H01L21/743Making of internal connections, substrate contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7394Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET on an insulating layer or substrate, e.g. thin film device or device isolated from the bulk substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0705Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

一种提高电流密度的绝缘体上硅可集成大电流N型半导体组合器件,包括:P型衬底及其上设埋氧层,在埋氧层上设被分隔成区域Ⅰ和Ⅱ的P型外延层,Ⅰ区包括:N型漂移区、P型深阱、N型缓冲阱、P型漏区、N型源区和P型体接触区,在硅表面设有场氧化层和栅氧化层,在栅氧化层上设有多晶硅栅,Ⅱ区包括:N型三极管漂移区、P型深阱、N型三极管缓冲阱、P型发射区和N型基区、N型源区和P型体接触区,硅表面设有场氧化层和栅氧化层,在栅氧化层上设有多晶硅栅,其特征在于N型基区包在N型缓冲区内部,P型漏区上的漏极金属与N型基区上的基极金属通过金属层连通。本发明在不增加器件面积及降低器件其他性能的基础上显著提升器件的电流密度。

Description

一种绝缘体上硅可集成大电流N型组合半导体器件
技术领域
本发明涉及高压功率半导体器件领域,是关于一种适用于高压应用的提高电流密度的绝缘体上硅可集成大电流N型组合半导体器件。
背景技术
随着人们对现代化生活需求的日益增强,功率半导体器件的性能越来越受到关注,其中功率半导体器件的可集成性、高耐压、大电流和与低压电路部分的良好的隔离能力是人们最大的技术要求。决定功率集成电路处理高电压、大电流能力大小的因素除了功率半导体器件的种类以外,功率半导体器件的结构和制造工艺也是重要的影响因素。
长久以来,人们采用的功率半导体器件为高压三级管和高压绝缘栅场效应晶体管。这两种器件在满足人们基本的高耐压和可集成性的需求的同时,也给功率集成电路带来了许多的负面影响。对于高压三级管,它的不足有输入阻抗很低,开关速度不高。尽管高压绝缘栅场效应晶体管的输入阻抗非常高,但是电流驱动能力有限,除此之外,它的高耐压和高的导通阻抗呈现出不可避免的矛盾。
随着科学技术的发展,绝缘栅双极型器件的出现解决了人们对功率半导体器件的大部分需求。绝缘栅双极型器件集合了高压三极管和绝缘栅场效应晶体管的优势,具有高的输入阻抗、高的开关速度、高耐压、大的电流驱动能力和低导通阻抗等性能。但是,首先出现的绝缘栅双极型器件是纵向器件,可集成性能差。后来出现的横向绝缘栅双极型器件解决了这一问题。
功率半导体器件的可集成性、高耐压、大电流的需求解决后,它的隔离性成为主要的矛盾。主要是在体硅工艺中,高压电路和低压电路同时集成在一个芯片上,高压电路的漏电流会比较高,因此会通过衬底进入低压电路引发低压电路的闩锁,最终造成芯片烧毁。为了解决这一问题,人们提出了绝缘体上硅工艺。
绝缘体上硅工艺的出现有效地解决了功率半导体器件的隔离问题。目前绝缘体上硅横向绝缘栅双极型器件已成为功率半导体器件的主力军,广泛应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。
围绕着绝缘体上硅横向绝缘栅双极型器件的一个较大的问题是,与纵向器件相比电流密度不够高,因此常常以加大器件的面积来获得高的电流驱动能力,因而耗费大量的芯片面积,增加了成本。本文介绍了一种新型的提高电流密度的绝缘体上可集成大电流N型组合半导体器件,在不增加版图面积的前提下,与同尺寸的普通绝缘体上硅N型横向绝缘栅双极型器件相比,电流密度大幅度增加。
发明内容
本发明提供一种能够在不改变器件面积的基础上有效提高器件电流密度的绝缘体上硅可集成大电流N型组合半导体器件。
本发明采用如下技术方案:
一种绝缘体上硅可集成大电流N型组合半导体器件,包括:P型硅衬底,在P型硅衬底上设有埋氧层,在埋氧层中央上方处设有P型深阱,在P型深阱上设有N型环形源区和P型体接触区,所述N型环形源区环绕在P型体接触区的外部,且在N型源区和P型体接触区上设有用于连通N型源区和P型体接触区的源极金属,在埋氧层上还设有第一隔离区和第二隔离区,所述第一隔离区和第二隔离区向埋氧层中心延伸并由此分隔形成第一区域Ⅰ和第二区域Ⅱ,在第一区域Ⅰ内设有N型横向绝缘栅双极型晶体管,在第二区域Ⅱ内设有PNP型高压双极型晶体管和N型横向双扩散金属氧化层场效应晶体管,所述的N型横向绝缘栅双极型晶体管的源区采用所述的N型环形源区,所述的PNP型高压双极型晶体管的集电区采用所述的P型体接触区,所述的N型横向双扩散金属氧化层场效应晶体管的源区采用所述的N型环形源区,所述的P型体接触区同时为所述的N型横向绝缘栅双极型晶体管的体接触区,连接于N型横向绝缘栅双极型晶体管漏极的漏极金属通过金属层与连接于PNP型高压双极型晶体管基极的基极金属连接。
与现有技术相比,本发明具有如下优点:
(1)本发明器件在原来版图的基础上用隔离槽将器件分隔为两个部分,其中一个部分用于制作普通N型横向绝缘栅双极型晶体管,另一部分用于制作PNP型高压双极型晶体管和普通N型高压横向双扩散金属氧化层场效应晶体管,并通过金属层将N型横向绝缘栅双极型晶体管的漏极和PNP型高压双极型晶体管的基极连接在一起,可以有效的将前者的漏极电流作为流过PNP型高压双极型晶体管的基极电流进一步放大,除此之外还将与PNP型高压双极型晶体管处在相同区域的普通N型横向双扩散金属氧化层场效应晶体管的电流进行放大,从而提高整个器件电流密度。该半导体组合器件的等效电路图参见附图4,图5显示了本发明的半导体组合器件与相同面积的一般N型绝缘栅双极型器件的电流密度的比较,可见,本发明的半导体组合器件的电流密度比一般N型绝缘栅双极型器件的电流密度大大提高了。
(2)本发明器件的在提高电流密度的同时与传统器件相比,并不改变器件原来的版图面积。
(3)本发明器件的好处在于提高电流密度的同时,并不影响器件的耐压水平,器件的基本性能要求仍能满足要求。图6显示了本发明的半导体组合器件与相同面积的一般的N型绝缘栅双极型晶体管的关态击穿电压比较图,可见本发明的半导体组合器件的关态击穿电压可以保持与相同面积的一般N型绝缘栅双极型器件一致。
(4)本发明器件的制作并不需要额外工艺步骤,与现有的集成电路制造工艺完全兼容。
附图说明
图1(a)是本发明组合半导体器件去除钝化保护氧化层后的俯视图。
图1(b)是沿着图1(a)的AA’面的剖面图。(含有钝化保护氧化层)
图1(c)是沿着图1(a)的BB’面的剖面图。(含有钝化保护氧化层)
图2是本发明的组合半导体器件三维立体结构图。(去除钝化保护氧化层和部分金属)
图3是本发明的半导体组合器件沿AA’面的三维立体剖面图(去除钝化保护氧化层和部分金属)。
图4是本发明的半导体组合器件的等效电路图。
图5是本发明的半导体组合器件和相同面积的一般N型绝缘栅双极型器件的漏极电流密度比较图。
图6是本发明的半导体组合器件和相同面积的一般N型绝缘栅双极型器件的关态击穿电压比较图。
图7(a)是形成本发明的半导体组合器件中的P型深阱16的工艺示意图。
图7(b)是形成本发明的半导体组合器件中第一区域(Ⅰ)的N型漂移区4以及第二区域(Ⅱ)的N型三极管漂移区4’的工艺示意图。
图7(c)是形成本发明的半导体组合器件中N漂移区4左上方的N型缓冲阱5以及N型三极管漂移区4’右上方的N型三极管缓冲阱5’的工艺示意图。
图7(d)是形成本发明的半导体组合器件中第一区域(Ⅰ)的场氧化层8、栅氧化层9以及多晶硅栅10和第二区域(Ⅱ)的场氧化层8’、栅氧化层9’以及多晶硅栅10’的工艺示意图。
图7(e)是形成本发明的半导体组合器件中的P型漏区6、P型发射区14、N型基区15、P型体接触区12以及N型环形源区11的工艺示意图。
图7(f)是完全形成本发明的半导体组合器件后,沿着图1(a)的AA’面的剖面图。
具体实施方式
一种绝缘体上硅可集成大电流N型组合半导体器件,包括:P型衬底1,在P型衬底1上设有埋氧层2,在埋氧层2中央上方处设有P型深阱16,在P型深阱16上设有N型环形源区11和P型体接触区12,所述N型环形源区环绕在P型体接触区的外部,且在N型环形源区11和P型体接触区12上设有连通N型环形源区11和P型体接触区12的源极金属72,在埋氧层2上还设有第一隔离区101和第二隔离区102,由所述的第一隔离区101和第二隔离区102向埋氧层2中心延伸并由此分隔形成第一区域Ⅰ和第二区域Ⅱ,在第一区域Ⅰ内设有N型横向绝缘栅双极型晶体管,在第二区域Ⅱ内设有PNP型高压双极型晶体管和N型横向双扩散金属氧化层场效应晶体管,所述的N型横向绝缘栅双极型晶体管的源区采用所述的N型环形源区11,所述的PNP型高压双极型晶体管的集电区采用所述的P型体接触区12,所述的N型横向双扩散金属氧化层场效应晶体管的源区采用所述的N型环形源区11,所述的P型体接触区12同时为所述的N型横向绝缘栅双极型晶体管的体接触区,连接于N型横向绝缘栅双极型晶体管漏极的漏极金属70通过金属层与连接于PNP型高压双极型晶体管基极的基极金属70’连接。
所述的第一隔离区101和第二隔离区102所形成的夹角可以调整,但是由所述的第一隔离区101和第二隔离区102向埋氧层2中心延伸并由此分隔形成的两个区域中,钝角所包围的区域必须为区域Ⅰ,而锐角所包围的区域必须为区域Ⅱ。
虽然附图说明中的本半导体组合器件结构是采用圆形版图实现形式,但是其实现形式并不仅限于圆形,也可以是跑道型、矩形等其他形状,只要用两个隔离槽101和102将第一区域Ⅰ和区域Ⅱ隔开并将N型横向绝缘栅双极型器件的漏极与PNP型高压三极管的基极用金属连接即可。
所述的绝缘体上硅可集成大电流N型半导体组合器件的P型发射区14与N型基区15的间距为1μm~2μm。
本发明采用如下方法来制备:
第一步,取具有P型外延层的绝缘体上硅圆片,刻蚀所需要的隔离槽101和102,从而形成第一区域Ⅰ和第二区域Ⅱ,且P型外延层被分隔成在第一区域Ⅰ内的第一P型外延层3和在第二区域Ⅱ内的第二P型外延层3’。
第二步,通过高能量硼离子注入,并高温退火形成P型深阱16。
第三步,以高能量的磷离子注入,高温退火后在第一区域Ⅰ形成N型漂移区4而在第二区域Ⅱ形成N型三极管漂移区4’。
第四步,以高能量的磷离子注入,高温退火后在N漂移区4左上方形成N型缓冲阱5而在N型三极管漂移区4’右上形成N型三极管缓冲阱5’。
第五步,淀积并刻蚀氮化硅,在高温下生长场氧化层。再生长栅氧化层,并淀积多晶硅,刻蚀出多晶硅栅。
第六步,通过高剂量的硼离子和磷离子注入,制作各个电极接触区。
第七步,淀积二氧化硅,刻蚀电极接触孔后淀积金属引线层并刻蚀掉多余金属。
第八步,进行钝化层的制作。

Claims (5)

1.一种绝缘体上硅可集成大电流N型组合半导体器件,包括:P型硅衬底(1),在P型硅衬底(1)上设有埋氧层(2),在埋氧层(2)中央上方处设有深及埋氧层(2)的P型深阱(16),在P型深阱(16)上设有N型环形源区(11)和P型体接触区(12),所述N型环形源区(11)环绕在P型体接触区(12)的外部,且在N型环形源区(11)和P型体接触区(12)上设有用于连通N型环形源区(11)和P型体接触区(12)的源极金属(72),在埋氧层(2)上还设有第一隔离区(101)和第二隔离区(102),所述第一隔离区(101)和第二隔离区(102)向埋氧层(2)中心延伸并由此分隔形成第一区域(I)和第二区域(II),在第一区域(I)内设有N型横向绝缘栅双极型晶体管,在第二区域(II)内设有PNP型高压双极型晶体管和N型横向双扩散金属氧化层场效应晶体管,所述的N型横向绝缘栅双极型晶体管的源区采用所述的N型环形源区(11),所述的PNP型高压双极型晶体管的集电区采用所述的P型体接触区(12),所述的N型横向双扩散金属氧化层场效应晶体管的源区采用所述的N型环形源区(11),所述的P型体接触区(12)同时为所述的N型横向绝缘栅双极型晶体管的体接触区,连接于N型横向绝缘栅双极型晶体管漏极的漏极金属(70)通过金属层与连接于PNP型高压双极型晶体管基极的基极金属(70’)连接。
2.根据权利要求1所述的绝缘体上硅可集成大电流N型组合半导体器件,其特征在于,所述的第一区域(I)包括:设在埋氧层(2)上的第一P型外延层(3),在第一P型外延层(3)的左上方设有N型漂移区(4),在N型漂移区(4)的左上方设有N型缓冲阱(5),在N型缓冲阱(5)的左上方设有P型漏区(6)且所述的漏极金属(70)设在P型漏区(6)的上方,在N型漂移区(4)的硅表面设有场氧化层(8)且场氧化层(8)与P型漏区(6)相接,在N型环形源区(11)和场氧化层(8)之间的硅表面设有栅氧化层(9),栅氧化层(9)上设有多晶硅栅(10)且多晶硅栅(10)延伸至场氧化层(8)的上表面,在多晶硅栅(10)上设有栅极金属(71)。
3.根据权利要求1所述的绝缘体上硅可集成大电流N型组合半导体器件,其特征在于,所述的第二区域(II)包括:设在埋氧层(2)上的第二P型外延层(3’),在第二P型外延层(3’)的右上方设有N型三极管漂移区(4’),在N型三极管漂移区(4’)的右上方设有N型三极管缓冲阱(5’),在N型三极管缓冲阱(5’)上自右至左设有P型发射区(14)和N型基区(15),在P型发射区(14)上设有发射极金属(73),在N型基区(15)上设有所述的基极金属(70’),在N型三极管漂移区(4’)的硅表面设有场氧化层(8’)且场氧化层(8’)与N型基区(15)相接,在N型环形源区(11)和场氧化层(8’)之间的硅表面设有栅氧化层(9’),栅氧化层(9’)上设有多晶硅栅(10’)且多晶硅栅(10’)延伸至场氧化层(8’)的上表面,在多晶硅栅(10’)上设有栅极金属(71’)。
4.根据权利要求3所述的绝缘体上硅可集成大电流N型组合半导体器件,其特征在于,P型发射区(14)与N型基区(15)的间距为1微米~2微米。
5.根据权利要求1、2或3所述的绝缘体上硅可集成大电流N型组合半导体器件,其特征在于,第一区域(I)和第二区域(II)上表面非金属区域设有钝化保护氧化层(13)。
CN201010266405.1A 2010-08-27 2010-08-27 一种绝缘体上硅可集成大电流n型组合半导体器件 Active CN101969050B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201010266405.1A CN101969050B (zh) 2010-08-27 2010-08-27 一种绝缘体上硅可集成大电流n型组合半导体器件
US13/819,286 US8754442B2 (en) 2010-08-27 2011-07-11 Silicon on insulator integrated high-current N type combined semiconductor device
PCT/CN2011/077037 WO2012024986A1 (zh) 2010-08-27 2011-07-11 一种绝缘体上硅可集成大电流n型组合半导体器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010266405.1A CN101969050B (zh) 2010-08-27 2010-08-27 一种绝缘体上硅可集成大电流n型组合半导体器件

Publications (2)

Publication Number Publication Date
CN101969050A CN101969050A (zh) 2011-02-09
CN101969050B true CN101969050B (zh) 2013-04-24

Family

ID=43548179

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010266405.1A Active CN101969050B (zh) 2010-08-27 2010-08-27 一种绝缘体上硅可集成大电流n型组合半导体器件

Country Status (3)

Country Link
US (1) US8754442B2 (zh)
CN (1) CN101969050B (zh)
WO (1) WO2012024986A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101969050B (zh) 2010-08-27 2013-04-24 东南大学 一种绝缘体上硅可集成大电流n型组合半导体器件
US8581339B2 (en) * 2011-08-08 2013-11-12 Macronix International Co., Ltd. Structure of NPN-BJT for improving punch through between collector and emitter
CN102623509A (zh) * 2012-04-19 2012-08-01 成都芯源系统有限公司 高压开关器件及其制作方法
CN102956636B (zh) * 2012-09-14 2015-02-04 东南大学 一种大电流n型绝缘体上硅横向绝缘栅双极型晶体管
CN102903746B (zh) * 2012-11-07 2015-06-03 东南大学 一种大电流密度的横向超薄绝缘栅双极型晶体管
CN105990408A (zh) * 2015-02-02 2016-10-05 无锡华润上华半导体有限公司 横向绝缘栅双极型晶体管
US11289593B2 (en) * 2015-07-31 2022-03-29 Infineon Technologies Austria Ag Breakdown resistant HEMT substrate and device
US10218349B2 (en) * 2016-05-17 2019-02-26 Littelfuse, Inc. IGBT having improved clamp arrangement
CN106356313B (zh) * 2016-11-04 2018-12-14 东南大学 横向绝缘栅双极型晶体管界面态的测试方法及5端口器件
US9905558B1 (en) 2016-12-22 2018-02-27 Texas Instruments Incorporated Conductivity modulated drain extended MOSFET
DE102017109264B3 (de) * 2017-04-28 2018-08-23 Infineon Technologies Ag Leistungshalbleiterbauelemente und ein Verfahren zum Bilden eines Leistungshalbleiterbauelements
CN115483281A (zh) * 2021-05-31 2022-12-16 无锡华润上华科技有限公司 逆导型横向绝缘栅双极型晶体管
CN115566060B (zh) * 2022-11-10 2023-06-13 上海功成半导体科技有限公司 Igbt器件及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1825602A (zh) * 2005-02-24 2006-08-30 松下电器产业株式会社 半导体装置及互补型金属绝缘半导体逻辑电路
CN202076269U (zh) * 2010-08-27 2011-12-14 东南大学 一种绝缘体上硅可集成大电流n型组合半导体器件

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8138570B2 (en) * 2007-03-28 2012-03-20 Advanced Analogic Technologies, Inc. Isolated junction field-effect transistor
JP5410012B2 (ja) * 2007-09-28 2014-02-05 ローム株式会社 半導体装置
JP2010157582A (ja) * 2008-12-26 2010-07-15 Rohm Co Ltd 半導体装置
US8049307B2 (en) 2009-01-23 2011-11-01 Vanguard International Semiconductor Corporation Insulated gate bipolar transistor (IGBT) electrostatic discharge (ESD) protection devices
CN101714552B (zh) 2009-11-09 2011-05-25 苏州博创集成电路设计有限公司 等离子显示驱动芯片用高低压器件及制备方法
CN101969050B (zh) 2010-08-27 2013-04-24 东南大学 一种绝缘体上硅可集成大电流n型组合半导体器件

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1825602A (zh) * 2005-02-24 2006-08-30 松下电器产业株式会社 半导体装置及互补型金属绝缘半导体逻辑电路
CN202076269U (zh) * 2010-08-27 2011-12-14 东南大学 一种绝缘体上硅可集成大电流n型组合半导体器件

Also Published As

Publication number Publication date
US8754442B2 (en) 2014-06-17
US20130153956A1 (en) 2013-06-20
WO2012024986A1 (zh) 2012-03-01
CN101969050A (zh) 2011-02-09

Similar Documents

Publication Publication Date Title
CN101969050B (zh) 一种绝缘体上硅可集成大电流n型组合半导体器件
US9496378B2 (en) IGBT with buried emitter electrode
CN110556388B (zh) 一种可集成功率半导体器件及其制造方法
CN104733531A (zh) 使用氧化物填充沟槽的双氧化物沟槽栅极功率mosfet
CN105789311B (zh) 横向扩散场效应晶体管及其制造方法
CN106298935B (zh) Ldmos器件及其制造方法
CN105914230A (zh) 一种超低功耗半导体功率器件及制备方法
CN101976670B (zh) 一种绝缘体上硅可集成大电流p型组合半导体器件
CN103337498A (zh) 一种bcd半导体器件及其制造方法
CN104377242A (zh) Ldmos器件及其制造方法
CN105914231B (zh) 电荷存储型igbt及其制造方法
CN103762230A (zh) N沟道注入效率增强型绝缘栅双极型晶体管
CN202076269U (zh) 一种绝缘体上硅可集成大电流n型组合半导体器件
CN101834202B (zh) 降低热载流子效应的n型横向绝缘栅双极型器件
CN102646712B (zh) 一种ldmos器件及其制造方法
CN104078498B (zh) 一种沟槽隔离横向绝缘栅双极型晶体管
CN101969062B (zh) 一种提高电流密度的绝缘体上硅n型半导体组合器件
CN103117309A (zh) 一种横向功率器件结构及其制备方法
CN208674122U (zh) 一种带有屏蔽栅的超结igbt
CN201918387U (zh) 一种绝缘体上硅可集成大电流p型组合半导体器件
CN106298943A (zh) 一种具有体电场调制的横向双扩散金属氧化物半导体场效应管
CN101969064B (zh) 一种提高电流密度的绝缘体上硅p型半导体组合器件
CN205564757U (zh) 一种超低功耗半导体功率器件
CN201845778U (zh) 一种提高电流密度的绝缘体上硅p型半导体组合器件
CN201853707U (zh) 一种提高电流密度的绝缘体上硅n型半导体组合器件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant