CN103785427B - 一种金属捕集剂及其制备方法和应用以及一种催化裂化方法 - Google Patents

一种金属捕集剂及其制备方法和应用以及一种催化裂化方法 Download PDF

Info

Publication number
CN103785427B
CN103785427B CN201210421125.2A CN201210421125A CN103785427B CN 103785427 B CN103785427 B CN 103785427B CN 201210421125 A CN201210421125 A CN 201210421125A CN 103785427 B CN103785427 B CN 103785427B
Authority
CN
China
Prior art keywords
weight
oxide
auxiliary agent
metal traps
pore volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210421125.2A
Other languages
English (en)
Other versions
CN103785427A (zh
Inventor
朱玉霞
陈蓓艳
黄志青
沈宁元
任飞
宋海涛
蒋文斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Original Assignee
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Research Institute of Petroleum Processing, China Petroleum and Chemical Corp filed Critical Sinopec Research Institute of Petroleum Processing
Priority to CN201210421125.2A priority Critical patent/CN103785427B/zh
Publication of CN103785427A publication Critical patent/CN103785427A/zh
Application granted granted Critical
Publication of CN103785427B publication Critical patent/CN103785427B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明提供了一种金属捕集剂及其制备方法和应用,该金属捕集剂含有氧化镁、具有阶梯孔分布的氧化铝和磷铝助剂,且至少部分氧化铝和至少部分氧化镁形成镁铝尖晶石结构;所述具有阶梯孔分布的氧化铝含有大孔氧化铝和小孔氧化铝;以2-100nm孔的孔体积为基准,所述大孔氧化铝中,2-5nm孔的孔体积占20-35%,5-10nm孔的孔体积占25-45%,10-60nm孔的孔体积占20-50%;所述小孔氧化铝中2-5nm孔的孔体积占50-70%,5-10nm孔的孔体积占15-30%,10-60nm孔的孔体积占10-20%。本发明提供了一种催化裂化方法。将本发明提供的金属捕集剂用于高钒重油催化裂化,可以减缓钒对裂化催化剂的破坏,提高液体产品收率,降低干气及焦炭收率。

Description

一种金属捕集剂及其制备方法和应用以及一种催化裂化方法
技术领域
本发明涉及一种金属捕集剂以及一种金属捕集剂的制备方法,以及金属捕集剂在催化裂化中的应用以及一种催化裂化方法。
背景技术
原油价格的不断攀升大幅度增加了炼厂的加工成本,目前,催化裂化为炼厂重油加工的重要手段,为了降低成本以使效益最大化,可以通过深度加工重质油和使用劣质油进行加工来实现。
然而,劣质原油的重金属(如钒)含量一般较高。石油中的含钒化合物是一类非常复杂的金属络合物,一般以卟啉钒和非卟啉钒的形式存在。金属卟啉沸点一般在565-650℃之间,主要集中在渣油中,但因其挥发性较强,也会进入催化裂化馏分中。非卟啉金属化合物可能是与沥青质大分子缔合在一起的相对分子量小于400的化合物,其配体可能为4N,NO2S或4S;当沥青质大分子的三维结构被破坏以后,这些小分子就会被释放出来。钒对催化裂化催化剂的污染主要是钒对催化剂造成了不可逆的破坏。实验表明,平衡剂上沉积1000μg/g的钒足以对沸石造成损害,恶化产品分布。
目前通常使用金属捕集剂进行重金属的捕集,以减少重金属(如钒)对裂化催化剂的破坏。尖晶石是常用的金属捕集剂材料,如US5603823A公开了一种钒捕集剂,其组成为(a)15-60w%的MgO,(b)30-60w%的Al2O3以及(c)10-30w%的稀土,稀土选自镧氧化物和/或钕氧化物,其中,至少部分MgO和Al2O3形成了Mg-Al尖晶石。
CN1148256C公开了一种含镁铝尖晶石的组合物及其制备方法,该组合物含有25-30重%的氧化镁,60-70重%的氧化铝和5-15重%的除铈以外的稀土金属氧化物,其中,镁和铝形成尖晶石结构,游离氧化镁的含量低于组合物总量的5重%,所述组合物的最可几孔直径不小于10nm。
发明内容
本发明的目的是在现有技术的基础上提供一种具有优良的金属捕集性能的金属捕集剂及其制备方法和应用。
为实现前述目的,一方面,本发明提供了一种金属捕集剂,该金属捕集剂含有氧化镁、具有阶梯孔分布的氧化铝和磷铝助剂,且至少部分氧化铝和至少部分氧化镁形成镁铝尖晶石结构;
其中,所述具有阶梯孔分布的氧化铝含有大孔氧化铝和小孔氧化铝;以2-100nm孔的孔体积为基准,所述大孔氧化铝中,2-5nm孔的孔体积占20-35%,5-10nm孔的孔体积占25-45%,10-60nm孔的孔体积占20-50%;所述小孔氧化铝中2-5nm孔的孔体积占50-70%,5-10nm孔的孔体积占15-30%,10-60nm孔的孔体积占10-20%。
另一方面,本发明提供了一种金属捕集剂的制备方法,其中,该方法包括:
(1)将小孔氧化铝、去离子水和酸混合制浆得到第一浆液;
(2)将所述第一浆液与氢氧化镁和/或氧化镁接触得到第二浆液;
(3)将所述第二浆液与大孔氧化铝接触得到第三浆液;
(4)将所述第三浆液进行喷雾干燥后进行焙烧;
其中,以2-100nm孔的孔体积为基准,所述大孔氧化铝中,2-5nm孔的孔体积占20-35%,5-10nm孔的孔体积占25-45%,10-60nm孔的孔体积占20-50%;所述小孔氧化铝中2-5nm孔的孔体积占50-70%,5-10nm孔的孔体积占15-30%,10-60nm孔的孔体积占10-20%;
其中,步骤(1)的混合制浆和/或步骤(2)的第一浆液与氢氧化镁和/或氧化镁的接触和/或步骤(3)的将所述第二浆液与大孔氧化铝的接触在磷铝助剂和/或磷铝助剂前体的存在下进行,和/或焙烧之前将步骤(4)喷雾干燥后得到的固体和/或将步骤(4)焙烧后得到的固体与磷铝助剂和/或磷铝助剂前体接触。
再一方面,本发明提供了一种采用本发明的金属捕集剂的制备方法制备得到的金属捕集剂。
再一方面,本发明提供了一种本发明的金属捕集剂在催化裂化中的应用。
再一方面,本发明提供了一种催化裂化方法,该方法包括:在催化裂化条件下,将重油原料与含有金属捕集剂和催化裂化催化剂的催化剂混合物接触,其中,所述金属捕集剂为本发明所述的金属捕集剂。
本发明的金属捕集剂具有很好的金属捕集效果,将本发明提供的金属捕集剂用于高钒重油催化裂化,可以减缓钒对裂化催化剂的破坏,提高液体产品收率,降低干气及焦炭收率。例如当本发明提供的金属捕集剂与工业裂化催化剂按重量比为5:95混合,催化剂混合物上Ni含量约为2000ppm、钒含量约为4500ppm时,与单独使用工业裂化催化剂相比,重油收率由12.36重量%减少至10.27重量%,总液体产品收率由71.60重量%增加至74.57重量%,干气选择性由0.0358降至0.0330,焦炭选择性由0.1910降至0.1772。由此可见,本发明提供的金属捕集剂能更有效地将重油转化成高价值产品。
本发明的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1为本发明所使用的大孔氧化铝A、小孔氧化铝A的孔分布图;
图2为按照实施例1的方法制备得到的金属捕集剂A1的新鲜态(图中称为新鲜剂)和于800℃、100%水蒸汽气氛下水热老化17小时后(图中称为水热老化剂)的孔分布图;
图3为按照对比例1的方法制备得到的金属捕集剂B1的新鲜态(图中称为新鲜剂)和于800℃、100%水蒸汽气氛下水热老化17小时后(图中称为水热老化剂)的孔分布图;
图4为按照实施例1的方法制备得到的金属捕集剂A1和按照对比例1的方法制备得到的金属捕集剂B1的XRD谱图。
具体实施方式
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
本发明提供了一种金属捕集剂,该金属捕集剂含有氧化镁、具有阶梯孔分布的氧化铝和磷铝助剂,且至少部分氧化铝和至少部分氧化镁形成镁铝尖晶石结构;
其中,所述具有阶梯孔分布的氧化铝含有大孔氧化铝和小孔氧化铝;以2-100nm孔的孔体积为基准,所述大孔氧化铝中,2-5nm孔的孔体积占20-35%,5-10nm孔的孔体积占25-45%,10-60nm孔的孔体积占20-50%;所述小孔氧化铝中2-5nm孔的孔体积占50-70%,5-10nm孔的孔体积占15-30%,10-60nm孔的孔体积占10-20%。
根据本发明的金属捕集剂,优选情况下,以2-100nm孔的孔体积为基准,所述大孔氧化铝中2-5nm孔的孔体积占20-30%,5-10nm孔的孔体积占25-40%,10-60nm孔的孔体积占25-45%;所述小孔氧化铝中2-5nm孔的孔体积占50-70%,5-10nm孔的孔体积占15-30%,10-60nm孔的孔体积占10-20%,其余的为60-100nm孔的孔体积含量;更优选情况下,以2-100nm孔的孔体积为基准,所述小孔氧化铝中2-5nm孔的孔体积占52-68%,5-10nm孔的孔体积占15-30%,10-60nm孔的孔体积占11-18%,以2-100nm孔的体积为基准,所述的大孔氧化铝中60-100nm孔的孔体积优选不超过10%,所述小孔氧化铝中60-100nm孔的孔体积不超过5%。本发明中,所述的2-5nm的孔是指孔径大于等于2nm,小于5nm的孔,5-10nm的孔,是指孔径大于等于5nm小于10nm的孔,10-60nm的孔是指孔径大于等于10nm,小于60nm的孔,2-100nm是指孔径大于等于2nm小于等于100nm的孔。
本发明中,优选所述大孔氧化铝的BET比表面积不小于350m2·g-1,孔体积优选不小于0.70mL·g-1
本发明中,孔分布、孔径、孔体积采用低温氮吸附法测定(参见《石油化工分析方法(RIPP试验方法)》,杨翠定等编,科学出版社,1990年出版)。
本发明的所述具有阶梯孔分布的氧化铝(包括所述大孔氧化铝和所述小孔氧化铝)在中国专利CN101745417B中亦有详细的介绍。本发明在此一并引用用于说明本发明。
根据本发明的金属捕集剂,满足本发明要求的所述大孔氧化铝和小孔氧化铝可以通过合成得到,也可以通过商购得到,本发明对此无特殊要求。
根据本发明的金属捕集剂,优选所述具有阶梯孔分布的氧化铝含有10-90重量%的大孔氧化铝和10-90重量%的小孔氧化铝;更优选所述具有阶梯孔分布的氧化铝含有15-85重量%的大孔氧化铝和15-85重量%的小孔氧化铝。
根据本发明的金属捕集剂,只要保证本发明的金属捕集剂中含有所述具有阶梯孔分布的氧化铝即可很好的实现本发明的目的,所述金属捕集剂中各组分的含量的可选范围较宽,针对本发明,优选所述金属捕集剂中含有5-90重量%的具有阶梯孔分布的氧化铝、5-90重量%的氧化镁和0.5-30重量%的磷铝助剂。
根据本发明的金属捕集剂,依据需要,所述金属捕集剂中还含有第四组分,所述第四组分为除所述氧化镁、所述具有阶梯孔分布的氧化铝和所述磷铝助剂以外的耐热无机氧化物和/或粘土。所述第四组分的含量的可选范围较宽,具体可以依据实际需要进行选择,本发明对此无特殊要求,一般以金属捕集剂的总重量为基准,所述第四组分的含量为0.001-30重量%。更优选的,所述金属捕集剂中含有5-60重量%的氧化镁、10-90重量%的具有阶梯孔分布的氧化铝、5-25重量%的磷铝助剂及平衡量的所述第四组分。
根据本发明的金属捕集剂,所述耐热无机氧化物的种类的可选范围较宽,满足前述要求的现有技术常用的耐热无机氧化物(本领域中通常也称为粘结剂氧化物)均可用于本发明,针对本发明,优选所述耐热无机氧化物选自二氧化硅,除所述具有阶梯孔分布的氧化铝、氧化镁外的金属氧化物(如氧化钙、氧化钛、氧化锆)中的一种或多种。
根据本发明的金属捕集剂,所述粘土的种类的可选范围较宽,本领域常用的粘土均可用于本发明,针对本发明,优选所述粘土选自高岭土、偏高岭土、海泡石、凹凸棒石、蒙脱石、累脱石、硅藻土、埃洛石、皂石、硼润土、水滑石中的一种或多种,更优选所述粘土选自高岭土、硅藻土、海泡石、凹凸棒石、蒙脱石和累脱石中一种或多种。
本发明对所述磷铝助剂无特殊要求,优选情况下,所述磷铝助剂含有,以氧化物计,Al2O315-45重量%,P2O550-75重量%,以及粘土以干基计0.1-20重量%,更优选情况下,所述磷铝助剂不含氯元素,P元素与Al元素的重量比为1-5:1,其一般可以直接引入,也可以通过磷铝助剂前体引入到金属捕集剂中,所述磷铝助剂前体的制备方法可以参见中国专利申请申请号为201110180891.X中描述的方法,但不限于此。
本发明中所述金属捕集剂的制备方法可以参照现有技术进行,其可以采用本领域常规的方法制备得到,根据本发明的一种实施方式,本发明提供了一种金属捕集剂的制备方法,该方法包括:
(1)将小孔氧化铝、大孔氧化铝、去离子水和酸混合制浆得到第一浆液;
(2)将所述第一浆液与氢氧化镁和/或氧化镁接触得到第二浆液;
(3)将所述第二浆液进行喷雾干燥后进行焙烧;
其中,以2-100nm孔的孔体积为基准,所述大孔氧化铝中,2-5nm孔的孔体积占20-35%,5-10nm孔的孔体积占25-45%,10-60nm孔的孔体积占20-50%;所述小孔氧化铝中2-5nm孔的孔体积占50-70%,5-10nm孔的孔体积占15-30%,10-60nm孔的孔体积占10-20%;
其中,为了将磷铝助剂引入到本发明的金属捕集剂中,本发明的方法可以按如下的任意一种或多种实施方式进行:
a:步骤(1)的混合制浆在磷铝助剂和/或磷铝助剂前体的存在下进行;
b:步骤(2)的第一浆液与氢氧化镁和/或氧化镁的接触在磷铝助剂和/或磷
铝助剂前体的存在下进行;
c:将步骤(3)喷雾干燥且焙烧之前得到的固体与磷铝助剂和/或磷铝助剂前体接触;
d:将步骤(3)焙烧后的固体与磷铝助剂和/或磷铝助剂前体接触;
也即,本发明的步骤(1)的混合制浆和/或步骤(2)的第一浆液与氢氧化镁和/或氧化镁的接触在磷铝助剂和/或磷铝助剂前体的存在下进行,和/或焙烧之前将步骤(3)喷雾干燥后得到的固体和/或将步骤(3)焙烧后得到的固体与磷铝助剂和/或磷铝助剂前体接触。
根据本发明的一种优选的实施方式,本发明提供了一种金属捕集剂的制备方法,该方法包括:
(1)将小孔氧化铝、去离子水和酸混合制浆得到第一浆液;
(2)将所述第一浆液与氢氧化镁和/或氧化镁接触得到第二浆液;
(3)将所述第二浆液与大孔氧化铝接触得到第三浆液;
(4)将所述第三浆液进行喷雾干燥后进行焙烧;
其中,以2-100nm孔的孔体积为基准,所述大孔氧化铝中,2-5nm孔的孔体积占20-35%,5-10nm孔的孔体积占25-45%,10-60nm孔的孔体积占20-50%;所述小孔氧化铝中2-5nm孔的孔体积占50-70%,5-10nm孔的孔体积占15-30%,10-60nm孔的孔体积占10-20%;
其中,为了将磷铝助剂引入到本发明的金属捕集剂中,本发明的方法可以按如下的任意一种或多种实施方式进行:
a:步骤(1)的混合制浆在磷铝助剂和/或磷铝助剂前体的存在下进行;
b:步骤(2)的第一浆液与氢氧化镁和/或氧化镁的接触在磷铝助剂和/或磷
铝助剂前体的存在下进行;
c:步骤(3)的将所述第二浆液与大孔氧化铝的接触在磷铝助剂和/或磷铝助剂前体的存在下进行;
d:将步骤(4)喷雾干燥且焙烧之前得到的固体与磷铝助剂和/或磷铝助剂前体接触;
e:将步骤(4)焙烧后的固体与磷铝助剂和/或磷铝助剂前体接触;
也即,本发明的步骤(1)的混合制浆和/或步骤(2)的第一浆液与氢氧化镁和/或氧化镁的接触和/或步骤(3)的将所述第二浆液与大孔氧化铝的接触在磷铝助剂和/或磷铝助剂前体的存在下进行,和/或焙烧之前将步骤(4)喷雾干燥后得到的固体和/或将步骤(4)焙烧后得到的固体与磷铝助剂和/或磷铝助剂前体接触。
根据本发明的制备方法,所述大孔氧化铝和小孔氧化铝的种类在本发明前述介绍本发明的金属捕集剂的过程中已经详细描述,在此不再赘述。
根据本发明的制备方法,按照本发明的前述技术方案进行可以很好的实现本发明的目的,制备过程中各种物质用量的可选范围较宽,针对本发明,优选所述大孔氧化铝和小孔氧化铝的用量使得制备得到的金属捕集剂中的氧化铝中含有10-90重量%,优选15-85重量%的大孔氧化铝和10-90重量%,优选15-85重量%的小孔氧化铝,且所述大孔氧化铝和小孔氧化铝的总用量使得制备得到的金属捕集剂中大孔氧化铝和小孔氧化铝的总含量为5-90重量%。
根据本发明的制备方法,按照本发明的前述技术方案进行可以很好的实现本发明的目的,如前所述制备过程中各种物质用量的可选范围较宽,针对本发明,优选所述氢氧化镁和/或氧化镁的用量使得制备得到的金属捕集剂中含有5-90重量%的氧化镁。
根据本发明的制备方法,按照本发明的前述技术方案进行可以很好的实现本发明的目的,步骤(1)中所述混合制浆的条件的可选范围较宽,具体可以参照现有技术进行,针对本发明,优选步骤(1)中酸的用量使得第一浆液的pH值为1-4.5;步骤(1)中小孔氧化铝和/或磷铝助剂和/或磷铝助剂前体与去离子水的用量使得第一浆液的固含量为8-20重量%。
根据本发明的制备方法,按照本发明的前述技术方案进行可以很好的实现本发明的目的,步骤(2)中所述接触的条件的可选范围较宽,针对本发明,优选步骤(2)中所述接触的条件包括:温度为0-70℃,优选为15-60℃;时间为15min以上,优选为15-90min。。
根据本发明的制备方法,按照本发明的前述技术方案进行可以很好的实现本发明的目的,步骤(3)中所述接触的条件的可选范围较宽,针对本发明,优选步骤(3)中所述接触的条件包括:温度为10-60℃,时间为20-60min。
根据本发明的制备方法,所述磷铝助剂的种类在前述已经详细描述,在此不再进行详细描述。
本发明的发明人经研究发现,满足前述要求的磷铝助剂均可以实现本发明的目的,而为了使得本发明的目的实现的更加充分,优选情况下,本发明的金属捕集剂中的磷铝助剂以磷铝助剂前体的形式引入,所述磷铝助剂前体一般可以为pH为1-3.5的磷铝胶,具体的一般可以为:含有,以氧化物计,Al2O315-45重量%,P2O550-75重量%,以及粘土以干基计0.1-20重量%,且不含氯元素的磷铝胶,其中,P元素与Al元素重量比为1-5:1,且pH值为1-3.5。
本发明中,所述磷铝助剂前体的制备方法可以参照现有技术进行,具体地,例如可以参照中国专利申请申请号为201110180891.X中描述的方法,但不限于此,具体地,例如可以按如下步骤进行:
将铝源(如拟薄水铝石)、粘土(如累脱土)打浆,然后向得到的浆液中加入酸性物质(例如浓磷酸),于10-100℃下接触10-100min,其中,所述铝源、粘土的用量可以根据最终要求的含量进行控制。
根据本发明的制备方法,优选所述磷铝助剂和/或磷铝助剂前体的用量使得制备得到的金属捕集剂中含有磷铝助剂0.5-30重量%。
根据本发明的制备方法,依据需要可以在制备所述金属捕集剂的过程中引入第四物质,具体地例如可以在步骤(1)的混合制浆和/或步骤(2)的将所述第一浆液与氢氧化镁和/或氧化镁的接触和/或步骤(3)的将所述第二浆液与大孔氧化铝的接触过程中引入第四物质,也可以将所述第四物质与步骤(4)焙烧得到的固体接触通过负载引入;针对本发明,优选步骤(1)的混合制浆和/或步骤(2)的将所述第一浆液与氢氧化镁和/或氧化镁的接触和/或步骤(3)的将所述第二浆液与大孔氧化铝的接触在第四物质存在下进行,其中,所述第四物质为粘土,除氧化镁、所述大孔氧化铝、所述小孔氧化铝、所述磷铝助剂、所述氢氧化镁和所述磷铝助剂前体以外的耐热无机氧化物和/或耐热无机氧化物的前驱体中的一种或多种。
根据本发明的一种优选的实施方式,所述大孔氧化铝和小孔氧化铝的总用量、所述氢氧化镁和/或氧化镁的用量、所述磷铝助剂和/或磷铝助剂前体的用量以及所述第四物质的用量使得制备得到的金属捕集剂中含有10-90重量%的大孔氧化铝和小孔氧化铝,5-60重量%的氧化镁、8-15重量%的磷铝助剂及平衡量的所述第四物质的氧化物。
根据本发明的制备方法,所述粘土和耐热无机氧化物的种类在前述介绍本发明的金属捕集剂的部分已经详细描述,在此不再重复赘述。
根据本发明的制备方法,所述耐热无机氧化物前驱体的种类的可选范围较宽,满足前述要求的本领域常用的耐热无机氧化物前驱体(本领域也称为粘结剂)均可用于本发明,针对本发明,优选所述耐热无机氧化物前驱体选自硅溶胶、水玻璃、拟薄水铝石、铝溶胶和硅铝溶胶中的一种或多种。
根据本发明的制备方法,所述喷雾干燥、干燥、焙烧的方法均可参照现有技术进行,本发明对此无特殊要求。
本发明提供了一种按照本发明的制备方法制备得到的金属捕集剂。
本发明提供了本发明所述的金属捕集剂在催化裂化中的应用。
本发明的金属捕集剂具有很好的金属捕集效果,将本发明提供的金属捕集剂用于高钒重油催化裂化,可以减缓钒对裂化催化剂的破坏,提高液体产品收率,降低干气及焦炭收率。例如当本发明提供的金属捕集剂与工业裂化催化剂按重量比为5:95混合,催化剂混合物上Ni含量约为2000ppm、钒含量约为4500ppm时,与单独使用工业裂化催化剂相比,重油收率由12.36重量%减少至10.27重量%,总液体产品收率由71.60重量%增加至74.57重量%,干气选择性由0.0358降至0.0330,焦炭选择性由0.1910降至0.1772。由此可见,本发明提供的金属捕集剂能更有效地将重油转化成高价值产品。
本发明提供了一种催化裂化方法,该方法包括:在催化裂化条件下,将重油原料与含有金属捕集剂和催化裂化催化剂的催化剂混合物接触,其中,所述金属捕集剂为本发明所述的金属捕集剂。
根据本发明的催化裂化方法,优选所述催化剂混合物中金属捕集剂与催化裂化催化剂的重量比为1:4-99,优选为1:5.7-99,更优选为1:6-32。
根据本发明的催化裂化方法,所述催化裂化条件可以为本领域常用的催化裂化条件,本发明对此无特殊要求,在此不进行详细描述。
在本发明中,以干基计的重量是指在约800℃的条件下焙烧1小时后的重量。
本发明中,物质的固含量指的是物质经过高温焙烧后的重量与焙烧前的重量比,即物质的固含量=100%-物质的含水量%。
本发明中,剂油比指的是催化剂与原料油的质量比。
本发明中,如未特别说明,ppm均为以重量计的ppm
下面通过实施例对本发明予以进一步说明,但并不因此而限制本发明。
在实施例中和对比例中:
铝溶胶由中石化催化剂齐鲁分公司提供(Al2O3含量为21.5重量%),高岭土产自中国苏州(固含量为76.9重量%),拟薄水铝石由山东铝厂提供(固含量为60.8重量%),氧化镁由河北镁神化工有限公司提供。工业催化剂C(牌号HGY)由中国石化齐鲁催化剂分公司提供,对比例和实施例中所用化学试剂未特别注明的,其规格为化学纯。
在各实施例中,磨损指数及堆积密度采用RIPP标准方法测定(参见《石油化工分析方法(RIPP实验方法)》,杨翠定等编,科学出版社,1990年出版)。催化剂混合物中Ni、V含量用X射线荧光法测定;金属捕集剂的物相采用XRD法测定。
制备实施例1-4用于制备本发明的磷铝助剂前体
制备实施例1
将1.25千克拟薄水铝石(含Al2O30.76千克)、0.26千克累脱土(干基0.2千克)与1.57千克去阳离子水打浆30分钟后得到浆液,在搅拌下向浆液中加入1.69千克的浓磷酸,升温至70℃,然后在此温度下接触45分钟,得到磷铝助剂前体P1,物料配比见表1。
制备实施例2-4
按照制备实施例1的方法制备磷铝助剂前体P2-P4,不同的是,物料配比见表1。
表1
实施例1-9用于说明本发明提供的金属捕集剂的制备过程。
实施例1
(1)将小孔氧化铝A180g(按Al2O3计)加入脱离子水中,分散均匀后,加入盐酸,接触30分钟后得到第一浆液,第一浆液的pH值为1.1,固含量为15重量%;
(2)接着加入脱离子水分散的MgO浆液(含MgO700g),分散均匀后加入实施例3制备的磷铝助剂前体P360g(按干基计),温度控制在55℃下接触60分钟后得到第二浆液,第二浆液的pH值为8.8,固含量为23重量%;
(3)然后加入大孔氧化铝A60g(按Al2O3计)得到第三浆液,在10-40℃下接触15min;
(4)将第三浆液喷雾干燥成型后,直接焙烧,焙烧条件为550℃/2h,得到金属捕集剂A1;
其中,氧化铝的孔分布列于表2中(大孔氧化铝A、小孔氧化铝A的孔分布图见图1),A1的配方、制备参数及磨损指数列于表3中。A1的XRD谱图见图4,由图4可以看出,金属捕集剂A1中含有镁铝尖晶石结构,即金属捕集剂中至少部分氧化镁和氧化铝形成了镁铝尖晶石结构;
其中,金属捕集剂A1的新鲜态和于800℃、100%水蒸汽气氛下水热老化17小时后的孔分布图见图2;由图2可以看出金属捕集剂A1经水热老化后中孔保持完好,且提供更大的孔体积。
实施例2-8
实例2-8用于说明本发明提供的金属捕集剂的制备过程。
按照实施例1的方法制备金属捕集剂A2-A8,不同的是配方、制备参数及磨损指数列于表3中。
实施例9
按照实施例1的方法制备金属捕集剂A9,不同的是,没有步骤(3),且直接将大孔氧化铝与小孔氧化铝一起在步骤(1)中加入,其余步骤及条件均相同,得到金属捕集剂A9。
对比例1
本对比例用于说明对比金属捕集剂B1的制备过程。
(1)将拟薄水铝石240g(按Al2O3计)加入脱离子水中,分散均匀后,加入盐酸,接触30分钟后得到第一浆液,第一浆液的pH值为1.5,固含量为15重量%;
(2)接着加入脱离子水分散的MgO浆液(含MgO750g)、磷铝助剂前体至所述第一浆液中,在75℃下,接触60分钟后得到第二浆液,第二浆液的pH值为9.9,固含量为28重量%;
将第二浆液喷雾干燥成型,直接焙烧,焙烧条件为550℃/2h,得到金属捕集剂B1。B1的配方、制备参数及磨损指数列于表4中。B1的XRD谱图见图4,由图4可以看出,金属捕集剂A1中含有镁铝尖晶石结构,即金属捕集剂中至少部分氧化镁和氧化铝形成了镁铝尖晶石结构;
其中,金属捕集剂B1的新鲜态和于800℃、100%水蒸汽气氛下水热老化17小时后的孔分布图见图3;由图3可以看出金属捕集剂B1水热老化后基本没有形成中孔。
对比例2-4
按照对比例1的方法制备对比金属捕集剂B2-B4,不同的是,B2、B3、B4的配方、制备参数及磨损指数列于表4中。从磨损指数看,仅用大孔氧化铝的对比助剂B3强度差,不适合用于催化裂化过程。
表2
表3
表4
实施例10-18
实施例10-18用于说明金属捕集剂与工业裂化催化剂混合物的重金属污染方法和本发明的金属捕集剂用于催化裂化的催化裂化性能。
首先分析工业裂化催化剂C和本发明提供的金属捕集剂A1-A9的固含量,然后以干基计量物理混合得到催化剂混合物,催化剂混合物在循环老化装置上先进行循环污染(以沉积Ni和V),循环污染后的催化剂混合物上Ni、V含量见表6和表7,其中,
循化污染步骤包括:催化剂混合物通过米歇尔浸渍法引入重金属(Ni和V)后,然后将引入重金属后的催化剂混合物装入D-100装置(小型固定流化床)中,在D-100装置上按如下步骤进行处理:
(a)在氮气气氛下,以20℃/min的升温速率,加热至600℃;
(b)以1.5℃/min的升温速率,加热至780℃后,恒温在780℃,恒温过程中按如下步骤更换处理气氛:
(i)以含有40体积%的氮气(其中,氮气中含有5体积%的丙烯),60体积%的水蒸气的气氛处理10分钟,
(ii)以含有40体积%的氮气(纯氮气,无丙烯),60体积%的水蒸气的气氛处理10分钟,
(iii)以含有40体积%的空气(含4000μmol/molSO2),60体积%的水蒸气的气氛处理10分钟,
(iv)以含有40体积%的氮气,60体积%的水蒸气的气氛处理10分钟;然后按前述顺序再重复循环步骤(i)-(iv)各一次,然后重复步骤(i),结束循环污染步骤;
然后进行老化的步骤:循环污染后的催化剂混合物于788℃下,在含有80体积%的水蒸气和20体积%的空气的气氛中老化8小时;
然后在ACE装置上考察经循环污染-老化后的催化剂混合物的催化性能,其中,原料油于反应器底部进入与催化剂混合物接触,其中,所用原料油性质见表5,评价条件及结果见表6和表7。
对比例5-8
对比例5-8用于说明对比催化剂混合物的重金属污染方法和对比金属捕集剂用于催化裂化的催化裂化性能。
按照实施例10-18的方法进行金属污染和和催化裂化,不同的是采用的催化剂混合物为单独的工业催化剂C、对比例1提供的助剂B1、对比例2提供的助剂B2、对比例4提供的助剂B4与工业催化剂C按重量比物理混合后的催化剂混合物,污染后催化剂混合物上Ni、V含量见表6和表7,评价条件及结果见表6和表7。
表5
从表6的数据可以看出,在催化裂化催化剂中加入本发明提供的金属捕集剂可以减缓钒对催化裂化催化剂的破坏,改善焦炭及干气的选择性,增加总液体产品收率,同时,从干气收率上看,本发明的金属捕集剂也有一定的抗镍污染的作用。
表6
本发明中,转化率=汽油收率+液化气收率+干气收率+焦炭收率、总液收(又称总液体产品收率)=汽油收率+柴油收率+液化气收率、焦炭选择性=焦炭收率/转化率、干气选择性=干气收率/选择性。
表7
从表7的数据可以看出,本发明提供的金属捕集剂具有更好的钒捕集能力,用于催化裂化过程中可以更有效地改善焦炭及干气的选择性,增加总液体产品收率。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (17)

1.一种金属捕集剂的制备方法,其中,该方法包括:
(1)将小孔氧化铝、去离子水和酸混合制浆得到第一浆液;
(2)将所述第一浆液与氢氧化镁和/或氧化镁接触得到第二浆液;
(3)将所述第二浆液与大孔氧化铝接触得到第三浆液;
(4)将所述第三浆液进行喷雾干燥后进行焙烧;
其中,以2-100nm孔的孔体积为基准,所述大孔氧化铝中,2-5nm孔的孔体积占20-35%,5-10nm孔的孔体积占25-45%,10-60nm孔的孔体积占20-50%;所述小孔氧化铝中2-5nm孔的孔体积占50-70%,5-10nm孔的孔体积占15-30%,10-60nm孔的孔体积占10-20%;
其中,步骤(1)的混合制浆和/或步骤(2)的第一浆液与氢氧化镁和/或氧化镁的接触和/或步骤(3)的将所述第二浆液与大孔氧化铝的接触在磷铝助剂和/或磷铝助剂前体的存在下进行,和/或焙烧之前将步骤(4)喷雾干燥后得到的固体和/或将步骤(4)焙烧后得到的固体与磷铝助剂和/或磷铝助剂前体接触;
其中,所述大孔氧化铝和小孔氧化铝的用量使得制备得到的金属捕集剂中的氧化铝中含有10-90重量%的大孔氧化铝和10-90重量%的小孔氧化铝,且所述大孔氧化铝和小孔氧化铝的总用量使得制备得到的金属捕集剂中大孔氧化铝和小孔氧化铝的总含量为5-90重量%;
其中,所述氢氧化镁和/或氧化镁的用量使得制备得到的金属捕集剂中含有5-90重量%的氧化镁;
所述磷铝助剂和/或磷铝助剂前体的用量使得制备得到的金属捕集剂中含有0.5-30重量%的磷铝助剂。
2.根据权利要求1所述的制备方法,其中,所述磷铝助剂前体为:含有,以氧化物计,Al2O315-45重量%,P2O550-75重量%以及粘土以干基计0.1-20重量%,且不含氯元素,其中,P元素与Al元素的重量比为1-5:1,且pH值为1-3.5的磷铝胶。
3.根据权利要求1或2所述的制备方法,其中,
步骤(1)中酸的用量使得第一浆液的pH值为1-4.5;
步骤(1)中小孔氧化铝和/或磷铝助剂和/或磷铝助剂前体与去离子水的用量使得第一浆液的固含量为8-20重量%。
4.根据权利要求1或2所述的制备方法,其中,步骤(2)中所述接触的条件包括:温度为0-70℃,时间为15min以上。
5.根据权利要求1或2所述的制备方法,其中,步骤(3)中所述接触的条件包括:温度为10-60℃,时间为2-20min。
6.根据权利要求1或2所述的制备方法,其中,步骤(1)的混合制浆和/或步骤(2)的将所述第一浆液与氢氧化镁和/或氧化镁的接触和/或步骤(3)的将所述第二浆液与大孔氧化铝的接触在第四物质存在下进行,所述第四物质为粘土,除氧化镁、所述大孔氧化铝、所述小孔氧化铝、所述磷铝助剂、所述氢氧化镁和所述磷铝助剂前体以外的耐热无机氧化物和/或耐热无机氧化物的前驱体中的一种或多种。
7.根据权利要求6所述的制备方法,其中,所述大孔氧化铝和小孔氧化铝的总用量、所述氢氧化镁和/或氧化镁的用量、所述磷铝助剂和/或磷铝助剂前体的用量以及所述第四物质的用量使得制备得到的金属捕集剂中含有10-90重量%的大孔氧化铝和小孔氧化铝,5-60重量%的氧化镁、8-15重量%的磷铝助剂及平衡量的所述第四物质的氧化物。
8.根据权利要求6所述的制备方法,其中,所述耐热无机氧化物前驱体选自硅溶胶、水玻璃、拟薄水铝石、铝溶胶和硅铝溶胶中的一种或多种。
9.一种由权利要求1-6和8中任意一项所述的制备方法制备得到的金属捕集剂,该金属捕集剂含有5-90重量%的具有阶梯孔分布的氧化铝、5-90重量%的氧化镁和0.5-30重量%的磷铝助剂,且至少部分氧化铝和至少部分氧化镁形成镁铝尖晶石结构;
其中,所述具有阶梯孔分布的氧化铝含有10-90重量%的大孔氧化铝和10-90重量%的小孔氧化铝;以2-100nm孔的孔体积为基准,所述大孔氧化铝中,2-5nm孔的孔体积占20-35%,5-10nm孔的孔体积占25-45%,10-60nm孔的孔体积占20-50%;所述小孔氧化铝中2-5nm孔的孔体积占50-70%,5-10nm孔的孔体积占15-30%,10-60nm孔的孔体积占10-20%。
10.根据权利要求9所述的金属捕集剂,其中,所述金属捕集剂中还含有第四组分,所述第四组分为除所述氧化镁、所述具有阶梯孔分布的氧化铝和所述磷铝助剂以外的耐热无机氧化物和/或粘土。
11.根据权利要求10所述的金属捕集剂,其中,所述金属捕集剂中含有5-60重量%的氧化镁、10-90重量%的具有阶梯孔分布的氧化铝、5-25重量%的磷铝助剂及平衡量的所述第四组分。
12.根据权利要求10所述的金属捕集剂,其中,所述耐热无机氧化物选自二氧化硅,除所述具有阶梯孔分布的氧化铝、氧化镁外的金属氧化物中的一种或多种。
13.根据权利要求10所述的金属捕集剂,其中,所述粘土选自高岭土、硅藻土、海泡石、凹凸棒石、蒙脱石和累脱石中一种或多种。
14.根据权利要求9-13中任意一项所述的金属捕集剂,其中,所述磷铝助剂含有,以氧化物计,Al2O315-45重量%,P2O550-75重量%,以及粘土以干基计0.1-20重量%,且所述磷铝助剂不含氯元素,P元素与Al元素的重量比为1-5:1。
15.权利要求9-14中任意一项所述的金属捕集剂在催化裂化中的应用。
16.一种催化裂化方法,该方法包括:在催化裂化条件下,将重油原料与含有金属捕集剂和催化裂化催化剂的催化剂混合物接触,其特征在于,所述金属捕集剂为权利要求9-14中任意一项所述的金属捕集剂。
17.根据权利要求16所述的方法,其中,所述催化剂混合物中金属捕集剂与催化裂化催化剂的重量比为1:4-99。
CN201210421125.2A 2012-10-29 2012-10-29 一种金属捕集剂及其制备方法和应用以及一种催化裂化方法 Active CN103785427B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210421125.2A CN103785427B (zh) 2012-10-29 2012-10-29 一种金属捕集剂及其制备方法和应用以及一种催化裂化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210421125.2A CN103785427B (zh) 2012-10-29 2012-10-29 一种金属捕集剂及其制备方法和应用以及一种催化裂化方法

Publications (2)

Publication Number Publication Date
CN103785427A CN103785427A (zh) 2014-05-14
CN103785427B true CN103785427B (zh) 2016-03-23

Family

ID=50661733

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210421125.2A Active CN103785427B (zh) 2012-10-29 2012-10-29 一种金属捕集剂及其制备方法和应用以及一种催化裂化方法

Country Status (1)

Country Link
CN (1) CN103785427B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115555011A (zh) * 2022-08-24 2023-01-03 碳中能源科技(北京)有限公司 一种提高fcc催化剂抗重金属污染性能助剂

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5603823A (en) * 1995-05-12 1997-02-18 W. R. Grace & Co.-Conn. LA/ND-spinel compositions for metals passivation in FCC processes
CN1491188A (zh) * 2001-02-09 2004-04-21 ŵ�����˹ɷ����޹�˾ 掺杂的阴离子粘土
WO2005058487A1 (en) * 2003-12-09 2005-06-30 Albemarle Netherlands B.V. Process for the preparation of an oxidic catalyst composition comprising a divalent and a trivalent metal
CN101583696A (zh) * 2006-12-06 2009-11-18 哥伦比亚国家石油股份有限公司 用于催化裂化过程的捕钒剂及其制备
CN101745417A (zh) * 2008-11-28 2010-06-23 中国石油化工股份有限公司 一种催化裂化催化剂

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5603823A (en) * 1995-05-12 1997-02-18 W. R. Grace & Co.-Conn. LA/ND-spinel compositions for metals passivation in FCC processes
CN1491188A (zh) * 2001-02-09 2004-04-21 ŵ�����˹ɷ����޹�˾ 掺杂的阴离子粘土
WO2005058487A1 (en) * 2003-12-09 2005-06-30 Albemarle Netherlands B.V. Process for the preparation of an oxidic catalyst composition comprising a divalent and a trivalent metal
CN101583696A (zh) * 2006-12-06 2009-11-18 哥伦比亚国家石油股份有限公司 用于催化裂化过程的捕钒剂及其制备
CN101745417A (zh) * 2008-11-28 2010-06-23 中国石油化工股份有限公司 一种催化裂化催化剂

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
镁铝尖晶石作为催化裂化双功能助剂的研究;李晓 等;《石油学报(石油加工)》;20010630;第17卷(第3期);第57-61页 *
镧、磷复合添加组分对催化裂化催化剂;朱玉霞 等;《石油学报(石油加工)》;20030831;第19卷(第4期);第8-14页 *

Also Published As

Publication number Publication date
CN103785427A (zh) 2014-05-14

Similar Documents

Publication Publication Date Title
CN103785346B (zh) 一种金属捕集剂及其制备方法和应用以及一种催化裂化方法
Mokaya et al. Pillared clays and pillared acid-activated clays: a comparative-study of physical, acidic, and catalytic properties
CN105126928B (zh) 一种改性介孔硅铝材料的制备方法
CN105772074B (zh) 一种重油催化裂化催化剂的制备方法
CN1915486B (zh) 一种含添加剂的具有拟薄水铝石结构的水合氧化铝
CN103785428B (zh) 一种金属捕集剂及其制备方法和应用以及一种催化裂化方法
CN1915485B (zh) 一种含添加剂的氧化铝
CN108452830A (zh) 一种催化裂化催化剂
FI79249B (fi) Foer hoegoktaniga bensinprodukter avsedda katalysatorer foer katalytisk krackning.
CN103789013B (zh) 一种金属捕集剂及其制备方法和应用以及一种催化裂化方法
CN108452833A (zh) 一种催化裂化催化剂
CN101767029B (zh) 一种重油裂化催化剂及其应用
CN104014361A (zh) 一种催化裂化催化剂及其制备方法
KR20080112241A (ko) 접촉 분해 촉매 및 그 제조 방법 및 탄화수소유의 접촉 분해 방법
CN104226234A (zh) 金属捕集剂以及催化裂化方法
CN108499600B (zh) 一种多产柴油的催化裂化催化剂及其制备方法
CN103785427B (zh) 一种金属捕集剂及其制备方法和应用以及一种催化裂化方法
RU2473385C1 (ru) Микросферический катализатор для крекинга нефтяных фракций и способ его приготовления
CN101822998A (zh) 一种重油裂化催化剂及其制备方法
CN103785370B (zh) 一种金属捕集剂及其制备方法和应用以及一种催化裂化方法
CN103789014B (zh) 一种金属捕集剂及其制备方法和应用以及一种催化裂化方法
WO2020035014A1 (zh) 改性y型分子筛、包含它的催化裂化催化剂、及其制备和应用
JP2020032352A (ja) 炭化水素油用流動接触分解触媒
Wang et al. Simple preparation of high concentration Nd3+-modified NaY zeolites with lower desorption activation energy of water
TWI812773B (zh) 改性y型分子篩、包含它的催化裂解催化劑、及其製備和用途

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant