CN103681791B - Nldmos器件及制造方法 - Google Patents

Nldmos器件及制造方法 Download PDF

Info

Publication number
CN103681791B
CN103681791B CN201210325764.9A CN201210325764A CN103681791B CN 103681791 B CN103681791 B CN 103681791B CN 201210325764 A CN201210325764 A CN 201210325764A CN 103681791 B CN103681791 B CN 103681791B
Authority
CN
China
Prior art keywords
type
trap
district
heavily doped
manufacture method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210325764.9A
Other languages
English (en)
Other versions
CN103681791A (zh
Inventor
段文婷
石晶
刘冬华
胡君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Original Assignee
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huahong Grace Semiconductor Manufacturing Corp filed Critical Shanghai Huahong Grace Semiconductor Manufacturing Corp
Priority to CN201210325764.9A priority Critical patent/CN103681791B/zh
Publication of CN103681791A publication Critical patent/CN103681791A/zh
Application granted granted Critical
Publication of CN103681791B publication Critical patent/CN103681791B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0882Disposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明公开了一种NLDMOS器件,可集成在BCD工艺中,利用现有的工艺条件,在漏端利用P型漏注入替代传统的N型漏注入,增加空穴电流,使器件的导通电阻较低。本发明还公开了所述NLDMOS器件的制造方法。

Description

NLDMOS器件及制造方法
技术领域
本发明涉及半导体制造领域,特别是指一种NLDMOS器件,本发明还涉及了所述NLDMOS器件的制造方法。
背景技术
DMOS(Double Diffusion Metal-oxide-Semiconductor)由于具有耐高压、大电流驱动能力和极低功耗等特点,目前在电源管理电路中被广泛采用。在LDMOS(LaterallyDiffused Metal Oxide Semiconductor)器件中,导通电阻是一个重要的指标。在BCD(Bipolar-CMOS-DMOS)工艺中,DMOS虽然与CMOS集成在同一块芯片中,但由于高耐压和低导通电阻的要求,DMOS在沟道区和漂移区的条件与CMOS现有的工艺条件共享的前提下,其导通电阻较高,往往无法满足开关管应用的要求。因此,为了制作高性能的LDMOS,需要采用各种方法优化器件的导通电阻。通常需要在器件的漂移区增加一道额外的N型注入,使器件有较低的导通电阻,而采用这种方法会增加工艺复杂性和成本。
发明内容
本发明所要解决的技术问题是提供一种NLDMOS器件,可集成在BCD工艺中,利用现有工艺即可降低NLDMOS器件的导通电阻。
本发明所要解决的另一技术问题是提供所述的NLDMOS器件的制造方法。
为解决上述问题,本发明所提供的一种NLDMOS器件,在P型硅衬底上具有N型埋层,N型埋层之上为N型深阱。
所述NLDMOS器件的多晶硅栅极,位于N型深阱之上的硅表面,且与硅表面之间间隔一层栅氧化层,多晶硅栅极及栅氧化层两端均具有氧化物侧墙。
所述多晶硅栅极一侧的N型深阱中,具有一P型阱,所述P型阱一侧位于栅氧化层下方的N型深阱中,另一侧位于一场氧下,P型阱中具有第一重掺杂P型区及重掺杂N型区,且第一重掺杂P型区与重掺杂N型区之间间隔一场氧区,所述重掺杂N型区位于栅极侧墙下,重掺杂N型区作为LDMOS器件的源区引出。
所示多晶硅栅极的另一侧N型深阱中,一场氧位于该侧栅极侧墙下,其与另一场氧之间具有一N型阱,所述N型阱中,具有第二重掺杂P型区,所述第二重掺杂P型区作为LDMOS器件的漏区引出。
在器件表面具有多个接触孔及引线引出第一重掺杂P型区、重掺杂N型区、第二重掺杂P型区,分别引出P型阱、LDMOS的源极及漏极。
本发明所述的NLDMOS器件的制造方法,包含如下工艺步骤:
第1步,在P型硅衬底上进行N型离子注入形成N型埋层;
第2步,在N型埋层上淀积一层外延层;
第3步,对外延层进行杂质离子注入形成N型深阱;
第4步,有源区光刻,在N型深阱表面刻蚀打开浅槽区域刻蚀场氧沟槽,并填充场氧,刻蚀及研磨后形成场氧区;
第5步,光刻打开阱注入区域,注入形成N型阱及P型阱;
第6步,生长栅氧化层,制作多晶硅栅极;
第7步,淀积二氧化硅,干法刻蚀制作栅极侧墙;
第8步,进行源漏注入,P型阱中注入形成第一重掺杂P型区及重掺杂N型区,N型阱中注入形成第二重掺杂P型区;
第9步,通过接触孔工艺形成接触孔连接,将所述第一重掺杂P型区、重掺杂N型区、第二重掺杂P型区引出形成电极,分别为P型阱引出端、源极及漏极。
进一步地,所述第1步中P型硅衬底的电阻率范围是0.007~0.013Ω·cm。
进一步地,所述第3步中N型深阱的掺杂浓度为1×1012~5×1014cm-3
进一步地,所述第7步中淀积二氧化硅厚度为
本发明所述的NLDMOS器件,其P型沟道区由CMOS工艺中的P型阱构成,N型漂移区由CMOS中的N型深阱构成,轻掺杂的N型深阱提高了N型阱与P型阱之间的PN结击穿电压,N型漏注入改为P型漏注入,增加了空穴电流,降低了导通电阻,可满足开关器件及模拟器件的使用要求。本发明所述的制造方法,可集成于BCD工艺中,利用现有的平台条件,即可制造出本发明所述的器件。
附图说明
图1是本发明所述制造方法第1步完成图;
图2是本发明所述制造方法第2步完成图;
图3是本发明所述制造方法第3步完成图;
图4是本发明所述制造方法第4步完成图;
图5是本发明所述制造方法第5步完成图;
图6是本发明所述制造方法第6步完成图;
图7是本发明所述制造方法第7步完成图;
图8是本发明所述制造方法第8步完成图;
图9是本发明所述制造方法第9步完成图;
图10是载流子分布示意图;
图11是本发明制造方法工艺流程图。
附图标记说明
101是P型衬底,102是N型埋层,103是N型深阱,104是浅槽隔离结构,105是N型阱,106是P型阱,107是栅氧化层,108是多晶硅栅极,109是侧墙,110是重掺杂N型区,111是第一重掺杂P型区,112是接触孔,113是金属引线,114是外延层,115是第二重掺杂P型区。
具体实施方式
本发明所述的NLDMOS器件,其结构如图9所示,在P型硅衬底101上具有N型埋层102,N型埋层102之上为N型深阱103。
所述NLDMOS器件的多晶硅栅极,位于N型深阱103之上的硅表面,且与硅表面之间间隔一层栅氧化层107,多晶硅栅极108及栅氧化层107两端均具有氧化物侧墙109。
所述多晶硅栅极108一侧的N型深阱103中,具有一P型阱106,所述P型阱106一侧位于栅氧化层107下方的N型深阱103中,另一侧位于一场氧104下,P型阱106中具有第一重掺杂P型区111及重掺杂N型区110,且第一重掺杂P型区111与重掺杂N型区110之间间隔一场氧区104,所述重掺杂N型区110位于栅极侧墙109下,重掺杂N型区110作为LDMOS器件的源区引出。
所示多晶硅栅极的另一侧N型深阱103中,一场氧104位于该侧栅极侧墙109下,其与另一场氧104之间具有一N型阱105,所述N型阱105中,具有第二重掺杂P型区115,所述第二重掺杂P型区115作为LDMOS器件的漏区引出。
在器件表面具有多个接触孔112及引线113引出第一重掺杂P型区111、重掺杂N型区110、第二重掺杂P型区115,分别引出P型阱、LDMOS的源极及漏极。
所述的NLDMOS器件的制造方法,包含如下工艺步骤:
第1步,请参考图1,在电阻率范围是0.007~0.013Ω·cm的P型硅衬底101上进行N型离子注入形成N型埋层102。
第2步,在N型埋层102上淀积一层外延层114,如图2所示。
第3步,对外延层114进行杂质离子注入形成N型深阱103,N型深阱103是为轻掺杂,掺杂浓度为1×1012~5×1014cm-3,完成如图3所示。
第4步,利用有源区光刻,在N型深阱103打开浅槽区域,刻蚀场氧区沟槽;浅槽区填充氧化物,经刻蚀和研磨之后形成场氧区104,如图4所示。
第5步,光刻打开阱注入区域,形成N型阱105及P型阱106。N型阱105作为NLDMOS器件的漂移区,P型阱106作为NLDMOS的沟道区,如图5所示。
第6步,生长栅氧化层107,制作多晶硅栅极108,如图6所示。
第7步,淀积二氧化硅,厚度为干法刻蚀制作栅极侧墙109,如图7所示。
第8步,如图8所示,进行源漏离子注入,在P型阱106中形成重掺杂的N型区110,即源区,及第一重掺杂的P型区111,为P型阱引出。N型阱105中注入形成有第二重掺杂P型区115,即LDMOS的漏区。即用P型注入替换原来的N型注入,提高漏区空穴电流。
第9步,通过接触孔工艺形成接触孔112连接,淀积金属113引出电极。器件制作完成,如图9所示。
本发明所述的NLDMOS,其仿真效果如图10所示。图10显示了传统LDMOS与本发明NLDMOS的载流子分布图,图中,有电子及空穴分布的的浓度曲线,本发明的效果其空穴及电子载流子浓度曲线都要高于传统结构的曲线,尤其是空穴载流子浓度明显提高,由此可显示出本发明导通电流增加,导通电阻降低的特性。
以上仅为本发明的优选实施例,并不用于限定本发明。对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种NLDMOS器件,其特征在于:
在P型硅衬底上具有N型埋层,N型埋层之上为N型深阱;
所述NLDMOS器件的多晶硅栅极,位于N型深阱之上的硅表面,且与硅表面之间间隔一层栅氧化层,多晶硅栅极及栅氧化层两端均具有氧化物侧墙;
所述多晶硅栅极一侧的N型深阱中,具有一P型阱,所述P型阱一侧位于栅氧化层下方的N型深阱中,另一侧位于一场氧下,P型阱中具有第一重掺杂P型区及重掺杂N型区,且第一重掺杂P型区与重掺杂N型区之间间隔一场氧区,所述重掺杂N型区位于栅极侧墙下,重掺杂N型区作为LDMOS器件的源区引出;
所述多晶硅栅极的另一侧N型深阱中,一场氧位于该侧栅极侧墙下,其与另一场氧之间具有一N型阱,所述N型阱中,具有第二重掺杂P型区,所述第二重掺杂P型区作为LDMOS器件的漏区引出;
在器件表面具有多个接触孔及引线引出第一重掺杂P型区、重掺杂N型区、第二重掺杂P型区,分别引出P型阱、LDMOS的源极及漏极。
2.如权利要求1所述的NLDMOS器件的制造方法,其特征在于:包含如下工艺步骤:
第1步,在P型硅衬底上进行N型离子注入形成N型埋层;
第2步,在N型埋层上淀积一层外延层;
第3步,对外延层进行杂质离子注入形成N型深阱;
第4步,有源区光刻,在N型深阱表面刻蚀打开浅槽区域刻蚀场氧沟槽,并填充场氧,刻蚀及研磨后形成场氧区;
第5步,光刻打开阱注入区域,注入形成N型阱及P型阱;
第6步,生长栅氧化层,制作多晶硅栅极;
第7步,淀积二氧化硅,干法刻蚀制作栅极侧墙;
第8步,进行源漏注入,P型阱中注入形成第一重掺杂P型区及重掺杂N型区,N型阱中注入形成第二重掺杂P型区;
第9步,通过接触孔工艺形成接触孔连接,将所述第一重掺杂P型区、重掺杂N型区、第二重掺杂P型区引出形成电极,分别为P型阱引出端、源极及漏极。
3.如权利要求2所述的NLDMOS器件的制造方法,其特征在于:所述第1步中P型硅衬底的电阻率范围是0.007~0.013Ω•cm。
4.如权利要求2所述的NLDMOS器件的制造方法,其特征在于:所述第3步中N型深阱的掺杂浓度为1x1012~5x1014cm-3
5.如权利要求2所述的NLDMOS器件的制造方法,其特征在于:所述第7步中淀积二氧化硅厚度为2500~3500Å。
CN201210325764.9A 2012-09-05 2012-09-05 Nldmos器件及制造方法 Active CN103681791B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210325764.9A CN103681791B (zh) 2012-09-05 2012-09-05 Nldmos器件及制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210325764.9A CN103681791B (zh) 2012-09-05 2012-09-05 Nldmos器件及制造方法

Publications (2)

Publication Number Publication Date
CN103681791A CN103681791A (zh) 2014-03-26
CN103681791B true CN103681791B (zh) 2016-12-21

Family

ID=50318760

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210325764.9A Active CN103681791B (zh) 2012-09-05 2012-09-05 Nldmos器件及制造方法

Country Status (1)

Country Link
CN (1) CN103681791B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104821334B (zh) * 2015-03-11 2018-08-21 上海华虹宏力半导体制造有限公司 N型ldmos器件及工艺方法
CN111446299A (zh) * 2020-05-11 2020-07-24 杰华特微电子(杭州)有限公司 一种ldmos器件及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5869847A (en) * 1995-07-19 1999-02-09 The Hong Kong University Of Science & Technology Thin film transistor
CN102097471A (zh) * 2009-12-04 2011-06-15 美格纳半导体有限会社 半导体器件
CN102130168A (zh) * 2010-01-20 2011-07-20 上海华虹Nec电子有限公司 隔离型ldnmos器件及其制造方法
CN102610641A (zh) * 2011-01-20 2012-07-25 上海华虹Nec电子有限公司 高压ldmos器件及其制造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8174070B2 (en) * 2009-12-02 2012-05-08 Alpha And Omega Semiconductor Incorporated Dual channel trench LDMOS transistors and BCD process with deep trench isolation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5869847A (en) * 1995-07-19 1999-02-09 The Hong Kong University Of Science & Technology Thin film transistor
CN102097471A (zh) * 2009-12-04 2011-06-15 美格纳半导体有限会社 半导体器件
CN102130168A (zh) * 2010-01-20 2011-07-20 上海华虹Nec电子有限公司 隔离型ldnmos器件及其制造方法
CN102610641A (zh) * 2011-01-20 2012-07-25 上海华虹Nec电子有限公司 高压ldmos器件及其制造方法

Also Published As

Publication number Publication date
CN103681791A (zh) 2014-03-26

Similar Documents

Publication Publication Date Title
CN103650148B (zh) 绝缘栅双极晶体管
CN102769037B (zh) 减少表面电场的结构及横向扩散金氧半导体元件
CN104465379A (zh) 半导体器件及形成方法
CN103178093B (zh) 高压结型场效应晶体管的结构及制备方法
CN103811546B (zh) 带面结型场效应管的ldmos复合管
CN105070759A (zh) Nldmos器件及其制造方法
CN104659090B (zh) Ldmos器件及制造方法
CN104716179A (zh) 一种具有深孔的ldmos器件及其制造方法
CN203617299U (zh) 一种双扩散金属氧化物半导体
CN101599507B (zh) N型绝缘体上硅的横向双扩散金属氧化物半导体晶体管
CN101834202B (zh) 降低热载流子效应的n型横向绝缘栅双极型器件
CN103681791B (zh) Nldmos器件及制造方法
CN105140289A (zh) N型ldmos器件及工艺方法
CN207896095U (zh) 一种双通道变掺杂ldmos器件
CN202259309U (zh) 一种高压驱动电路的隔离结构
CN104821334A (zh) N型ldmos器件及工艺方法
CN103681839A (zh) Nldmos器件及制造方法
CN103872098A (zh) 功率半导体器件
CN107919398A (zh) 半超结器件及其制造方法
CN202736927U (zh) 耗尽型功率半导体器件
CN207896096U (zh) 一种高能注入埋层双通道ldmos器件
CN103779416B (zh) 一种低vf的功率mosfet器件及其制造方法
CN103367396A (zh) 一种超级结肖特基半导体装置及其制备方法
CN103123935A (zh) Nldmos器件及其制造方法
CN103811547B (zh) 降低ldmos器件峰值电场的版图结构及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant