CN103741215A - 一种颗粒状多晶硅的铸锭方法 - Google Patents

一种颗粒状多晶硅的铸锭方法 Download PDF

Info

Publication number
CN103741215A
CN103741215A CN201410042691.1A CN201410042691A CN103741215A CN 103741215 A CN103741215 A CN 103741215A CN 201410042691 A CN201410042691 A CN 201410042691A CN 103741215 A CN103741215 A CN 103741215A
Authority
CN
China
Prior art keywords
ingot furnace
heating
temperature
time
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410042691.1A
Other languages
English (en)
Other versions
CN103741215B (zh
Inventor
周建华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
XI'AN HUAJING ELECTRONIC TECHNOLOGY Co Ltd
Original Assignee
XI'AN HUAJING ELECTRONIC TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by XI'AN HUAJING ELECTRONIC TECHNOLOGY Co Ltd filed Critical XI'AN HUAJING ELECTRONIC TECHNOLOGY Co Ltd
Priority to CN201410042691.1A priority Critical patent/CN103741215B/zh
Publication of CN103741215A publication Critical patent/CN103741215A/zh
Application granted granted Critical
Publication of CN103741215B publication Critical patent/CN103741215B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicon Compounds (AREA)

Abstract

本发明公开了一种颗粒状多晶硅的铸锭方法,包括步骤:一、装料:将颗粒状多晶硅装入坩埚内作为铸锭硅料;二、预热;三、熔化,过程如下:第1步、保温;第2步至第5步、升温及加压;第6步、第一次升温及保压:温度提升至T3,T3=1450℃;第7步:第二次升温及保压:温度提升至T4,T4=1500℃;第8步、第三次升温及保压:温度提升至T5,T5=1550℃;第6步至第8步中升温时间均为260~300min;第9步、保温;第10步、持续保温;四、长晶;五、退火及冷却。本发明方法步骤简单、设计合理、实现方便且易于掌握、使用效果好,能用低成本颗粒状多晶硅制成高转换效率铸锭产品,达到减少浪费、降低成本的目的。

Description

一种颗粒状多晶硅的铸锭方法
技术领域
本发明属于多晶硅铸锭技术领域,尤其是涉及一种颗粒状多晶硅的铸锭方法。
背景技术
随着技术进步与产业化的发展,光伏发电作为一种理想的替代能源逐渐扩大市场份额。并且,光伏发电是当前最重要的清洁能源之一,具有极大的发展潜力。制约光伏行业发展的关键因素,一方面是光电转化效率低,另一方面是成本偏高,其中晶体硅材料成本约占整体光伏电池片成本的30%,如何进一步降低成本、减少浪费和提升品质一直是市场的迫切要求。
目前,世界上生产多晶硅硅料最主要的方法是西门子法和流化床法,其中西门子法制成的块状多晶硅存在制造成本高、多晶纯度高等特点;而流化床法制成的颗粒状多晶硅的制造成本低,但纯度相对略低。颗粒状多晶硅相对原生多晶硅而言,具有低密度、较高的杂质比例、加工难度大等特点,因此其利用率和投料比例较低。因而,现如今缺少一种方法步骤简单、实现方便且使用效果好的颗粒状多晶硅的铸锭方法,其能使用低成本的颗粒状多晶硅制成高转换效率铸锭产品,达到减少浪费、降低成本的目的。
发明内容
本发明所要解决的技术问题在于针对上述现有技术中的不足,提供一种颗粒状多晶硅的铸锭方法,其方法步骤简单、设计合理、实现方便且易于掌握、使用效果好,能使用低成本颗粒状多晶硅制成高转换效率铸锭产品,达到减少浪费、降低成本的目的。
为解决上述技术问题,本发明采用的技术方案是:一种颗粒状多晶硅的铸锭方法,其特征在于该方法包括以下步骤:
步骤一、装料:将颗粒状多晶硅装入坩埚内作为铸锭用硅料;
步骤二、预热:采用铸锭炉对装于坩埚内的硅料进行预热,并将所述铸锭炉的加热温度逐步提升至T1;预热时间为6h~10h,其中T1=1165℃~1185℃;
步骤三、熔化:采用所述铸锭炉对装于坩埚内的硅料进行熔化,直至坩埚内的硅料全部熔化,且熔化过程如下:
第1步、保温:将所述铸锭炉的加热温度控制在T1,并保温0.4h~0.6h;
第2步至第5步、升温及加压:由先至后分四步将所述铸锭炉的加热温度由T1逐渐提升至T2,升温时间为0.4h~0.6h;升温过程中向所述铸锭炉内充入惰性气体并将所述铸锭炉的气压逐步提升至Q1;其中,T2=1190℃~1210℃;
第6步、第一次升温及保压:将所述铸锭炉的加热温度由T2逐渐提升至T3且升温时间为3h~6h,升温过程中所述铸锭炉内气压保持在Q1;其中,T3=1440℃~1460℃;
第7步:第二次升温及保压:将所述铸锭炉的加热温度由T3逐渐提升至T4且升温时间为3h~6h,升温过程中所述铸锭炉内气压保持在Q1;其中,T4=1490℃~1510℃;
第8步、第三次升温及保压:将所述铸锭炉的加热温度由T4逐渐提升至T5且升温时间为3h~6h,升温过程中所述铸锭炉内气压保持在Q1;其中,T5=1540℃~1560℃;
第9步、保温:将所述铸锭炉的加热温度控制在T5,并保温3.5h~4.5h;保温过程中,所述铸锭炉内气压保持在Q1;
第10步、持续保温:将所述铸锭炉的加热温度控制在T5,并保温4h~8h,直至坩埚内的硅料全部熔化;保温过程中,所述铸锭炉内气压保持在Q1;
步骤四、长晶:将所述铸锭炉的加热温度由T5逐渐降至T6后进行定向凝固,直至完成长晶过程;其中T6为多晶硅结晶温度且T6=1420℃~1440℃;
步骤五、退火及冷却:步骤四中长晶过程完成后,进行退火与冷却,并获得提纯后的多晶硅铸锭。
上述一种颗粒状多晶硅的铸锭方法,其特征是:第6步、第7步和第8步中升温时间均为260min~300min;步骤一中所述铸锭炉为G5型铸锭炉。
上述一种颗粒状多晶硅的铸锭方法,其特征是:步骤一中装料完成后,所述坩埚内的装料结构包括填装于所述坩埚内的颗粒状多晶硅、垫装于所述坩埚的内侧壁与颗粒状多晶硅之间的一层由块状多晶硅拼装形成的护边和盖装在颗粒状多晶硅上的一层由块状多晶硅拼装形成的盖顶,所述盖顶位于护边内;装料完成后,所述坩埚内的硅料包括颗粒状多晶硅、护边和盖顶。
上述一种颗粒状多晶硅的铸锭方法,其特征是:步骤一中进行装料之前,需先在所述坩埚底部平铺一层20mm~30mm厚的碎硅片,并形成碎硅片铺装层;装料完成后,所述坩埚内的硅料包括颗粒状多晶硅、护边、盖顶和碎硅片铺装层;第10步中保留所述碎硅片铺装层中5mm~20mm厚的碎硅片不熔化。
上述一种颗粒状多晶硅的铸锭方法,其特征是:所述坩埚内硅料的总重量为W1,所述坩埚内所装颗粒状多晶硅的总重量为W2,其中 W 2 W 1 × 100 % = 10 % ~ 90 % .
上述一种颗粒状多晶硅的铸锭方法,其特征是:步骤四中进行长晶时,过程如下:
步骤401、将所述铸锭炉的加热温度控制在T6,并保温50min~70min;本步骤中,所述铸锭炉的隔热笼提升高度为85mm~85mm;
步骤402、将所述铸锭炉的加热温度控制在T6,并保温100min~140min;本步骤中,所述铸锭炉的隔热笼提升高度与步骤401中的提升高度相同;
步骤403、将所述铸锭炉的加热温度控制在T6,并保温160min~200min;本步骤中,所述铸锭炉的隔热笼提升高度为105mm~115mm;
步骤404、将所述铸锭炉的加热温度由T6逐渐降至T7,降温时间为7h~9h;本步骤中,所述铸锭炉的隔热笼提升高度为205mm~215mm;其中,T7=1405℃~1425℃;
步骤405、将所述铸锭炉的加热温度控制在T7,并保温7h~9h;本步骤中,所述铸锭炉的隔热笼提升高度与步骤404中的提升高度相同;
步骤406、将所述铸锭炉的加热温度控制在T7,并保温7h~9h;本步骤中,所述铸锭炉的隔热笼提升高度与步骤404中的提升高度相同;
步骤407、将所述铸锭炉的加热温度由T7逐渐降至T8,降温时间为4h~5.5h;本步骤中,所述铸锭炉的隔热笼提升高度与步骤404中的提升高度相同;其中,T8=1395℃~1415℃。
上述一种颗粒状多晶硅的铸锭方法,其特征是:步骤五中进行退火时,过程如下:
步骤501、降温:将所述铸锭炉的加热温度由T8逐渐降至T9,降温时间为50min~70min;其中,T9=1370℃~1390℃;
步骤502、保温:将所述铸锭炉的加热温度控制在T9,并保温50min~70min;
步骤503、降温:将所述铸锭炉的加热温度由T9逐渐降至T10,降温时间为2h~3h;其中T10=1100℃~1200℃。
上述一种颗粒状多晶硅的铸锭方法,其特征是:步骤503中退火完成后,进行冷却时,将所述铸锭炉的加热温度由T10逐渐降至400℃,且冷却时间为10h~14h。
上述一种颗粒状多晶硅的铸锭方法,其特征是:第10步中所述坩埚内的硅料全部熔化后,先将所述铸锭炉的加热温度控制在T5,之后所述铸锭炉的加热功率开始下降,待所述铸锭炉的加热功率停止下降且持续时间t后,熔料过程完成;然后,再进入步骤四;其中t=18min~22min。
上述一种颗粒状多晶硅的铸锭方法,其特征是:步骤四中进行长晶之前,还需进行排杂,且排杂过程如下:
第11步、降压:将所述铸锭炉的加热温度控制在T5,并将所述铸锭炉的气压由Q1降至Q2,降压时间为8min~12min;其中,Q2=350mbar~450mbar;
第12步、保压:将所述铸锭炉的加热温度控制在T5,并将所述铸锭炉内气压保持在Q2,保压时间为10min~60min;
第13步、升压及降温:先将所述铸锭炉的气压由Q2升至Q1,再将所述铸锭炉的加热温度由T5逐渐降至T6,其中T6为多晶硅结晶温度且T6=1420℃~1440℃。
本发明与现有技术相比具有以下优点:
1、设计合理且处理工艺步骤简单,易于掌握。
2、投入成本低且实现方便。
3、使用操作方便且熔化过程结束点把握准确,熔化过程中,待坩埚内的硅料全部熔化后,控制铸锭炉的加热温度保持不变,并对铸锭炉的加热功率随时间变化的曲线(即功率曲线)进行观测;其中,待坩埚内的硅料全部熔化后,铸锭炉的功率曲线开始下降,待铸锭炉的功率曲线下降且走平20min后,熔料过程完成,之后进行长晶阶段。实际操作过程中,通过观测功率曲线便能准确确定熔料过程完成的时间点,即由熔化阶段切换到长晶阶段的切换时间点。实际操作简便,且实现方便,能准确把握由熔化阶段切换到长晶阶段的切换时机。也就是说,本发明通过延长熔料时间稳定铸锭熔料曲线,待功率曲线走平20min后再切入长晶阶段,因而能准确熔化到长晶阶段的切换时机,同时杜绝了由于熔料时间不足或熔料时间过长造成的多晶硅铸锭质量下降、成本上升等问题。并且,采用本发明对多晶硅铸锭过程中熔料至长晶的切换时机进行准确把握后,能确保长晶的质量和最终制成电池片的转换效率。
4、熔化过程分十步进行,设计合理、实现方便且使用效果好,可有效改善长晶质量,降低粘埚率,提高太阳能电池片的转换效率,能有效提高成品率。
5、排杂方法简单、设计合理且排杂效果好,第11步中迅速降低炉内气压,而快速降低气压有助于快速排出杂质气体,抑制含碳气体与硅熔液的接触和吸附;同时有助于进一步促进硅液的熔化。并且,第11步中迅速降低炉内气压后,第12步中保压10~60min过程中使得气体中含碳杂质不再在炉体内循环,增强了熔体和熔体表面的对流,使其充分排杂,杂质随着气流排出炉体。因而,通过本发明步骤三中的排杂工序,能有效降低炉腔内部杂质,在长晶阶段易于得到更高纯净晶体生长环境,因而能有效提高硅锭的成品率及太阳能电池片的整体转换效率,该排杂方法操作方便、实用性强,便于批量生产。因而,本发明所采用的排杂工艺能够有效降低硅锭生长过程(即长晶阶段)中的碳含量,从而使生长的硅锭有较高的质量,并能有效减少硬质点的产生从而提高硅锭成品率,并减少硅片切割断线率,提高太阳能电池片成品率及转换效率,该排杂方法操作方便、实用性强,便于批量生产。
6、长晶过程控制简单、实现方便且使用效果好,不仅简化多晶硅铸锭长晶工艺的步骤,让整个长晶温度过程更趋于稳定状态,并能达到节省能源的目的,可有效改善长晶质量,降低粘埚率,提高太阳能电池片的转换效率,该方法操作方便、实用性强,便于批量生产。同时,长晶过程中对长晶速度进行合理控制,且合理控制长晶过程后,能确保长晶的质量和制成电池片的转换效率。因而,本发明所采用的长晶工艺更加稳定了硅锭生长过程,为长晶过程提供了较好的环境,避免长晶过程中造成的微缺陷,增强了实用性,便于批量生产。
7、装料结构设计合理,将颗粒状多晶硅装在坩埚中部,一方面不会有颗粒状多晶硅进入气流从而影响排气,另一方面周围有块状多晶硅护边减少熔料过程中颗粒状多晶硅对坩埚内壁、石墨件的侵蚀。并且,通过本发明进行铸锭提纯来分离、排出颗粒状多晶硅中的杂质、提升多晶硅原料纯度,可制成品质较好的多晶铸锭原料;在通过颗粒状多晶硅铸锭工艺,可有效排出颗粒状多晶硅杂质,提高铸锭原料纯度,同时可大幅度降低铸锭成本,该方法操作方便、实用性强,便于批量生产。由于颗粒状多晶硅本身的形态优势(直径0.15-3mm之间),铸锭过程多用形态不规则的块状料,这就导致在装料时如果用这种直径较小且表面光滑的圆形颗粒来灌这些缝隙,它不占空间且易于滚动,可将缝隙填满,显著增大投料量(提升装料量20%-30%),同时可大幅度降低铸锭成本,提高成品率。该方法操作方便,实用性强,便于批量生产。
综上所述,本发明方法步骤简单、设计合理、实现方便且易于掌握、使用效果好,能使用低成本颗粒状多晶硅制成高转换效率铸锭产品,达到减少浪费、降低成本的目的。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
图1为本发明的工艺流程框图。
图2为采用本发明进行多晶硅铸锭时的温度及功率曲线图。
图3为本发明坩埚内的装料结构示意图。
附图标记说明:
1—颗粒状多晶硅;    2—护边;        3—盖顶;
4—碎硅片铺装层;    5—石英坩埚;    6—水平底板;
7—外护板。
具体实施方式
实施例1
如图1所示的一种颗粒状多晶硅的铸锭方法,包括以下步骤:
步骤一、装料:将颗粒状多晶硅1装入坩埚内作为铸锭用硅料。
如图3所示,步骤一中装料完成后,所述坩埚内的装料结构包括填装于所述坩埚内的颗粒状多晶硅1、垫装于所述坩埚的内侧壁与颗粒状多晶硅1之间的一层由块状多晶硅拼装形成的护边2和盖装在颗粒状多晶硅1上的一层由块状多晶硅拼装形成的盖顶3,所述盖顶3位于护边2内;装料完成后,所述坩埚内的硅料包括颗粒状多晶硅1、护边2和盖顶3。
本实施例中,所述坩埚平放于水平底板6上,所述水平底板6上设置有对石英坩埚1进行限位的外护板7,所述外护板7的顶部高度高于坩埚的顶部高度,所述坩埚布放于外护板7内。
本实施例中,所述坩埚为石英坩埚5。
本实施例中,所述护边2的顶部高度高于盖顶3的顶面高度。所述护边2的顶部高度高于所述坩埚的顶部高度。所述盖顶3的顶面高度低于所述坩埚的顶部高度。
实际进行铸锭过程中,采用如图3所示的装料结构后,将颗粒状多晶硅1装在坩埚中部,一方面不会有颗粒状多晶硅1进入气流从而影响排气;另一方面,颗粒状多晶硅1周围有块状多晶硅形成的护边2,因而有效减少熔料过程中颗粒状多晶硅1对坩埚内壁及石墨件的侵蚀。同时,采用如图3所示的装料结构后,能有效增大坩埚的投料量,且能将出材率提高8%以上,并相应能降低所生产单位体积多晶硅铸锭的制造成本,同时能保证硅液结晶后不与坩埚发生粘连,以保证多晶硅铸锭脱模的完整性。
本实施例中,所述坩埚内硅料的总重量为W1,所述坩埚内所装颗粒状多晶硅1的总重量为W2,其中
Figure BDA0000463632410000081
实际加工时,可以根据具体需要,将
Figure BDA0000463632410000082
在10%~90%的范围内进行相应调整。
步骤二、预热:采用铸锭炉对装于坩埚内的硅料进行预热,并将所述铸锭炉的加热温度逐步提升至T1;预热时间为7h,其中T1=1175℃。
本实施例中,所述铸锭炉为G5型铸锭炉。并且,所述铸锭炉具体为浙江晶盛机电股份有限公司生产的G5型铸锭炉。所述坩埚为石英坩埚且其为G5坩埚,并且生产出来的多晶硅铸锭为G5锭。
实际使用时,所述石英坩埚的装料量为600kg左右。
本实施例中,所述石英坩埚的装料量为560kg。实际使用过程中,可以根据具体需要,对所述石英坩埚的装料量进行相应调整。
本实施例中,步骤一中预热过程中,将所述铸锭炉的加热功率逐步升高至P1,其中P1=75kW。
并且,预热过程中,将所述铸锭炉的加热功率以(10~15)kW/h的增长速率逐步提升至P1。
实际进行预热时,可以根据具体需要,对预热时间、预热过程中加热功率的增长速率以及T1和P1的取值大小进行相应调整。
步骤三、熔化:采用所述铸锭炉对装于坩埚内的硅料进行熔化,直至坩埚内的硅料全部熔化,且熔化过程如下:
第1步、保温:将所述铸锭炉的加热温度控制在T1,并保温0.5h。
第2步至第5步、升温及加压:由先至后分四步将所述铸锭炉的加热温度由T1逐渐提升至T2,升温时间为0.5h(即第2步至第5步的总时间为0.5h);升温过程中向所述铸锭炉内充入惰性气体并将所述铸锭炉的气压逐步提升至Q1;其中,T2=1200℃。
第2步至第5步中由先至后分四步将所述铸锭炉的加热温度由T1逐渐提升至T2时,每一步提升温度5℃~8℃,且每一步提升均需5min~10min。
第6步、第一次升温及保压:将所述铸锭炉的加热温度由T2逐渐提升至T3且升温时间为5h,升温过程中所述铸锭炉内气压保持在Q1;其中,T3=1450℃。
第7步:第二次升温及保压:将所述铸锭炉的加热温度由T3逐渐提升至T4且升温时间为5h,升温过程中所述铸锭炉内气压保持在Q1;其中,T4=1500℃。
第8步、第三次升温及保压:将所述铸锭炉的加热温度由T4逐渐提升至T5且升温时间为5h,升温过程中所述铸锭炉内气压保持在Q1;其中,T5=1550℃。
本实施例中,通过第6步至第8步熔料时长的设置,能有效确保颗粒状多晶硅1彻底熔化完成。
第9步、保温:将所述铸锭炉的加热温度控制在T5,并保温4h;保温过程中,所述铸锭炉内气压保持在Q1。
第10步、持续保温:将所述铸锭炉的加热温度控制在T5,并保温6h,直至坩埚内的硅料全部熔化;保温过程中,所述铸锭炉内气压保持在Q1。
本实施例中,第6步中进行第一次升温及保压过程中、第7步中进行第二次升温及保压过程中、第8步中进行第三次升温及保压过程中和第9步中进行保温过程中,均需对所述铸锭炉的加热功率变化情况进行观测,并确保所述铸锭炉的加热功率变化平稳。
也就是说,第6步至第9步中进行熔化时,必须使功率曲线平稳前进,不能出现较为明显的凹凸点,这样会带来硬质点的增多。
本实施例中,第2步至第5步中进行升温及加压时,过程如下:
第2步、第一步提升:将所述铸锭炉的加热温度由1175℃提升至1182℃,且升温时间为7min。
第3步、第二步提升:将所述铸锭炉的加热温度由1182℃提升至1190℃,且升温时间为8min。
第4步、第三步提升:将所述铸锭炉的加热温度由1190℃提升至1195℃,且升温时间为5min。
第5步、第四步提升:将所述铸锭炉的加热温度由1195℃提升至1200℃,且升温时间为5min。
本步骤中熔化过程中,向所述铸锭炉内充入惰性气体并将所述铸锭炉内气压保持在Q1,其中Q1=600mbar。本实施例中,所述惰性气体为氩气。
本实施例中,待坩埚内的硅料全部熔化后,将所述铸锭炉的加热温度控制在T5,之后所述铸锭炉的加热功率开始下降,待所述铸锭炉的加热功率停止下降且持续时间t后,熔料过程完成;其中t=20min。
实际进行熔化时,可以根据具体需要,对T5、t和Q1的取值大小进行相应调整。
本实施例中,步骤一中进行装料之前,需先在所述坩埚底部平铺一层30mm厚的碎硅片,并形成碎硅片铺装层4;装料完成后,所述坩埚内的硅料包括颗粒状多晶硅1、护边2、盖顶3和碎硅片铺装层4;第10步中保留所述碎硅片铺装层4中15mm厚的碎硅片不熔化。实际进行多晶硅铸锭时,以坩埚底部所铺装的碎硅片铺装层4作为籽晶,并且对硅料进行熔化时,仅熔化碎硅片铺装层4的上部碎硅片,而保留碎硅片铺装层4中15mm厚的碎硅片不熔化;这样长晶过程中,控制未熔化的碎硅片厚度与已熔融硅液的接触时间,使得长晶沿着碎硅片晶向定向凝固,并且能实现批量化生产。这样,所加工的多晶硅铸锭性能优良,并且所生产的多晶硅铸锭为同质多晶,能有效降低所生产多晶硅铸锭的位错密度,从而能有效提高太阳能电池片的转换效率,并且能实现批量化生产,因而能将多晶硅的低生产成本和单晶硅的较高的转换效率与较好的机械强度的优点结合起来。
本实施例中,装炉之前进行装料时,先在坩埚底部平铺碎硅片,且铺平并压紧后在坩埚的内壁填装块状多晶颗粒状多晶硅形成护边2,之后在中部装填颗粒状多晶硅1,最后在颗粒状多晶硅1顶部使用块状多晶硅拼成盖顶3。
步骤四、长晶:将所述铸锭炉的加热温度由T5逐渐降至T6后进行定向凝固,直至完成长晶过程;其中T6为多晶硅结晶温度且T6=1420℃。
本实施例中,步骤四中进行长晶时,过程如下:
步骤401、将所述铸锭炉的加热温度控制在T6,并保温1h;本步骤中,所述铸锭炉的隔热笼提升高度为90mm。
此处,隔热笼提升高度指的是隔热笼从其所放置的保温板上提升的高度,即隔热笼底部与保温板之间的高度。
步骤402、将所述铸锭炉的加热温度控制在T6,并保温2h;本步骤中,所述铸锭炉的隔热笼提升高度与步骤301中的提升高度相同。
步骤403、将所述铸锭炉的加热温度控制在T6,并保温3h;本步骤中,所述铸锭炉的隔热笼提升高度为110mm。
步骤404、将所述铸锭炉的加热温度由T6逐渐降至T7,降温时间为9h;本步骤中,所述铸锭炉的隔热笼提升高度为210mm;其中,T7=1405℃。
步骤405、将所述铸锭炉的加热温度控制在T7,并保温9h;本步骤中,所述铸锭炉的隔热笼提升高度与步骤304中的提升高度相同;
步骤406、将所述铸锭炉的加热温度控制在T7,并保温9h;本步骤中,所述铸锭炉的隔热笼提升高度与步骤304中的提升高度相同;
步骤407、将所述铸锭炉的加热温度由T7逐渐降至T8,降温时间为5h;本步骤中,所述铸锭炉的隔热笼提升高度与步骤304中的提升高度相同;其中,T8=1395℃。
步骤五、退火及冷却:步骤四中长晶过程完成后,进行退火与冷却,并获得提纯后的多晶硅铸锭。
本实施例中,步骤五中进行退火时,过程如下:
步骤501、降温:将所述铸锭炉的加热温度由T8逐渐降至T9,降温时间为1h;其中,T9=1370℃;
步骤502、保温:将所述铸锭炉的加热温度控制在T9,并保温1h;
步骤503、降温:将所述铸锭炉的加热温度由T9逐渐降至T10,降温时间为2h~3h;其中T10=1100℃~1200℃。
本实施例中,步骤五中退火过程所需总时间为4h~5h。
本实施例中,步骤503中退火完成后,进行冷却时,将所述铸锭炉的加热温度由T10逐渐降至400℃,且冷却时间为10h~14h。
本实施例中,步骤五中进行退火时,所述铸锭炉的隔热笼未提升,即所述隔热笼放置于保温板上。步骤五中进行退火及冷却过程中,将所述铸锭炉内气压保持在Q1。
本实施例中,步骤四中长晶过程完成后,获得多晶硅锭,所述多晶硅锭分为高度为h1的顶部节段、高度为h1的底部节段和连接于所述顶部节段与所述底部节段之间的中部节段;步骤五中对所述多晶硅锭进行退火与冷却,并获得加工成型的多晶硅铸锭。
同时,实际进行长晶过程中,需通过测量长晶时间稳定铸锭长晶曲线,确保铸锭长晶速度。本实施例中,步骤四中长晶过程中,对所述多晶硅锭的长晶速度进行控制,其中所述多晶硅锭的顶部节段和底部节段的长晶速度均≤10mm/h,所述多晶硅锭的中部节段的长晶速度为13mm/h~16mm/h。本实施例中,h1=50mm。
本实施例中,步骤四中进行长晶之前,还需进行排杂,且排杂过程如下:
第11步、降压:将所述铸锭炉的加热温度控制在T5,并将所述铸锭炉的气压由Q1降至Q2,降压时间为10min;其中,Q2=400mbar。
第12步、保压:将所述铸锭炉的加热温度控制在T5,并将所述铸锭炉内气压保持在Q2,保压时间为30min。
第13步、升压及降温:先将所述铸锭炉的气压由Q2升至Q1,再将所述铸锭炉的加热温度由T5逐渐降至T6,其中T6为多晶硅结晶温度且T6=1420℃~1440℃。
本实施例中,第13步中降温结束后,直接进入步骤301。也就是说,排杂过程可以看作为长晶阶段的一个前期工序。
本实施例中,第13步中将所述铸锭炉的气压由Q2升至Q1的升压时间为8min~12min,将所述铸锭炉的加热温度由T5逐渐降至T6的降温时间为1h~2h。
实际进行排杂时,可以根据具体需要,对降压时间、保压时间、升压时间和降温时间以及Q2的取值大小进行相应调整。
本实施例中,排杂过程所需总时间为2.5h。
第11步进行降压时,通过减小所述惰性气体的流量进行降压;第13步进行升压时,通过增大所述惰性气体的流量进行升压。
第11步中迅速降低炉内气压,而快速降低气压有助于快速排出杂质气体,抑制含碳气体与硅熔液的接触和吸附;同时有助于进一步促进硅液的熔化。并且,第11步中迅速降低炉内气压后,第12步中保压30min过程中使得气体中含碳杂质不再在炉体内循环,增强了熔体和熔体表面的对流,使其充分排杂,杂质随着气流排出炉体。因而,通过本发明步骤三中的排杂工序,能有效降低炉腔内部杂质,在长晶阶段易于得到更高纯净晶体生长环境,因而能有效提高硅锭的成品率及太阳能电池片的整体转换效率,该排杂方法操作方便、实用性强,便于批量生产。
本实施例中,步骤二中待坩埚内的硅料全部熔化后,将所述铸锭炉的加热温度控制在T5,并对所述铸锭炉的加热功率随时间变化的曲线(即功率曲线)进行观测,详见图2。图2中,细实线为所述铸锭炉的加热功率随时间变化的曲线,需实线为所述铸锭炉的加热温度随时间变化的曲线,竖线为坩埚内的硅料全部熔化时的报警线。由图2可以看出,待坩埚内的硅料全部熔化后,所述铸锭炉的功率曲线开始下降,待所述铸锭炉的功率曲线下降且走平20min后,熔料过程完成,之后进入排杂阶段,待排杂阶段按成后,再进入长晶;即图2中的A点为熔料过程完成的时间点。
实际操作过程中,通过观测功率曲线便能准确确定熔料过程完成的时间点,即由熔化阶段切换到排杂阶段(其中,排杂阶段也可看作是长晶阶段的前期工序)的切换时间点,通过本发明能准确把握由熔化阶段切换到排杂阶段,并从排杂阶段到长晶阶段的切换实际,实际操作简便,且实现方便。也就是说,通过本发明能准确掌握熔料过程的结束时间点,以解决因熔料时间不足或熔料时间过长而造成的所生产多晶硅铸锭质量下降的问题,其中熔料时间不足时,可能造成硅料熔化不够充分,造成硅锭寿命异常;而如果熔料时间过长,就会使石英坩埚长时间处于高温阶段,对氮化硅涂层可能造成损伤,造成粘埚。
本实施例中,步骤二中所述坩埚内的硅料全部熔化后,对所述铸锭炉的加热功率变化情况进行观测,待所述铸锭炉的加热功率下降至P2,并保持P2不变且持续时间t后,熔料过程完成;其中,P2=40kW。
实际进行熔化时,根据所述坩埚内装料量的不同,P2的大小相应在35kW~45kW范围内进行调整。
本实施例中,第10步中待坩埚内的硅料全部熔化且所述铸锭炉发出“熔化完成报警”后,需人工干预,对功率曲线的下降情况进行观测,待所述铸锭炉的功率曲线下降且走平20min后,熔料过程完成,之后人工干预将熔化阶段切入到长晶阶段。
本实施例中,所加工成型多晶硅铸锭的表面光洁、无杂质,无粘埚现象,少子寿命>5.5us(微秒),成品率为70.5%。与常规的提纯锭相比,本发明能将提纯锭的成本降低20%。
实施例2
本实施例中,与实施例1不同的是:步骤一中进行装料之前,先先在所述坩埚底部平铺一层20mm厚的碎硅片,并形成碎硅片铺装层4;其中
Figure BDA0000463632410000151
第10步中保留所述碎硅片铺装层4中5mm厚的碎硅片不熔化;步骤二中预热时间为6h且T1=1185℃,P1=80kW;步骤三中T5=1560℃,t=18min,Q1=650mbar;第1步中保温时间为0.4h;第2步至第5步中T2=1210℃,升温时间为0.4h;第6步中T3=1460℃且升温时间为260min;第7步中T4=1510℃且升温时间为260min;第8步中T5=1560℃且升温时间为260min;第9步中保温时间为3.5h;第10步中保温时间为4h。
本实施例中,第2步至第5步中进行升温及加压时,过程如下:
第2步、第一步提升:将所述铸锭炉的加热温度由1185℃提升至1190℃,且升温时间为5min。
第3步、第二步提升:将所述铸锭炉的加热温度由1190℃提升至1195℃,且升温时间为5min。
第4步、第三步提升:将所述铸锭炉的加热温度由1195℃提升至1205℃,且升温时间为9min。
第5步、第四步提升:将所述铸锭炉的加热温度由1205℃提升至1210℃,且升温时间为5min。
本实施例中,进行排杂时,第11步中降压时间为8min且Q2=450mbar;第12步中保压时间为60min;第13步中升压时间为8min。并且,排杂过程所需总时间为2.6h。
本实施例中,步骤四中进行长晶时,步骤401中保温时间为50min且隔热笼提升高度为85mm;步骤402中保温时间为100min;步骤403保温时间为160min且隔热笼提升高度为105mm;步骤404中降温时间为7h且T7=1425℃;步骤405和步骤406中保温时间为7h;步骤407中保温时间为4h且T8=1415℃;h1=45mm。
本实施例中,步骤五中进行退火时,步骤501中降温时间为50min且T9=1390℃;步骤502中保温时间为50min。
本实施例中,其余工艺步骤和工艺参数均与实施例1相同。
本实施例中,所加工成型多晶硅铸锭的表面光洁、无杂质,无粘埚现象,少子寿命>5us(微秒),成品率为71%。与常规的提纯锭相比,本发明能将提纯锭的成本降低18%。
实施例3
本实施例中,与实施例1不同的是:步骤一中进行装料之前,先先在所述坩埚底部平铺一层25mm厚的碎硅片,并形成碎硅片铺装层4;其中第10步中保留所述碎硅片铺装层4中20mm厚的碎硅片不熔化;步骤二中预热时间为10h且T1=1165℃,P1=70kW;步骤三中T5=1540℃,t=22min,Q1=550mbar;第1步中保温时间为0.6h;第2步至第5步中T2=1190℃,升温时间为0.6h;第6步中T3=1440℃且升温时间为280min;第7步中T4=1490℃且升温时间为280min;第8步中T5=1540℃且升温时间为280min;第9步中保温时间为4.5h;第10步中保温时间为8h。
本实施例中,第2步至第5步中进行升温及加压时,过程如下:
第2步、第一步提升:将所述铸锭炉的加热温度由1165℃提升至1172℃,且升温时间为9min。
第3步、第二步提升:将所述铸锭炉的加热温度由1172℃提升至1178℃,且升温时间为8min。
第4步、第三步提升:将所述铸锭炉的加热温度由1178℃提升至1183℃,且升温时间为10min。
第5步、第四步提升:将所述铸锭炉的加热温度由1183℃提升至1190℃,且升温时间为9min。
实际进行排杂时,第11步中降压时间为12min且Q2=350mbar;第12步中保压时间为35min;第13步中升压时间为12min。
本实施例中,排杂过程所需总时间为2.4h。
本实施例中,步骤四中进行长晶时,步骤401中保温时间为70min且隔热笼提升高度为95mm;步骤402中保温时间为140min;步骤403保温时间为200min且隔热笼提升高度为115mm;步骤404中降温时间为8h且T7=1415℃;步骤405和步骤406中保温时间为7h;步骤407中保温时间为5.5h且T8=1405℃;h1=55mm。
本实施例中,步骤五中进行退火时,步骤501中降温时间为70min且T9=1380℃;步骤502中保温时间为70min。
本实施例中,其余工艺步骤和工艺参数均与实施例1相同。
本实施例中,所加工成型多晶硅铸锭的表面光洁、无杂质,无粘埚现象,少子寿命>4.7us(微秒),成品率为70%。与常规的提纯锭相比,本发明能将提纯锭的成本降低30%。
实施例4
本实施例中,与实施例1不同的是:
Figure BDA0000463632410000171
第6步中T3=1440℃且升温时间为3h;第7步中T4=1490℃且升温时间为3h;第8步中T5=1540℃且升温时间为3h;进行排杂时,第11步中降压时间为10min且Q2=380mbar;第12步中保压时间为25min;第13步中升压时间为10min。
本实施例中,排杂过程所需总时间为2.5h。
本实施例中,其余工艺步骤和工艺参数均与实施例1相同。
本实施例中,所加工成型多晶硅铸锭的表面光洁、无杂质,无粘埚现象,少子寿命>4.5us(微秒),成品率为70%。与常规的提纯锭相比,本发明能将提纯锭的成本降低5%。
实施例5
本实施例中,与实施例1不同的是:
Figure BDA0000463632410000181
第6步中T3=1440℃且升温时间为6h;第7步中T4=1490℃且升温时间为6h;第8步中T5=1540℃且升温时间为6h;进行排杂时,第11步中降压时间为10min且Q2=450mbar;第12步中保压时间为10min;第13步中升压时间为10min。
本实施例中,排杂过程所需总时间为2.5h。
本实施例中,其余工艺步骤和工艺参数均与实施例1相同。
本实施例中,所加工成型多晶硅铸锭的表面光洁、无杂质,无粘埚现象,少子寿命>4us(微秒),成品率为70%。与常规的提纯锭相比,本发明能将提纯锭的成本降低32%。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效结构变化,均仍属于本发明技术方案的保护范围内。

Claims (10)

1.一种颗粒状多晶硅的铸锭方法,其特征在于该方法包括以下步骤:
步骤一、装料:将颗粒状多晶硅(1)装入坩埚内作为铸锭用硅料;
步骤二、预热:采用铸锭炉对装于坩埚内的硅料进行预热,并将所述铸锭炉的加热温度逐步提升至T1;预热时间为6h~10h,其中T1=1165℃~1185℃;
步骤三、熔化:采用所述铸锭炉对装于坩埚内的硅料进行熔化,直至坩埚内的硅料全部熔化,且熔化过程如下:
第1步、保温:将所述铸锭炉的加热温度控制在T1,并保温0.4h~0.6h;
第2步至第5步、升温及加压:由先至后分四步将所述铸锭炉的加热温度由T1逐渐提升至T2,升温时间为0.4h~0.6h;升温过程中向所述铸锭炉内充入惰性气体并将所述铸锭炉的气压逐步提升至Q1;其中,T2=1190℃~1210℃;
第6步、第一次升温及保压:将所述铸锭炉的加热温度由T2逐渐提升至T3且升温时间为3h~6h,升温过程中所述铸锭炉内气压保持在Q1;其中,T3=1440℃~1460℃;
第7步:第二次升温及保压:将所述铸锭炉的加热温度由T3逐渐提升至T4且升温时间为3h~6h,升温过程中所述铸锭炉内气压保持在Q1;其中,T4=1490℃~1510℃;
第8步、第三次升温及保压:将所述铸锭炉的加热温度由T4逐渐提升至T5且升温时间为3h~6h,升温过程中所述铸锭炉内气压保持在Q1;其中,T5=1540℃~1560℃;
第9步、保温:将所述铸锭炉的加热温度控制在T5,并保温3.5h~4.5h;保温过程中,所述铸锭炉内气压保持在Q1;
第10步、持续保温:将所述铸锭炉的加热温度控制在T5,并保温4h~8h,直至坩埚内的硅料全部熔化;保温过程中,所述铸锭炉内气压保持在Q1;
步骤四、长晶:将所述铸锭炉的加热温度由T5逐渐降至T6后进行定向凝固,直至完成长晶过程;其中T6为多晶硅结晶温度且T6=1420℃~1440℃;
步骤五、退火及冷却:步骤四中长晶过程完成后,进行退火与冷却,并获得提纯后的多晶硅铸锭。
2.按照权利要求1所述的一种颗粒状多晶硅的铸锭方法,其特征在于:第6步、第7步和第8步中升温时间均为260min~300min;步骤一中所述铸锭炉为G5型铸锭炉。
3.按照权利要求1或2所述的一种颗粒状多晶硅的铸锭方法,其特征在于:步骤一中装料完成后,所述坩埚内的装料结构包括填装于所述坩埚内的颗粒状多晶硅(1)、垫装于所述坩埚的内侧壁与颗粒状多晶硅(1)之间的一层由块状多晶硅拼装形成的护边(2)和盖装在颗粒状多晶硅(1)上的一层由块状多晶硅拼装形成的盖顶(3),所述盖顶(3)位于护边(2)内;装料完成后,所述坩埚内的硅料包括颗粒状多晶硅(1)、护边(2)和盖顶(3)。
4.按照权利要求3所述的一种颗粒状多晶硅的铸锭方法,其特征在于:步骤一中进行装料之前,需先在所述坩埚底部平铺一层20mm~30mm厚的碎硅片,并形成碎硅片铺装层(4);装料完成后,所述坩埚内的硅料包括颗粒状多晶硅(1)、护边(2)、盖顶(3)和碎硅片铺装层(4);第10步中保留所述碎硅片铺装层(4)中5mm~20mm厚的碎硅片不熔化。
5.按照权利要求3所述的一种颗粒状多晶硅的铸锭方法,其特征在于:所述坩埚内硅料的总重量为W1,所述坩埚内所装颗粒状多晶硅(1)的总重量为W2,其中 W 2 W 1 × 100 % = 10 % ~ 90 % .
6.按照权利要求1或2所述的一种颗粒状多晶硅的铸锭方法,其特征在于:步骤四中进行长晶时,过程如下:
步骤401、将所述铸锭炉的加热温度控制在T6,并保温50min~70min;本步骤中,所述铸锭炉的隔热笼提升高度为85mm~85mm;
步骤402、将所述铸锭炉的加热温度控制在T6,并保温100min~140min;本步骤中,所述铸锭炉的隔热笼提升高度与步骤401中的提升高度相同;
步骤403、将所述铸锭炉的加热温度控制在T6,并保温160min~200min;本步骤中,所述铸锭炉的隔热笼提升高度为105mm~115mm;
步骤404、将所述铸锭炉的加热温度由T6逐渐降至T7,降温时间为7h~9h;本步骤中,所述铸锭炉的隔热笼提升高度为205mm~215mm;其中,T7=1405℃~1425℃;
步骤405、将所述铸锭炉的加热温度控制在T7,并保温7h~9h;本步骤中,所述铸锭炉的隔热笼提升高度与步骤404中的提升高度相同;
步骤406、将所述铸锭炉的加热温度控制在T7,并保温7h~9h;本步骤中,所述铸锭炉的隔热笼提升高度与步骤404中的提升高度相同;
步骤407、将所述铸锭炉的加热温度由T7逐渐降至T8,降温时间为4h~5.5h;本步骤中,所述铸锭炉的隔热笼提升高度与步骤404中的提升高度相同;其中,T8=1395℃~1415℃。
7.按照权利要求6所述的一种颗粒状多晶硅的铸锭方法,其特征在于:步骤五中进行退火时,过程如下:
步骤501、降温:将所述铸锭炉的加热温度由T8逐渐降至T9,降温时间为50min~70min;其中,T9=1370℃~1390℃;
步骤502、保温:将所述铸锭炉的加热温度控制在T9,并保温50min~70min;
步骤503、降温:将所述铸锭炉的加热温度由T9逐渐降至T10,降温时间为2h~3h;其中T10=1100℃~1200℃。
8.按照权利要求7所述的一种颗粒状多晶硅的铸锭方法,其特征在于:步骤503中退火完成后,进行冷却时,将所述铸锭炉的加热温度由T10逐渐降至400℃,且冷却时间为10h~14h。
9.按照权利要求1或2所述的一种颗粒状多晶硅的铸锭方法,其特征在于:第10步中所述坩埚内的硅料全部熔化后,先将所述铸锭炉的加热温度控制在T5,之后所述铸锭炉的加热功率开始下降,待所述铸锭炉的加热功率停止下降且持续时间t后,熔料过程完成;然后,再进入步骤四;其中t=18min~22min。
10.按照权利要求1或2所述的一种颗粒状多晶硅的铸锭方法,其特征在于:步骤四中进行长晶之前,还需进行排杂,且排杂过程如下:
第11步、降压:将所述铸锭炉的加热温度控制在T5,并将所述铸锭炉的气压由Q1降至Q2,降压时间为8min~12min;其中,Q2=350mbar~450mbar;
第12步、保压:将所述铸锭炉的加热温度控制在T5,并将所述铸锭炉内气压保持在Q2,保压时间为10min~60min;
第13步、升压及降温:先将所述铸锭炉的气压由Q2升至Q1,再将所述铸锭炉的加热温度由T5逐渐降至T6,其中T6为多晶硅结晶温度且T6=1420℃~1440℃。
CN201410042691.1A 2014-01-28 2014-01-28 一种颗粒状多晶硅的铸锭方法 Expired - Fee Related CN103741215B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410042691.1A CN103741215B (zh) 2014-01-28 2014-01-28 一种颗粒状多晶硅的铸锭方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410042691.1A CN103741215B (zh) 2014-01-28 2014-01-28 一种颗粒状多晶硅的铸锭方法

Publications (2)

Publication Number Publication Date
CN103741215A true CN103741215A (zh) 2014-04-23
CN103741215B CN103741215B (zh) 2016-01-20

Family

ID=50498278

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410042691.1A Expired - Fee Related CN103741215B (zh) 2014-01-28 2014-01-28 一种颗粒状多晶硅的铸锭方法

Country Status (1)

Country Link
CN (1) CN103741215B (zh)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104131339A (zh) * 2014-07-18 2014-11-05 中国电子科技集团公司第四十八研究所 一种多晶硅片的制备方法
CN104131341A (zh) * 2014-08-14 2014-11-05 无锡尚品太阳能电力科技有限公司 高效多晶硅铸锭的制作工艺
CN104499046A (zh) * 2014-12-15 2015-04-08 山西潞安太阳能科技有限责任公司 一种多晶硅锭制备方法
CN105200516A (zh) * 2015-09-08 2015-12-30 浙江晟辉科技有限公司 一种增强排杂效果的多晶硅铸锭工艺
CN106087065A (zh) * 2016-08-19 2016-11-09 西安华晶电子技术股份有限公司 一种多晶硅铸锭用退火工艺
CN106087045A (zh) * 2016-08-19 2016-11-09 西安华晶电子技术股份有限公司 一种多晶硅半熔铸锭用熔料及长晶工艺
CN106087047A (zh) * 2016-08-19 2016-11-09 西安华晶电子技术股份有限公司 一种母合金的制备方法
CN106087044A (zh) * 2016-08-19 2016-11-09 西安华晶电子技术股份有限公司 一种基于辅助加热的多晶硅铸锭用熔料方法
CN106087048A (zh) * 2016-08-19 2016-11-09 西安华晶电子技术股份有限公司 一种降低多晶硅铸锭底部氧含量的方法
CN106087046A (zh) * 2016-08-19 2016-11-09 西安华晶电子技术股份有限公司 一种减小晶粒度的多晶硅铸锭方法
CN106087053A (zh) * 2016-08-19 2016-11-09 西安华晶电子技术股份有限公司 一种多晶硅铸锭方法
CN106087052A (zh) * 2016-08-10 2016-11-09 中联西北工程设计研究院有限公司 一种多晶硅铸锭的两步退火工艺
CN106119956A (zh) * 2016-08-19 2016-11-16 西安华晶电子技术股份有限公司 一种多晶硅半熔铸锭方法
CN106222740A (zh) * 2016-08-19 2016-12-14 西安华晶电子技术股份有限公司 一种降低多晶硅铸锭底部氧含量的多晶硅铸锭方法
CN106283183A (zh) * 2016-08-19 2017-01-04 西安华晶电子技术股份有限公司 一种基于氮化硼涂层的多晶硅铸锭工艺
CN106283182A (zh) * 2016-08-19 2017-01-04 西安华晶电子技术股份有限公司 一种多晶硅铸锭工艺
CN106591947A (zh) * 2017-01-12 2017-04-26 南通大学 一种缓冲式多晶硅籽晶铸锭熔化结晶工艺
CN106757337A (zh) * 2017-01-12 2017-05-31 南通大学 一种缓冲式多层多晶硅籽晶熔化控制的装料方法
CN106835271A (zh) * 2017-01-12 2017-06-13 南通大学 一种缓冲式多晶硅籽晶熔化控制的装料方法
CN108149316A (zh) * 2017-12-28 2018-06-12 青岛蓝光晶科新材料有限公司 一种使用粉料的铸造多晶硅靶材的方法
CN109750354A (zh) * 2019-03-28 2019-05-14 浙江晶科能源有限公司 一种硅片铸锭方法、硅锭及多晶硅片
CN109778310A (zh) * 2019-01-17 2019-05-21 安徽华顺半导体发展有限公司 一种高稳定性多晶硅铸锭方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102021650A (zh) * 2010-12-31 2011-04-20 常州天合光能有限公司 一种大型多晶锭的生产方法
CN102154686A (zh) * 2011-04-14 2011-08-17 江西赛维Ldk太阳能高科技有限公司 一种晶体硅铸锭方法及硅锭
CN102226296A (zh) * 2011-06-01 2011-10-26 宁夏银星多晶硅有限责任公司 一种利用多晶硅铸锭炉进行高效定向凝固除杂的工艺
CN102936747A (zh) * 2012-12-07 2013-02-20 天威新能源控股有限公司 一种采用大尺寸坩埚铸锭类单晶的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102021650A (zh) * 2010-12-31 2011-04-20 常州天合光能有限公司 一种大型多晶锭的生产方法
CN102154686A (zh) * 2011-04-14 2011-08-17 江西赛维Ldk太阳能高科技有限公司 一种晶体硅铸锭方法及硅锭
CN102226296A (zh) * 2011-06-01 2011-10-26 宁夏银星多晶硅有限责任公司 一种利用多晶硅铸锭炉进行高效定向凝固除杂的工艺
CN102936747A (zh) * 2012-12-07 2013-02-20 天威新能源控股有限公司 一种采用大尺寸坩埚铸锭类单晶的方法

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104131339A (zh) * 2014-07-18 2014-11-05 中国电子科技集团公司第四十八研究所 一种多晶硅片的制备方法
CN104131341A (zh) * 2014-08-14 2014-11-05 无锡尚品太阳能电力科技有限公司 高效多晶硅铸锭的制作工艺
CN104499046A (zh) * 2014-12-15 2015-04-08 山西潞安太阳能科技有限责任公司 一种多晶硅锭制备方法
CN104499046B (zh) * 2014-12-15 2017-02-22 山西潞安太阳能科技有限责任公司 一种多晶硅锭制备方法
CN105200516A (zh) * 2015-09-08 2015-12-30 浙江晟辉科技有限公司 一种增强排杂效果的多晶硅铸锭工艺
CN106087052A (zh) * 2016-08-10 2016-11-09 中联西北工程设计研究院有限公司 一种多晶硅铸锭的两步退火工艺
CN106119956A (zh) * 2016-08-19 2016-11-16 西安华晶电子技术股份有限公司 一种多晶硅半熔铸锭方法
CN106283182A (zh) * 2016-08-19 2017-01-04 西安华晶电子技术股份有限公司 一种多晶硅铸锭工艺
CN106087048A (zh) * 2016-08-19 2016-11-09 西安华晶电子技术股份有限公司 一种降低多晶硅铸锭底部氧含量的方法
CN106087046A (zh) * 2016-08-19 2016-11-09 西安华晶电子技术股份有限公司 一种减小晶粒度的多晶硅铸锭方法
CN106087053A (zh) * 2016-08-19 2016-11-09 西安华晶电子技术股份有限公司 一种多晶硅铸锭方法
CN106087047A (zh) * 2016-08-19 2016-11-09 西安华晶电子技术股份有限公司 一种母合金的制备方法
CN106087045A (zh) * 2016-08-19 2016-11-09 西安华晶电子技术股份有限公司 一种多晶硅半熔铸锭用熔料及长晶工艺
CN106222740A (zh) * 2016-08-19 2016-12-14 西安华晶电子技术股份有限公司 一种降低多晶硅铸锭底部氧含量的多晶硅铸锭方法
CN106283183A (zh) * 2016-08-19 2017-01-04 西安华晶电子技术股份有限公司 一种基于氮化硼涂层的多晶硅铸锭工艺
CN106087044A (zh) * 2016-08-19 2016-11-09 西安华晶电子技术股份有限公司 一种基于辅助加热的多晶硅铸锭用熔料方法
CN106087065A (zh) * 2016-08-19 2016-11-09 西安华晶电子技术股份有限公司 一种多晶硅铸锭用退火工艺
CN106283182B (zh) * 2016-08-19 2019-09-27 西安华晶电子技术股份有限公司 一种多晶硅铸锭工艺
CN106087046B (zh) * 2016-08-19 2019-03-08 西安华晶电子技术股份有限公司 一种减小晶粒度的多晶硅铸锭方法
CN106835271A (zh) * 2017-01-12 2017-06-13 南通大学 一种缓冲式多晶硅籽晶熔化控制的装料方法
CN106757337A (zh) * 2017-01-12 2017-05-31 南通大学 一种缓冲式多层多晶硅籽晶熔化控制的装料方法
CN106591947A (zh) * 2017-01-12 2017-04-26 南通大学 一种缓冲式多晶硅籽晶铸锭熔化结晶工艺
CN108149316A (zh) * 2017-12-28 2018-06-12 青岛蓝光晶科新材料有限公司 一种使用粉料的铸造多晶硅靶材的方法
CN109778310A (zh) * 2019-01-17 2019-05-21 安徽华顺半导体发展有限公司 一种高稳定性多晶硅铸锭方法
CN109750354A (zh) * 2019-03-28 2019-05-14 浙江晶科能源有限公司 一种硅片铸锭方法、硅锭及多晶硅片

Also Published As

Publication number Publication date
CN103741215B (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
CN103741215B (zh) 一种颗粒状多晶硅的铸锭方法
CN103741216B (zh) 一种硅粉提纯用铸锭方法
CN103741214B (zh) 一种多晶硅铸锭工艺
CN103741206B (zh) 一种多晶硅铸锭熔料及排杂工艺
CN101423220B (zh) 一种多温区硅材料提纯与铸锭的方法及其装置
CN102296354B (zh) 一种硅料的铸锭方法
CN101654805B (zh) 一种单晶向、柱状大晶粒的铸造多晶硅的制备方法
CN102936747B (zh) 一种采用大尺寸坩埚铸锭类单晶的方法
CN103741213A (zh) 一种多晶硅铸锭用熔料工艺
CN106591937B (zh) 一种凹陷式类单晶籽晶铸锭熔化结晶工艺
CN102296352A (zh) 一种800公斤级单多晶硅的铸锭方法
CN103215633A (zh) 一种多晶硅的铸锭方法
CN101974779A (zh) 一种制备<110>区熔硅单晶的方法
CN103088406A (zh) 一种籽晶的制备方法及类单晶硅锭的铸造方法
CN102936748B (zh) 一种铸锭炉的加热器
CN104746134B (zh) 采用补偿硅料的n型单晶硅拉制方法
CN101798705A (zh) 一种从低温熔体中连续拉晶提纯多晶硅的方法及专用装置
CN103014850A (zh) 一种新型多晶硅铸锭装置及其铸锭方法
CN104805499A (zh) N型多晶铸锭设备及其制备工艺
CN103849931B (zh) 一种底部补偿硼元素的多晶硅铸锭工艺
CN102534772B (zh) 一种生长大晶粒铸造多晶硅的方法
CN202164380U (zh) 高产出多晶硅铸锭炉热场结构
CN106087044A (zh) 一种基于辅助加热的多晶硅铸锭用熔料方法
CN102438773B (zh) 由感应法生产多晶硅锭的方法及其实施装置
CN103898603A (zh) 一种双电源多晶硅铸锭工艺

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160120

Termination date: 20210128