CN103811737A - 一种高性能柔性锂离子电池电极材料的制备方法 - Google Patents

一种高性能柔性锂离子电池电极材料的制备方法 Download PDF

Info

Publication number
CN103811737A
CN103811737A CN201410074879.4A CN201410074879A CN103811737A CN 103811737 A CN103811737 A CN 103811737A CN 201410074879 A CN201410074879 A CN 201410074879A CN 103811737 A CN103811737 A CN 103811737A
Authority
CN
China
Prior art keywords
transition metal
lithium ion
ion battery
electrode material
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410074879.4A
Other languages
English (en)
Inventor
李勇进
赵丽萍
管纪鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Normal University
Original Assignee
Hangzhou Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Normal University filed Critical Hangzhou Normal University
Priority to CN201410074879.4A priority Critical patent/CN103811737A/zh
Publication of CN103811737A publication Critical patent/CN103811737A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开一种高性能柔性锂离子电池电极材料的制备方法。该方法是常温下,将过渡金属无机盐与高分子聚合物加入到溶剂中,搅拌均匀,得到静电纺丝的前驱体溶液,然后进行纺丝,将纺丝得到的复合纳米纤维薄膜放入管式炉内,在惰性气体气氛或惰性气体与氢气混合还原气氛中煅烧,从常温以1~20℃/min速率升温至250~350℃,保持恒温煅烧1~2小时,然后以1~20℃/min速率升温至400~500℃,保持恒温煅烧2~3小时,最后以1~20℃/min速率降温至常温,得到具有柔性的过渡金属氧化物与碳复合的纳米纤维薄膜。本发明优点是原料经济环保;制作工艺相对简单,成本相对较低,有望实现工业化生产。

Description

一种高性能柔性锂离子电池电极材料的制备方法
技术领域
本发明属于高压静电纺丝技术领域和锂离子电池技术领域,涉及一种高性能柔性锂离子电池电极材料的制备方法,尤其涉及到过渡金属氧化物与碳复合纳米纤维薄膜的制备方法。
技术背景
如今,随着柔性和可穿戴式移动电子设备的不断发展,人们对这些柔性电子设备所使用的电源也提出了更高的要求。锂离子电池因其高能量密度、高输出电压、循环寿命长和环境友好型等优点而主导着目前便携式电子产品的主要市场,但目前普遍使用的锂离子电池仍然太重、太厚、太大、太死板而无法满足实际的需要。为了进一步满足电子产品的便携性,锂离子电池必将朝着更轻、更薄、更柔、更小化的趋势发展。因此,对于柔性电源,特别是高性能、柔性锂离子电池的研究迫在眉睫。柔性电极材料作为锂离子电池的重要组成部分,一直是柔性锂离子电池研究的热点。
过渡金属氧化物(如二氧化钼、二氧化钛、氧化锌、五氧化二钒等)是锂离子电池中很有前途的电极材料。例如,多级结构的五氧化二钒(V2O5)纳米线作为锂离子电池正极材料时,在电压为1.75~4.0 V的范围内,初始放电比容量为390 mAh/g,经过40次循环,其放电比容量仍有201 mAh/g [Liqiang Mai, Lin Xu, et al, Nano Lett. 2010, 10, 4750]。二氧化钼(MoO2)作为一种非常特殊的过渡金属氧化物,具有突出的优点:高导电性、高熔点、高密度及高化学稳定性等,特别是其理论比容量高达838mAh/g,远远大于商业化石墨的理论比容量,作为锂离子电池的负极材料具有非常突出的优势。
本发明通过高压静电纺丝技术和高温还原气氛煅烧工艺得到具有高性能柔性的过渡金属氧化物与碳复合纳米纤维薄膜,既实现了过渡金属氧化物颗粒的纳米级分散,同时引入碳基底,实现了材料的柔性。这种柔性薄膜可以直接切割用作锂电池电极材料,无需通过传统的涂膜方法,避免引入乙炔黑和聚偏氟乙烯等,降低电极材料的重量,真正实现锂电池的柔性化,轻量化,小型化,高比容量等电池性能。此种制备方法尚未见文献和专利报道。
发明内容
本发明的目的是针对现有技术的不足,提供一种高性能柔性锂离子电池电极材料的制备方法。
本发明方法包括以下步骤:
步骤(1).常温下,将过渡金属无机盐与高分子聚合物加入到溶剂中,搅拌均匀,得到静电纺丝的前驱体溶液;其中过渡金属无机盐与高分子聚合物的质量比为1:0.1~10,溶剂与过渡金属无机盐的质量比为1:2~20;
所述的过渡金属无机盐为所有溶于水或乙醇的过渡金属无机盐;
所述的高分子聚合物为所有溶于水或乙醇的高分子聚合物;
所述的溶剂为去离子水或乙醇;
步骤(1)中若所用的过渡金属无机盐选用溶于水的过渡金属无机盐,则高分子聚合物为溶于水的高分子聚合物,溶剂为去离子水;若所用的过渡金属无机盐选用溶于乙醇的过渡金属无机盐,则高分子聚合物为溶于乙醇的高分子聚合物,溶剂为乙醇;
作为优选,过渡金属无机盐为四水合钼酸铵或钒酸铵;
作为优选,高分子聚合物为聚乙烯醇、聚乙烯吡咯烷酮或聚氧化乙烯;
步骤(2).将先制好的前驱体溶液吸入注射器针管中,将高压正极连在纺丝不锈钢针头上,负极接铜箔,铜箔放置在不锈钢针头水平方向10~15cm处作为收集板,提供15~20kV电压即可在铜箔接收器上收集到过渡金属无机盐与高分子聚合物的复合纳米纤维薄膜,纺丝结束,关闭电压;
步骤(3).将得到的复合纳米纤维薄膜放入管式炉内,在惰性气体气氛或惰性气体与氢气混合还原气氛中煅烧,得到具有柔性的过渡金属氧化物与碳复合的纳米纤维薄膜。
作为优选,惰性气体为氩气或氮气;
所述的惰性气体与氢气混合还原气氛中氢气与惰性气体的体积比为1:0.1~20;
步骤(3)所述的管式炉煅烧条件为:在惰性气体或惰性气体与氢气混合还原气氛中,从常温以1~20℃/min速率升温至250~350℃,保持恒温煅烧1~2小时,然后以1~20℃/min速率升温至400~500℃,保持恒温煅烧2~3小时,最后以1~20℃/min速率降温至常温。
本发明通过高压静电纺丝技术制得含有不同质量比的过渡金属无机盐与高分子聚合物的纳米复合纤维薄膜,然后采用高温气氛煅烧工艺制得过渡金属氧化物与碳复合纳米纤维薄膜。电化学测试表明,此方法制备的过渡金属氧化物与碳复合纳米纤维薄膜材料具有较高的比容量和循环稳定性,是一种理想的锂离子电池电极材料。
本发明制得的材料是过渡金属氧化物与碳复合纳米纤维薄膜,既提高了材料本身的导电性能,又实现了过渡金属氧化物颗粒在碳基底中的纳米级分散,提高材料的比容量,发挥二者各自的优势。此种制备方法尚未见文献和专利报道。采用本发明的方法制得的过渡金属氧化物与碳复合纳米纤维薄膜是一种性能良好的锂离子电池电极材料,该材料作为锂离子电池电极材料常规厚度为5~100μm。
采用这种方法制备的过渡金属氧化物与碳复合纳米纤维薄膜锂离子电池电极材料具有以下优点:
(1)所选原料经济环保。
(2)高压静电纺丝过程中前驱体溶液使用水或乙醇溶剂,经济环保无污染。
(3)该材料能够发挥过渡金属氧化物和碳二者各自的优势。
(4)制作工艺相对简单,成本相对较低,有望实现工业化生产。
附图说明
图1为纺丝纳米纤维薄膜Ⅰ扫描电镜照片;
图2为二氧化钼与碳复合纳米纤维薄膜Ⅰ扫描电镜照片;
图3为二氧化钼与碳复合纳米纤维薄膜Ⅰ高分辨透射电子显微镜照片以及元素分析照片;
图4为二氧化钼与碳复合纳米纤维薄膜Ⅰ的X射线衍射谱图;
图5为二氧化钼与碳复合纳米纤维薄膜Ⅰ的充放电曲线;
图6为二氧化钼与碳复合纳米纤维薄膜Ⅰ的循环稳定性图;
图7为二氧化钼与碳复合纳米纤维薄膜Ⅰ在扫描速度0.1mv/s时的前3次循环伏安曲线。
具体实施方式
下面结合实例对本发明做进一步说明,以高性能柔性锂离子电池负极材料二氧化钼与碳复合纳米纤维薄膜为例,但不限定本发明的保护范围。
实施例1:高性能柔性锂离子电池负极材料二氧化钼与碳复合纳米纤维薄膜Ⅰ
称取20g聚乙烯醇,加入到100g去离子水中,加热到70~80℃,磁力搅拌12小时,得到搅拌均匀的聚乙烯醇溶液,然后称取1.0g四水合钼酸铵溶于2.5g去离子水中得到无色透明溶液,接着,称取6g之前配置的聚乙烯醇溶液(溶液中含1g聚乙烯醇)与四水合钼酸铵溶液混合,常温下磁力搅拌12小时,最终得到聚乙烯醇与四水合钼酸铵质量比为1:1的无色透明溶液,也就是接下来高压静电纺丝过程中使用到的前驱体溶液。将得到的前驱体溶液吸入到医用注射器针管中,高压正极连在纺丝不锈钢针头上,负极接铜箔,铜箔放置在不锈钢针头水平方向处15厘米处作为收集板,提供16千伏电压即可在铜箔接收器上收集到四水合钼酸铵和聚乙烯醇纳米纤维薄膜,纺丝时间2~3小时,纺丝结束后关闭仪器。图 1为四水合钼酸铵与聚乙烯醇复合纳米纤维薄膜的扫描电子显微镜照片,可以看到四水合钼酸铵与聚乙烯醇得到了很好的成丝,而且丝的直径分布很均匀。将铜箔收集到的四水合钼酸铵与聚乙烯醇纳米纤维薄膜与铜箔一起放入到管式炉中,在氮气与氢气混合还原气氛中,从常温以10℃/min速率升温至300℃,保持300℃恒温下停留煅烧1.5小时,然后以10℃/min速率升温至45℃,保持450℃恒温下停留煅烧2.5小时,最后以10℃/min速率降温至常温,得到具有柔性的二氧化钼与碳复合纳米纤维薄膜。制备得到的二氧化钼与碳复合纳米纤维薄膜在外力作用下弯曲而不折断,表明材料具有柔性。图 2为二氧化钼与碳复合纳米纤维薄膜的扫描电子显微镜照片,可以看到样品煅烧之后仍然保持着丝的形貌,丝的直径有明显的减小。图 3为高分辨透射电子显微镜照片以及元素分析谱图,可以确定二氧化钼颗粒在丝中呈纳米级分散。图 4为X射线衍射图,可以确定二氧化钼在丝中结晶度很高,并且以单斜晶存在。将该电极材料直接压片制成工作电极,锂片为辅助和参比电极电解液为通用的锂离子电池电解液,如1MLiPO4/DMC:EC:DEC=1:1:1,制成2032型纽扣电池,以0.1C充放电。该电极材料的第一次及第30次的充当电曲线如图 5所示,可以看出该复合材料首次放电容量可达597.6 mAh/g,30次循环后的放电容量为723.1 mAh/g,该电池的循环稳定性见图 6。该电极材料为0.1mv/s时的前三次循环伏安曲线如图 7所示,扫描电压范围为0.01~3V,可以看出,该材料有两对氧化还原峰,分别在0.8/1.5V和1.2/2.2V。
实施例2:高性能柔性锂离子电池负极材料二氧化钼与碳复合纳米纤维薄膜Ⅱ
按照实施例1中所述制备聚乙烯醇与四水合钼酸铵质量比为1:0.5的高压静电纺丝前驱体溶液。将得到的前驱体溶液吸入到医用注射器针管中,高压正极连在纺丝不锈钢针头上,负极接铜箔,铜箔放置在不锈钢针头水平方向处15厘米处作为收集板,提供16千伏电压即可在铜箔接收器上收集到四水合钼酸铵与聚乙烯醇纳米纤维薄膜,纺丝时间2~3小时,纺丝结束后关闭仪器。将铜箔收集到的四水合钼酸铵与聚乙烯醇纳米纤维薄膜与铜箔一起放入到管式炉中,在氮气与氢气混合还原气氛中,从常温以1℃/min速率升温至250℃,保持250℃恒温下停留煅烧2小时,然后以1℃/min速率升温至400℃,保持400℃恒温下停留煅烧3小时,最后以1℃/min速率降温至常温,得到具有柔性的二氧化钼与碳复合纳米纤维薄膜。该电极材料测试条件如实施例1中所述,以0.1C充放电时,首次放电容量可达570.5 mAh/g,30次循环后容量还有546.4mAh/g。
实施例3:高性能柔性锂离子电池负极材料二氧化钼与碳复合纳米纤维薄膜Ⅲ
按照实施例1中所述制备聚乙烯醇与四水合钼酸铵质量比为1:2的高压静电纺丝前驱体溶液。将得到的前驱体溶液吸入到5毫升医用注射器针管中,高压正极连在纺丝不锈钢针头上,负极接铜箔,铜箔放置在不锈钢针头水平方向处15厘米处作为收集板,提供16千伏电压即可在铜箔接收器上收集到四水合钼酸铵与聚乙烯醇纳米纤维薄膜,纺丝时间2~3小时,纺丝结束后关闭仪器。将铜箔收集到的四水合钼酸铵与聚乙烯醇纳米纤维薄膜与铜箔一起放入到管式炉中,在氩气与氢气混合还原气氛中,从常温以20℃/min速率升温至350℃,保持350℃恒温下停留煅烧1小时,然后以20℃/min速率升温至500℃,保持500℃恒温下停留煅烧2小时,最后以20℃/min速率降温至常温,得到具有柔性的二氧化钼与碳复合纳米纤维薄膜。该电极材料测试条件如实施例1中所述,以0.1C充放电时,首次放电容量可达442mAh/g,30次循环后容量还有451mAh/g。
实施例4:高性能柔性锂离子电池负极材料五氧化二钒与碳复合纳米纤维薄膜Ⅳ
称取0.1g聚乙烯吡咯烷酮,加入到1g去离子水中,加热到70~80℃,磁力搅拌12h,得到搅拌均匀的聚乙烯吡咯烷酮溶液,然后称取1.0g钒酸铵溶于1g去离子水中得到无色透明溶液,接着,将之前配置的聚乙烯吡咯烷酮溶液(溶液中含0.1g聚乙烯吡咯烷酮)与钒酸铵溶液混合,常温下磁力搅拌若干小时,最终得到聚乙烯吡咯烷酮与钒酸铵质量比为1:0.1的无色透明溶液,也就是接下来高压静电纺丝过程中使用到的前驱体溶液。将得到的前驱体溶液吸入到医用注射器针管中,高压正极连在纺丝不锈钢针头上,负极接铜箔,铜箔放置在不锈钢针头水平方向处10厘米处作为收集板,提供15千伏电压即可在铜箔接收器上收集到钒酸铵与聚乙烯吡咯烷酮复合纳米纤维薄膜,纺丝时间2~3小时,纺丝结束后关闭仪器。将铜箔收集到的钒酸铵与聚乙烯吡咯烷酮复合纳米纤维薄膜与铜箔一起放入到管式炉中,在氮气气氛中,从常温以15℃/min速率升温至320℃,保持320℃恒温下停留煅烧2小时,然后以15℃/min速率升温至480℃,保持480℃恒温下停留煅烧2小时,最后以15℃/min速率降温至常温,得到具有柔性的五氧化二钒与碳复合的纳米纤维薄膜。该电极材料测试条件如实施例1中所述,以0.1C充放电时,首次放电容量可达354mAh/g,30次循环后容量还有280mAh/g。
实施例5:高性能柔性锂离子电池负极材料二氧化钼与碳复合纳米纤维薄膜Ⅴ
称取10g聚氧化乙烯,加入到15g乙醇中,加热到70~80℃,磁力搅拌12小时,得到搅拌均匀的聚氧化乙烯溶液,然后称取1.0g四水合钼酸铵溶于5g乙醇中得到无色透明溶液,接着,将之前配置的聚氧化乙烯溶液(溶液中含10g聚氧化乙烯)与四水合钼酸铵溶液混合,常温下磁力搅拌12小时,最终得到聚氧化乙烯与四水合钼酸铵质量比为1:10的无色透明溶液,也就是接下来高压静电纺丝过程中使用到的前驱体溶液。将得到的前驱体溶液吸入到医用注射器针管中,高压正极连在纺丝不锈钢针头上,负极接铜箔,铜箔放置在不锈钢针头水平方向处14厘米处作为收集板,提供20千伏电压即可在铜箔接收器上收集到四水合钼酸铵与聚氧化乙烯复合纳米纤维薄膜,纺丝时间2~3小时,纺丝结束后关闭仪器。将铜箔收集到的四水合钼酸铵与聚氧化乙烯复合纳米纤维薄膜与铜箔一起放入到管式炉中,在氮气和氢气混合还原气氛中,从常温以5℃/min速率升温至280℃,保持280℃恒温下停留煅烧1.5小时,然后以5℃/min速率升温至420℃,保持420℃恒温下停留煅烧2.5小时,最后以5℃/min速率降温至常温,得到具有柔性的二氧化钼与碳复合纳米纤维薄膜。该电极材料测试条件如实施例1中所述,以0.1C充放电时,首次放电容量可达351mAh/g,30次循环后容量还有342mAh/g。
上述实施例中氩气与氢气混合还原气氛中氢气与氩气的体积比均为1:0.1~20;氮气与氢气混合还原气氛中氢气与氮气的体积比均为1:0.1~20。
上述实施例并非是对于本发明的限制,本发明并非仅限于上述实施例,只要符合本发明要求,均属于本发明的保护范围。

Claims (5)

1. 一种高性能柔性锂离子电池电极材料的制备方法,其特征在于该方法包括以下步骤:
步骤(1).常温下,将过渡金属无机盐与高分子聚合物加入到溶剂中,搅拌均匀,得到静电纺丝的前驱体溶液;其中过渡金属无机盐与高分子聚合物的质量比为1:0.1~10,溶剂与过渡金属无机盐的质量比为1:2~20;
所述的过渡金属无机盐为所有溶于水或乙醇的过渡金属无机盐;
所述的高分子聚合物为所有溶于水或乙醇的高分子聚合物;
所述的溶剂为去离子水或乙醇;
步骤(2).将步骤(1)前驱体溶液吸入注射器针管中,将高压正极连在纺丝不锈钢针头上,负极接铜箔,铜箔放置在不锈钢针头水平方向10~15cm处作为收集板,提供15~20kV电压即可在铜箔接收器上收集到过渡金属无机盐与高分子聚合物的复合纳米纤维薄膜,纺丝结束,关闭电压;
步骤(3).将步骤(2)得到的复合纳米纤维薄膜放入管式炉内,在惰性气体或惰性气体与氢气混合还原气氛中煅烧,得到具有柔性的过渡金属氧化物与碳复合的纳米纤维薄膜;
步骤(3)所述的管式炉煅烧条件为:在惰性气体或惰性气体和氢气混合还原气氛中,从常温以1~20℃/min速率升温至250~350℃,保持恒温煅烧1~2小时,然后以1~20℃/min速率升温至400~500℃,保持恒温煅烧2~3小时,最后以1~20℃/min速率降温至常温。
2.如权利要求1所述的一种高性能柔性锂离子电池电极材料的制备方法,其特征在于过渡金属无机盐为四水合钼酸铵或钒酸铵。
3.如权利要求1所述的一种高性能柔性锂离子电池电极材料的制备方法,其特征在于高分子聚合物为聚乙烯醇、聚乙烯吡咯烷酮或聚氧化乙烯。
4.如权利要求1所述的一种高性能柔性锂离子电池电极材料的制备方法,其特征在于惰性气体与氢气混合还原气氛中氢气与惰性气体的体积比为1:0.1~20。
5.如权利要求1所述的一种高性能柔性锂离子电池电极材料的制备方法,其特征在于惰性气体为氩气或氮气。
CN201410074879.4A 2014-03-03 2014-03-03 一种高性能柔性锂离子电池电极材料的制备方法 Pending CN103811737A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410074879.4A CN103811737A (zh) 2014-03-03 2014-03-03 一种高性能柔性锂离子电池电极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410074879.4A CN103811737A (zh) 2014-03-03 2014-03-03 一种高性能柔性锂离子电池电极材料的制备方法

Publications (1)

Publication Number Publication Date
CN103811737A true CN103811737A (zh) 2014-05-21

Family

ID=50708187

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410074879.4A Pending CN103811737A (zh) 2014-03-03 2014-03-03 一种高性能柔性锂离子电池电极材料的制备方法

Country Status (1)

Country Link
CN (1) CN103811737A (zh)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104313728A (zh) * 2014-10-21 2015-01-28 南京大学(苏州)高新技术研究院 一种交换偏置的镍基铁磁/反铁磁复合纳米纤维及其制备方法
CN104357937A (zh) * 2014-11-10 2015-02-18 上海交通大学 一种静电纺丝制备多孔碳化钼纳米纤维的方法
CN105140523A (zh) * 2015-09-17 2015-12-09 上海大学 锂离子电池用柔性薄膜电极材料及其制备方法
CN105140500A (zh) * 2015-09-17 2015-12-09 国家纳米科学中心 一种柔性薄膜、其制备方法和使用其的锂离子电池材料
CN105489863A (zh) * 2015-12-31 2016-04-13 长沙矿冶研究院有限责任公司 一种基于C/Ti4O7复合纳米纤维的锂硫电池正极材料及其制备方法
CN105514367A (zh) * 2015-12-03 2016-04-20 南京晓庄学院 一种多孔带状金属氧化物与碳复合电极材料及其制备方法
CN104313728B (zh) * 2014-10-21 2017-01-04 南京大学(苏州)高新技术研究院 一种交换偏置的镍基铁磁/反铁磁复合纳米纤维及其制备方法
CN106757524A (zh) * 2016-12-04 2017-05-31 南京理工大学 快速制备NiMoO4/C纳米纤维的方法
CN107162055A (zh) * 2017-05-23 2017-09-15 宁波大学 一种钒铌酸盐纳米线的制备方法
CN109004185A (zh) * 2018-06-13 2018-12-14 福建翔丰华新能源材料有限公司 一种制备柔性锂离子电池独立负极材料的方法
CN110380023A (zh) * 2019-06-26 2019-10-25 广东工业大学 一种cnf-tmo锂离子电池负极材料及其制备方法和应用
CN111270348A (zh) * 2020-03-19 2020-06-12 东莞东阳光科研发有限公司 一种SrVO3纳米纤维制备方法及其相关产品
CN111864203A (zh) * 2019-04-28 2020-10-30 中国科学院上海硅酸盐研究所 一种高电容量锂电碳负极材料及其制备方法和应用
CN112271297A (zh) * 2020-10-20 2021-01-26 西安工程大学 网格型层叠结构材料合成成型一体化硅负极及其制备方法
CN113299872A (zh) * 2021-05-24 2021-08-24 天津森特新材料科技有限责任公司 一种锂离子电池磷酸铁锂正极的制备方法
CN114068971A (zh) * 2021-11-23 2022-02-18 成都先进金属材料产业技术研究院股份有限公司 钒电池用电极及钒电池
CN114334484A (zh) * 2022-01-05 2022-04-12 厦门理工学院 一种镍铜氧化物/碳复合纳米纤维电极材料及其制备方法
CN114665195A (zh) * 2022-03-16 2022-06-24 苏州大学 一种柔性空气电池及其制备方法
WO2023077673A1 (zh) * 2021-11-05 2023-05-11 岭东核电有限公司 膜过滤材料及其制备方法和在处理气溶胶中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100675923B1 (ko) * 2005-12-01 2007-01-30 전남대학교산학협력단 금속산화물 복합 나노 활성탄소섬유와 이를 이용한전기이중층 슈퍼캐퍼시터용 전극 및 그 제조 방법
CN101857193A (zh) * 2010-06-01 2010-10-13 武汉理工大学 分级结构钒氧化物超长纳米线及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100675923B1 (ko) * 2005-12-01 2007-01-30 전남대학교산학협력단 금속산화물 복합 나노 활성탄소섬유와 이를 이용한전기이중층 슈퍼캐퍼시터용 전극 및 그 제조 방법
CN101857193A (zh) * 2010-06-01 2010-10-13 武汉理工大学 分级结构钒氧化物超长纳米线及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WEI LUO 等: ""Electrospinning of carbon-coated MoO2 nanofibers with enhanced lithium-storage properties"", 《PHYS. CHEM. CHEM. PHYS》, vol. 13, 18 August 2011 (2011-08-18), pages 16735 - 16740 *
管纪鹏 等: ""静电纺丝制备新型锂离子电池负极材料"", 《2013年全国高分子学术论文报告会》, 16 October 2013 (2013-10-16), pages 821 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104313728A (zh) * 2014-10-21 2015-01-28 南京大学(苏州)高新技术研究院 一种交换偏置的镍基铁磁/反铁磁复合纳米纤维及其制备方法
CN104313728B (zh) * 2014-10-21 2017-01-04 南京大学(苏州)高新技术研究院 一种交换偏置的镍基铁磁/反铁磁复合纳米纤维及其制备方法
CN104357937B (zh) * 2014-11-10 2016-11-09 上海交通大学 一种静电纺丝制备多孔碳化钼纳米纤维的方法
CN104357937A (zh) * 2014-11-10 2015-02-18 上海交通大学 一种静电纺丝制备多孔碳化钼纳米纤维的方法
CN105140500A (zh) * 2015-09-17 2015-12-09 国家纳米科学中心 一种柔性薄膜、其制备方法和使用其的锂离子电池材料
CN105140523A (zh) * 2015-09-17 2015-12-09 上海大学 锂离子电池用柔性薄膜电极材料及其制备方法
CN105514367A (zh) * 2015-12-03 2016-04-20 南京晓庄学院 一种多孔带状金属氧化物与碳复合电极材料及其制备方法
CN105489863A (zh) * 2015-12-31 2016-04-13 长沙矿冶研究院有限责任公司 一种基于C/Ti4O7复合纳米纤维的锂硫电池正极材料及其制备方法
CN106757524A (zh) * 2016-12-04 2017-05-31 南京理工大学 快速制备NiMoO4/C纳米纤维的方法
CN107162055A (zh) * 2017-05-23 2017-09-15 宁波大学 一种钒铌酸盐纳米线的制备方法
CN109004185A (zh) * 2018-06-13 2018-12-14 福建翔丰华新能源材料有限公司 一种制备柔性锂离子电池独立负极材料的方法
CN111864203B (zh) * 2019-04-28 2022-01-04 中国科学院上海硅酸盐研究所 一种高电容量锂电碳负极材料及其制备方法和应用
CN111864203A (zh) * 2019-04-28 2020-10-30 中国科学院上海硅酸盐研究所 一种高电容量锂电碳负极材料及其制备方法和应用
CN110380023A (zh) * 2019-06-26 2019-10-25 广东工业大学 一种cnf-tmo锂离子电池负极材料及其制备方法和应用
CN111270348A (zh) * 2020-03-19 2020-06-12 东莞东阳光科研发有限公司 一种SrVO3纳米纤维制备方法及其相关产品
CN112271297A (zh) * 2020-10-20 2021-01-26 西安工程大学 网格型层叠结构材料合成成型一体化硅负极及其制备方法
CN112271297B (zh) * 2020-10-20 2022-09-06 西安工程大学 网格型层叠结构材料合成成型一体化硅负极及其制备方法
CN113299872A (zh) * 2021-05-24 2021-08-24 天津森特新材料科技有限责任公司 一种锂离子电池磷酸铁锂正极的制备方法
WO2023077673A1 (zh) * 2021-11-05 2023-05-11 岭东核电有限公司 膜过滤材料及其制备方法和在处理气溶胶中的应用
CN114068971A (zh) * 2021-11-23 2022-02-18 成都先进金属材料产业技术研究院股份有限公司 钒电池用电极及钒电池
CN114068971B (zh) * 2021-11-23 2023-10-27 成都先进金属材料产业技术研究院股份有限公司 钒电池用电极及钒电池
CN114334484A (zh) * 2022-01-05 2022-04-12 厦门理工学院 一种镍铜氧化物/碳复合纳米纤维电极材料及其制备方法
CN114334484B (zh) * 2022-01-05 2024-03-12 厦门理工学院 一种镍铜氧化物/碳复合纳米纤维电极材料及其制备方法
CN114665195A (zh) * 2022-03-16 2022-06-24 苏州大学 一种柔性空气电池及其制备方法

Similar Documents

Publication Publication Date Title
CN103811737A (zh) 一种高性能柔性锂离子电池电极材料的制备方法
CN106058209B (zh) 多层薄膜的锂离子电池自支撑硅基负极材料及其制备方法
WO2020073915A1 (zh) 锂离子电池负极材料及非水电解质电池
CN106654210B (zh) 一种高温长循环锂离子电池高镍正极材料及其制备方法
CN104934610A (zh) 一种锂离子电池用自支撑柔性复合电极材料制备方法
CN105552342A (zh) 碳纤维附着MnO2的锂离子电池柔性负极及其制备方法
CN103956458A (zh) 一种锂离子电池复合正极及其制备方法与在全固态电池中的应用
CN104466168A (zh) 四氧化三钴-碳多孔纳米纤维的制备方法及其作为锂离子电池的用途
CN106058212A (zh) 一种钠离子电池复合正极材料及其制备方法
CN102709597A (zh) 一种复合全固态聚合物电解质锂离子电池及其制备方法
CN104681808B (zh) 一种锶盐掺杂镍锰酸锂的锂离子电池正极材料制备方法
CN109671946B (zh) 锌离子电池正极活性材料、正极材料、锌离子电池正极、锌离子电池及其制备方法和应用
CN103928668B (zh) 一种锂离子电池及其正极材料的制备方法
CN107026285A (zh) 用于锂二次电池的聚合物电解质以及包括其的锂二次电池
CN112281258B (zh) 一种Li3VO4/C纤维锂离子电池负极材料及制备方法
CN109904441A (zh) 一种锂离子电池负极材料、非水电解质锂离子电池及其制备方法
CN104852040B (zh) 一种高倍率锂离子电池的镍锰酸锂正极材料的制备方法
CN103236518A (zh) 一种锂离子电池负极纳米材料SnO2/MCMB核壳及其制备方法与应用
CN103441257B (zh) 一种钛酸锂材料的制备方法
CN109671912A (zh) 一种快充型锂离子电池负极片制备方法
CN105185978A (zh) 用作负极活性物质的含锰氧化合物及其制备方法和用途
CN105047898A (zh) 一种双生球形锂离子二次电池富锂正极材料及其制备方法
CN107611348B (zh) 铝离子电池柔性电极材料及其制备方法和铝离子电池
CN113130980B (zh) 固态电解质及其制备方法、固态锂离子电池
CN109935813A (zh) 一种新型锂离子电池负极材料的制备方法及应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20140521