CN104071771B - 一种大管径、超长纳米碳管的制备方法 - Google Patents

一种大管径、超长纳米碳管的制备方法 Download PDF

Info

Publication number
CN104071771B
CN104071771B CN201410338644.1A CN201410338644A CN104071771B CN 104071771 B CN104071771 B CN 104071771B CN 201410338644 A CN201410338644 A CN 201410338644A CN 104071771 B CN104071771 B CN 104071771B
Authority
CN
China
Prior art keywords
tube
cnt
carbon nano
overlength
large diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410338644.1A
Other languages
English (en)
Other versions
CN104071771A (zh
Inventor
王勇
王静
巩玉同
王世萍
韩传龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201410338644.1A priority Critical patent/CN104071771B/zh
Publication of CN104071771A publication Critical patent/CN104071771A/zh
Application granted granted Critical
Publication of CN104071771B publication Critical patent/CN104071771B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种大管径、超长纳米碳管的制备方法,以碳水化合物为原料,在过渡金属盐存在下,与人工模板剂物理混合均匀,在惰性气氛中,先在400~650℃下保温0.5~2h,再升温至700~1200℃煅烧0.5~2h,得到大管径、超长纳米碳管;所述的人工模板剂为三聚氰胺、二氰二胺、尿素或单氰。本方法工艺简单、设备投入少、批次差异小,适合规模化生产;制备得到的纳米碳管的内径为50~100nm、长度为微米级,管壁由类石墨烯片层堆积而成,并且具有高的比表面积。

Description

一种大管径、超长纳米碳管的制备方法
技术领域
本发明涉及碳材料的制备领域,特别涉及一种大管径、超长纳米碳管的制备方法。
背景技术
碳化学是当代化学产业的基础,随着纳米碳管,纳米碳纤维,富勒烯和石墨烯等新型碳材料的发现,科学工作者越来越认识到碳材料在科学发展和人类进步中的重要地位。碳材料由于其高的化学稳定性,高的比表面积,卓越的机械性能以及良好的电学性质而被广泛地应用于多相催化,分离科学,能源转化等方面。其中,纳米碳管材料(以下简称为“碳管”)常被用于催化剂载体材料,药物载体,光电装置和水净化材料等,是一类重要的碳材料。
碳管材料的制备方法有很多种,如化学气相沉积法,电弧法以及激光消融法等。其中,激光消融法和电弧法对碳材料的形貌可控性较差,产品中不可避免的会产生大量的C60,碳纤维和其他副产品。
迄今为止,化学气相沉积法使用的最为广泛。然而,化学气相沉积法操作复杂并且需要昂贵的设备,上述这些方法极大地阻碍了碳管的产业化应用。
为了降低生产成本,简化操作过程,研究者在探究新的制备方法上取得了新进展。例如:Li Jing Hong等(Adv.Funct.Mater.2008,18,959-964)在水热葡萄糖的时候加入阳极氧化铝膜(AAO),通过纳米铸造(Nanocasting)技术制备得到了管径及壁厚可调控的碳管,并且在碳管内外壁负载金属Pt用于氧化还原反应。
又如,Wei Huang等在另外一篇工作(Carbon2011,49,5292-5297)中报道直接煅烧柳絮得到碳管。采用该方法制备的碳管的内外管径分别为4~8μm及3~7μm,为微米级别,并非纳米碳管;经高温煅烧后,微米级的柳絮纤维发生破裂,得到断裂的短管。此外,该方法的产率极低,每次煅烧仅能得到毫克级(12mg)的材料。
此外,通过以碳纳米环(cycloparaphenylenes)为模板制备碳管的方法也被报道(Nature Chem.2013,5,572-576)。该方法通过有机合成反应制备碳管,虽然可以精确的调控碳管的管径,但步骤繁琐、耗时长、生产成本较高,产率极低且采用较多的有机试剂不够绿色环保。
为了更好的在实际中应用碳管材料,提供一种工艺简单、绿色环保且生产成本较低的制备纳米碳管的方法,是一个有意义的挑战。
发明内容
本发明提供了一种由碳水化合物制备大管径、超长纳米碳管的方法,通过将碳水化合物与过渡金属盐、人工模板剂物理混合,再经分步煅烧处理得到纳米碳管,工艺简单、设备投入少、批次差异小,适合规模化生产;制备得到的纳米碳管的内径为50~100nm、长度为微米级,并且具有高的比表面积。
本发明公开了一种大管径、超长纳米碳管的制备方法,包括以下步骤:
以碳水化合物为原料,在过渡金属盐存在下,与人工模板剂物理混合均匀,在惰性气氛中,先在400~650℃下保温0.5~2h,再升温至700~1200℃煅烧0.5~2h,得到大管径、超长纳米碳管;
所述的人工模板剂为三聚氰胺、二氰二胺、尿素、单氰;。
经物理混合后的各原料先在400~650℃下保温0.5~2h,在这个阶段聚合形成片层结构的g-C3N4,碳源会在模板剂的片层间聚合,再进入第二个煅烧阶段,在700~1200℃煅烧0.5~2h,随着温度的升高,g-C3N4分解,释放出片层结构的石墨烯,由于过渡金属的催化作用,在石墨烯片层表面原位催化生长纳米碳管。
所述的碳水化合物为糖类,优选为蔗糖、果糖、葡萄糖、半乳糖、甲壳素、纤维素或氨基葡萄糖盐酸盐,进一步优选为氨基葡萄糖盐酸盐。以氨基葡萄糖盐酸盐为前驱体制备得到的产物中含有更多高质量碳管,即制备的纳米碳管的产率更高。
所述的人工模板剂,三聚氰胺、二氰二胺、尿素、单氰均可用于制备模板剂(g-C3N4),因此均可用于所述的方法制备纳米碳管。作为优选,所述的人工模板剂为价格低廉,原料广泛的三聚氰胺。
作为优选,所述的过渡金属盐为Fe盐、Co盐或Ni盐,可以为过渡金属的硝酸盐、醋酸盐、硫酸盐、碱式碳酸盐。
进一步优选,所述的碳水化合物、过渡金属盐与人工模板剂的质量比为1:0.3~2:5~40;再优选,所述的碳水化合物、过渡金属盐与人工模板剂的质量比为1:0.8~2:15~25。
碳水化合物、过渡金属盐与人工模板剂的物理混合过程为:
将碳水化合物、过渡金属盐与人工模板剂经物理研磨混合;
或者为,将碳水化合物、过渡金属盐和人工模板剂与溶剂混合得到混合液,加热搅拌均匀后蒸干溶剂,研磨混合。
先经溶剂溶解,再将溶剂蒸干后研磨混合,可以更好地实现各原料的均匀混合,更有利于获得形貌规整的纳米碳管。
作为优选,所述混合液中碳水化合物的浓度为0.002~0.02g/mL,将所述的混合液加热至30~100℃,恒温搅拌5~72h至均匀混合。
作为优选,经物理混合后的各原料先在550~650℃下保温0.5~1.5h,然后在900~1200℃煅烧0.5~1.5h。
基于上述的说明,最优选:
所述的碳水化合物为氨基葡萄糖盐酸盐,人工模板剂为三聚氰胺,过渡金属盐为硝酸镍;
所述的碳水化合物、过渡金属盐与人工模板剂的质量比为1:0.95~1.1:20;
经物理混合后的各原料先在600℃下保温1h,1000℃下煅烧1h。
采用上述步骤制备得到的大管径、超长纳米碳管中有金属残留,为进一步提高纳米碳管的纯度,可以用0.1~4M的酸对所述的纳米碳管进行纯化处理,所述的酸可以为盐酸、硫酸、硝酸等等。
与已报道的纳米碳管的制备方法相比:
本方法制备过程简单,时间短,耗能低,产率高,不需要任何苛刻的条件,产品结构易于调节;最重要的是由于采用软模板法(在高温热解区,人工模板发生分解)制备,可一步得到大管径,超长纳米碳管。
制备得到的纳米碳管表现出3个明显优势:
1)纳米碳管内径可以控制在50~100nm,长度可达微米级;
2)得到的纳米碳管材料具有一定的比表面积(>50m2/g);
3)得到的纳米碳管管壁具有特殊形貌,由石墨烯片层堆积而成;
4)经纯化处理除去金属后,仍能保持纳米碳管的形貌,具有极大地应用价值。
附图说明
图1为对比例制备的纳米碳材料的扫描电镜图;
图2为实施例1制备的纳米碳材料的扫描电镜图;
图3为实施例2制备的纳米碳材料的扫描电镜图;
图4为实施例3制备的纳米碳材料的扫描电镜图;
图5为实施例4制备的纳米碳材料的扫描电镜图;
图6为实施例5制备的纳米碳材料的扫描电镜图;
图7为实施例6制备的纳米碳材料的扫描电镜图;
图8为实施例7制备的纳米碳材料的扫描电镜图;
图9为实施例8制备的纳米碳材料的扫描电镜图;
图10为实施例9制备的纳米碳材料的扫描电镜图;
图11为实施例10制备的纳米碳材料的扫描电镜图;
图12为实施例11制备的纳米碳材料的扫描电镜图。
具体实施方式
以下的实施例将对本发明进行更为全面的描述。
对比例
在250ml烧杯中加入1g氨基葡萄糖盐酸盐,100ml的去离子水,搅拌至均一溶液。然后加入20g三聚氰胺,溶解在上述氨基葡萄糖盐酸盐溶液中。加热搅拌至去离子水挥发完全,得到固体混合物,此混合物在氮气炉中经两段升温程序(600℃维持1h,1000℃维持1h)煅烧后即得到纳米碳材料。
本实施例制备得到的纳米碳材料扫描电镜图见图1a,由电镜图可知,该条件下制备的材料是片状结构,透射电镜(图1b)进一步证实了该材料是石墨烯。
实施例1
在250ml烧杯中加入1g氨基葡萄糖盐酸盐,100ml的去离子水,搅拌溶解随后加入过渡金属盐硝酸镍0.48g,搅拌至均一溶液。然后加入20g三聚氰胺,溶解在上述氨基葡萄糖盐酸盐溶液中。加热搅拌至去离子水挥发完全,得到固体混合物,此混合物在氮气炉中经两段升温程序(600℃维持1h,1000℃维持1h)煅烧后,HCl处理纯化即得到纳米碳材料。
本实施例制备得到的纳米碳材料扫描电镜图见图2,由电镜图可知,该条件下制备的材料大范围内是片状结构,且片层表面有明显的凸起,这是刚形成的碳短管。
实施例2
在250ml烧杯中加入1g氨基葡萄糖盐酸盐,150ml的去离子水,搅拌溶解随后加入过渡金属盐硝酸镍0.95g,搅拌至均一溶液。然后加入20g三聚氰胺,溶解在上述氨基葡萄糖盐酸盐溶液中。加热搅拌至去离子水挥发完全,得到固体混合物,此混合物在氮气炉中经两段升温程序(600℃维持1h,1000℃维持1h)煅烧后,HCl处理纯化即得到纳米碳材料。
本实施例制备得到的纳米碳材料扫描电镜图见图3,由电镜图可知,该方法制备的材料为管状结构与片状结构共存,片层上有大量的长管,与实施例2相比,该条件下制得的材料碳管的比例明显增加且管变长。
实施例3
在250ml烧杯中加入1g氨基葡萄糖盐酸盐,200ml的去离子水,搅拌溶解随后加入过渡金属盐硝酸镍1.1g,搅拌至均一溶液。然后加入20g三聚氰胺,溶解在上述氨基葡萄糖盐酸盐溶液中。加热搅拌至去离子水挥发完全,得到固体混合物,此混合物在氮气炉中经两段升温程序(600℃维持1h,1000℃维持1h)煅烧后,HCl处理纯化即得到大管径、超长纳米碳管。
本实施例制备得到的纳米碳管扫描电镜图见图4,从电镜结果分析碳管内径在50~100nm内,长度为微米级,由电镜图可知,该方法制备的材料大范围内成管状结构。
综上实施例1、2、3和对比例的电镜结果分析可知,在原始体系中加入过渡金属盐后可催化石墨烯到碳管的转化,且随着过渡金属盐比例的增加,成管效果越来越好,通过优化过渡金属盐与碳源及模板剂的比例,可大范围制备高质量的大管径,超长碳管。由此可知,过渡金属盐的用量是影响碳管质量的重要因素之一。
实施例4
在250ml烧杯中加入1g氨基葡萄糖盐酸盐,50ml的去离子水,搅拌溶解随后加入过渡金属盐硝酸镍1.1g,搅拌至均一溶液。然后加入5g三聚氰胺,溶解在上述氨基葡萄糖盐酸盐溶液中。加热搅拌至去离子水挥发完全,得到固体混合物,此混合物在氮气炉中经两段升温程序(600℃维持1h,1000℃维持1h)煅烧后,经HCl处理纯化即得到纳米碳材料。
本实施例制备得到的纳米碳材料扫描电镜图见图5,从电镜结果分析得到的材料主要成块状,且块状表面有部分起管的现象。与实施例3相比,该条件下几乎得不到碳管,这可能是由于模板剂用量较低时,使得人工模板剂的质量变差极大地影响了前期的成片过程,从而导致所得碳材料中没有明显的管状结构生成。由此可知,通过优化模板剂的用量可以实现对高质量的碳管的调控。
实施例5
在250ml烧杯中加入1g氨基葡萄糖盐酸盐,200ml的去离子水,搅拌溶解随后加入过渡金属盐硝酸镍1.1g,搅拌至均一溶液。然后加入20g三聚氰胺,溶解在上述氨基葡萄糖盐酸盐溶液中。加热搅拌至去离子水挥发完全,得到固体混合物,此混合物在氮气炉中经两段升温程序(600℃维持1h,800℃维持1h)煅烧后,经HCl处理纯化即得到纳米碳材料。
本实施例制备得到的纳米碳材料扫描电镜图见图6,从电镜结果分析大范围内生成片管孪生的形貌,且生成的管较短。与实施例3相比,随着煅烧终态温度较低时,不利于碳管的形成。由此,可以通过调整升温程序获得高质量碳管。
实施例6
在250ml烧杯中加入1g氨基葡萄糖盐酸盐,200ml的去离子水,搅拌溶解随后加入过渡金属盐硝酸镍0.95g,搅拌至均一溶液。然后加入20g尿素,溶解在上述氨基葡萄糖盐酸盐溶液中。加热搅拌至去离子水挥发完全,得到固体混合物,此混合物在氮气炉中经两段升温程序(600℃维持1h,1000℃维持1h)煅烧后,HCl处理纯化即得到纳米碳材料。
本实施例制备得到的纳米碳材料扫描电镜图见图7,从电镜结果分析大范围内生成片管孪生的形貌。由此表明,可用于制备模板剂(g-C3N4)的原料均可用于该体系制备碳管。
实施例7
氨基葡萄糖盐酸盐替换为蔗糖,其余加料和工艺条件同实施例3,得到纳米碳管材料。
扫描电镜图如图8所示,由电镜图可知,该方法制备的材料为管状结构,但成管效果比以氨基葡萄糖盐酸盐为前驱体差,产品中仍有其他形貌的碳材料出现。
实施例8
氨基葡萄糖盐酸盐替换为甲壳素,其余加料和工艺条件同实施例3,得到纳米碳管材料。
本实施例制备得到的纳米碳管扫描电镜图见图9,由电镜图可知,该方法制备的材料为管状结构。
实施例9
氨基葡萄糖盐酸盐替换为葡萄糖,其余加料和工艺条件同实施例3,得到纳米碳管材料。
本实施例制备得到的纳米碳管扫描电镜图见图10,由电镜图可知,该方法制备的材料为管状结构。
实施例10
过渡金属硝酸镍替换为过渡金属钴盐,其余加料和工艺条件同实施例3,得到纳米碳管材料。
扫描电镜图如图11所示,由电镜图可知,该方法制备的材料为管状结构。
实施例11
过渡金属硝酸镍替换为过渡金属铁盐,其余加料和工艺条件同实施例3,得到纳米碳管材料。扫描电镜图如图12所示,由电镜图可知,该方法制备的材料为管状结构。

Claims (8)

1.一种大管径、超长纳米碳管的制备方法,其特征在于,包括以下步骤:
以碳水化合物为原料,在过渡金属盐存在下,与人工模板剂物理混合均匀,在惰性气氛中,先在400~650℃下保温0.5~2h,再升温至700~1200℃煅烧0.5~2h,得到大管径、超长纳米碳管;
所述的人工模板剂为三聚氰胺、二氰二胺、尿素或单氰。
2.根据权利要求1所述的大管径、超长纳米碳管的制备方法,其特征在于,所述的碳水化合物为糖类。
3.根据权利要求2所述的大管径、超长纳米碳管的制备方法,其特征在于,所述的碳水化合物为蔗糖、果糖、葡萄糖、半乳糖、甲壳素、纤维素或氨基葡萄糖盐酸盐。
4.根据权利要求1所述的大管径、超长纳米碳管的制备方法,其特征在于,所述的过渡金属盐为Fe盐、Co盐或Ni盐。
5.根据权利要求1~4任一权利要求所述的大管径、超长纳米碳管的制备方法,其特征在于,所述的碳水化合物、过渡金属盐与人工模板剂的质量比为1:0.3~2:5~40。
6.根据权利要求5所述的大管径、超长纳米碳管的制备方法,其特征在于,所述的碳水化合物、过渡金属盐与人工模板剂的质量比为1:0.8~2:15~25。
7.根据权利要求1所述的大管径、超长纳米碳管的制备方法,其特征在于,物理混合过程为:将碳水化合物、过渡金属盐与人工模板剂经物理研磨混合;
或者为,将碳水化合物、过渡金属盐和人工模板剂与溶剂混合,加热搅拌均匀后蒸干溶剂,研磨混合。
8.根据权利要求1所述的大管径、超长纳米碳管的制备方法,其特征在于,在惰性气氛中,先在550~650℃下保温0.5~1.5h,再升温至900~1200℃煅烧0.5~1.5h,即可得到碳管。
CN201410338644.1A 2014-07-16 2014-07-16 一种大管径、超长纳米碳管的制备方法 Active CN104071771B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410338644.1A CN104071771B (zh) 2014-07-16 2014-07-16 一种大管径、超长纳米碳管的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410338644.1A CN104071771B (zh) 2014-07-16 2014-07-16 一种大管径、超长纳米碳管的制备方法

Publications (2)

Publication Number Publication Date
CN104071771A CN104071771A (zh) 2014-10-01
CN104071771B true CN104071771B (zh) 2015-10-28

Family

ID=51593435

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410338644.1A Active CN104071771B (zh) 2014-07-16 2014-07-16 一种大管径、超长纳米碳管的制备方法

Country Status (1)

Country Link
CN (1) CN104071771B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105413730A (zh) * 2015-11-25 2016-03-23 青岛大学 一种氮掺杂碳纳米管包裹钴电催化氧还原材料的制备方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105217598A (zh) * 2015-10-10 2016-01-06 浙江大学 一种以蔗糖为碳源制备碳纳米管的制备方法
CN105214703A (zh) * 2015-10-10 2016-01-06 浙江大学 一种碳碳双键加氢的碳化铁催化剂及其制备方法
CN105217596A (zh) * 2015-10-10 2016-01-06 浙江大学 一种氯化钴催化剂制备碳纳米管的制备方法
CN105217597B (zh) * 2015-10-10 2017-05-17 浙江大学 一种氯化镍催化剂制备碳纳米管的制备方法
CN105214702A (zh) * 2015-10-10 2016-01-06 浙江大学 一种c≡n键加氢的催化剂及其制备方法
CN105271166A (zh) * 2015-10-10 2016-01-27 浙江大学 一种以木糖醇为碳源制备碳纳米管的制备方法
CN105363482A (zh) * 2015-10-10 2016-03-02 浙江大学 一种醛加氢的碳纳米管内石墨烯包裹的碳化铁催化剂及其制备方法
CN105214701A (zh) * 2015-10-10 2016-01-06 浙江大学 一种芳香族硝基化合物加氢的碳纳米管内石墨烯包裹的碳化铁催化剂及其制备方法
WO2018114777A1 (en) * 2016-12-19 2018-06-28 F. Hoffmann-La Roche Ag Nitrogen-containing biopolymer-based catalysts, their preparation and uses in hydrogenation processes, reductive dehalogenation and oxidation
CN107359357B (zh) * 2017-06-21 2020-04-14 广州大学 一种纳米复合氧电极材料、及其制备方法与应用
CN107857250B (zh) * 2017-11-29 2020-01-14 中南大学 一种蜜胺泡沫原位生长碳纳米管复合超疏水材料及其制备方法
CN108821265B (zh) * 2018-07-24 2020-10-27 武汉轻工大学 一种以g-C3N4为模板制备石墨烯的方法
CN110756188B (zh) * 2019-08-19 2022-09-20 四川轻化工大学 一种三维碳网络负载FeCo双功能氧气催化剂的制备方法
CN112028054B (zh) * 2020-09-11 2022-07-19 辽宁科技大学 一种生物质经两步微波处理制超长多壁碳纳米管的方法
CN116371388B (zh) * 2023-04-06 2023-11-21 浙江大学 一种用于吸附微塑料的磁性海绵炭及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103318872A (zh) * 2013-07-03 2013-09-25 北京理工大学 一种碳纳米管的制备方法
CN103816905A (zh) * 2014-03-21 2014-05-28 南开大学 一种碳纳米管负载纳米钴催化剂的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI485105B (zh) * 2010-11-25 2015-05-21 Incubation Alliance Inc 碳奈米管及其製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103318872A (zh) * 2013-07-03 2013-09-25 北京理工大学 一种碳纳米管的制备方法
CN103816905A (zh) * 2014-03-21 2014-05-28 南开大学 一种碳纳米管负载纳米钴催化剂的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
High-pressure pyrolysis of melamine route to nitrogen-doped conical hollow and bamboo-like carbon nanotubes;Xingcai Wu et al.;《Diamond & Related Materials》;20051017;第15卷;第164-170页 *
One-Step Production of Sulfur and Nitrogen Co-doped Graphitic Carbon for Oxygen Reduction: Activation Effect of Oxidized Sulfur and Nitrogen;Jing Wang et al.;《ChemCatChem》;20140303;第6卷;第1204-1209页 *
Synthesis and characterization of nitrogen-doped carbon nanotubes by pyrolysis of melamine;Xuefei Li et al.;《Applied Physics A》;20130129;第113卷;第736页第1栏第2段-第2栏第1段 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105413730A (zh) * 2015-11-25 2016-03-23 青岛大学 一种氮掺杂碳纳米管包裹钴电催化氧还原材料的制备方法
CN105413730B (zh) * 2015-11-25 2018-04-27 青岛大学 一种氮掺杂碳纳米管包裹钴电催化氧还原材料的制备方法

Also Published As

Publication number Publication date
CN104071771A (zh) 2014-10-01

Similar Documents

Publication Publication Date Title
CN104071771B (zh) 一种大管径、超长纳米碳管的制备方法
Dai et al. Synthesis and characterization of graphitic carbon nitride sub-microspheres using microwave method under mild condition
CN104140084B (zh) 一种氮化碳量子点的制备方法
CN104108708A (zh) 一种氮掺杂石墨烯及其制备方法
CN103183341A (zh) 一种氮掺杂具有空心结构石墨化碳球的可控合成方法
CN108383091B (zh) 一种S、P掺杂的g-C3N4管中管及其制备方法
CN103553023A (zh) 一种氮杂化球形介孔碳的制备方法
CN104310368A (zh) 一种中空碳球的制备方法
CN103043646B (zh) 一种小尺寸实心碳球的制备方法及制备得到的碳球
CN110844900B (zh) 一种以废轮胎为原料制备碳纳米管的方法
CN105601316A (zh) 一种碳化硅气凝胶及其制备方法
CN105540590A (zh) Fe3C纳米线填充氮掺杂碳纳米管复合材料的制备方法
CN105964260A (zh) 一种金属催化剂制备方法及其碳纳米管的制备方法
CN111977635A (zh) 一种碳纳米管及其制备方法
CN107572509B (zh) 一种氮掺杂空心碳/石墨球纳米材料及其制备方法
Deng et al. Synthesis of nitrogen-doped porous hollow carbon nanospheres with a high nitrogen content: A sustainable synthetic strategy using energetic precursors
JP2009155176A (ja) 窒化ホウ素ナノ繊維及びその製造方法
CN113798503A (zh) 一种制备金属钴纳米片的方法
CN105217598A (zh) 一种以蔗糖为碳源制备碳纳米管的制备方法
CN103318891B (zh) 一种在多孔生物炭模板上生成一维碳化硅纳米线的方法
CN105217597B (zh) 一种氯化镍催化剂制备碳纳米管的制备方法
Shi et al. Synthesis of AlN porous-shell hollow spheres by a combustion route
CN106629635A (zh) 一种高产率、高比表面积氮化硼的制备方法及应用
HU227818B1 (en) Process for producing ethisterone
CN107555413B (zh) 一种含氮量可调控的掺氮有序中孔炭的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant