CN103597113B - 用于电感耦合等离子体蚀刻反应器的气体分配喷头 - Google Patents
用于电感耦合等离子体蚀刻反应器的气体分配喷头 Download PDFInfo
- Publication number
- CN103597113B CN103597113B CN201280026355.7A CN201280026355A CN103597113B CN 103597113 B CN103597113 B CN 103597113B CN 201280026355 A CN201280026355 A CN 201280026355A CN 103597113 B CN103597113 B CN 103597113B
- Authority
- CN
- China
- Prior art keywords
- chamber
- gas
- lower plate
- etching gas
- spray head
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000009826 distribution Methods 0.000 title description 3
- 238000009616 inductively coupled plasma Methods 0.000 title description 3
- 239000007789 gas Substances 0.000 claims abstract description 216
- 238000005530 etching Methods 0.000 claims abstract description 76
- 238000000034 method Methods 0.000 claims abstract description 75
- 230000008021 deposition Effects 0.000 claims abstract description 71
- 239000000758 substrate Substances 0.000 claims abstract description 68
- 230000000087 stabilizing effect Effects 0.000 claims abstract description 35
- 238000012545 processing Methods 0.000 claims abstract description 34
- 239000007921 spray Substances 0.000 claims abstract description 28
- 239000000919 ceramic Substances 0.000 claims abstract description 27
- 239000004065 semiconductor Substances 0.000 claims abstract description 24
- 230000008878 coupling Effects 0.000 claims abstract description 5
- 238000010168 coupling process Methods 0.000 claims abstract description 5
- 238000005859 coupling reaction Methods 0.000 claims abstract description 5
- 239000011148 porous material Substances 0.000 claims description 28
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 15
- 229910052710 silicon Inorganic materials 0.000 claims description 15
- 239000010703 silicon Substances 0.000 claims description 15
- 238000007789 sealing Methods 0.000 claims description 11
- 206010022000 influenza Diseases 0.000 claims description 9
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 6
- 229910010293 ceramic material Inorganic materials 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 239000002210 silicon-based material Substances 0.000 claims description 6
- 238000004891 communication Methods 0.000 claims description 5
- 239000012530 fluid Substances 0.000 claims description 5
- 238000001020 plasma etching Methods 0.000 claims description 4
- 229920000642 polymer Polymers 0.000 claims description 4
- 230000003628 erosive effect Effects 0.000 claims description 3
- 230000001939 inductive effect Effects 0.000 claims description 3
- 229910052727 yttrium Inorganic materials 0.000 claims description 3
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 3
- XPDWGBQVDMORPB-UHFFFAOYSA-N Fluoroform Chemical compound FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 claims description 2
- RWRIWBAIICGTTQ-UHFFFAOYSA-N difluoromethane Chemical compound FCF RWRIWBAIICGTTQ-UHFFFAOYSA-N 0.000 claims description 2
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 claims 1
- 238000000151 deposition Methods 0.000 description 57
- 238000009623 Bosch process Methods 0.000 description 8
- 229910018503 SF6 Inorganic materials 0.000 description 7
- 125000006850 spacer group Chemical group 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 238000012546 transfer Methods 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 230000008646 thermal stress Effects 0.000 description 3
- 229910017083 AlN Inorganic materials 0.000 description 2
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010849 ion bombardment Methods 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 206010034133 Pathogen resistance Diseases 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 235000008429 bread Nutrition 0.000 description 1
- VZGDMQKNWNREIO-UHFFFAOYSA-N carbon tetrachloride Substances ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- VIKNJXKGJWUCNN-XGXHKTLJSA-N norethisterone Chemical compound O=C1CC[C@@H]2[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 VIKNJXKGJWUCNN-XGXHKTLJSA-N 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000012797 qualification Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229960000909 sulfur hexafluoride Drugs 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- IGELFKKMDLGCJO-UHFFFAOYSA-N xenon difluoride Chemical compound F[Xe]F IGELFKKMDLGCJO-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/30604—Chemical etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/321—Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
- H01J37/3211—Antennas, e.g. particular shapes of coils
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B1/00—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
- B05B1/14—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening
- B05B1/18—Roses; Shower heads
- B05B1/185—Roses; Shower heads characterised by their outlet element; Mounting arrangements therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/62—Plasma-deposition of organic layers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45561—Gas plumbing upstream of the reaction chamber
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/505—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/505—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
- C23C16/507—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using external electrodes, e.g. in tunnel type reactors
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F4/00—Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/3244—Gas supply means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
- H01L21/30655—Plasma etching; Reactive-ion etching comprising alternated and repeated etching and passivation steps, e.g. Bosch process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67063—Apparatus for fluid treatment for etching
- H01L21/67069—Apparatus for fluid treatment for etching for drying etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/32—Processing objects by plasma generation
- H01J2237/33—Processing objects by plasma generation characterised by the type of processing
- H01J2237/334—Etching
- H01J2237/3341—Reactive etching
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Analytical Chemistry (AREA)
- Drying Of Semiconductors (AREA)
- Plasma Technology (AREA)
Abstract
本发明公开了用于电感耦合等离子体处理装置的陶瓷喷头,电感耦合等离子体处理装置包括:处理腔室,在其中处理半导体衬底;衬底支撑件,在半导体衬底处理期间半导体衬底支撑在衬底支撑件上;以及天线,其能操作以在处理腔室中产生并保持等离子体。陶瓷喷头形成了腔室的介电窗,并且气体输送系统能操作以交替地供给蚀刻气体和沉积气体至喷头的稳压室并且在200毫秒内用沉积气体来更换稳压室中的蚀刻气体。
Description
背景技术
在半导体行业中,波希法(Bosch process)是一种等离子体蚀刻工艺,其广泛地用于制作诸如沟槽和通孔等深的垂直(高深宽比)特征(具有诸如数十至数百微米的深度)。波希法包括蚀刻步骤和沉积步骤的交替的循环。波希法的细节可见于美国专利No.5,501,893中,该专利通过引用合并于此。波希法能够在结合射频(RF)偏置衬底电极在配置有诸如电感耦合等离子体(ICP)源之类的高密度等离子体源的等离子体处理装置中实施。在波希法中用来蚀刻硅的处理气体,在蚀刻步骤中可以为六氟化硫(SF6),而在沉积步骤中可以为八氟化环丁烷(C4F8)。在下文中,在蚀刻步骤中使用的处理气体和在沉积步骤中使用的处理气体分别称为“蚀刻气体”和“沉积气体”。在蚀刻步骤期间,SF6有利于硅(Si)的自发的且各向同性的蚀刻;在沉积步骤期间,C4F8有利于保护性聚合物层沉积到蚀刻结构的侧壁以及底部上。波希法在蚀刻步骤和沉积步骤之间周期性地交替,使能将深的结构限定到掩模硅衬底中。在存在于蚀刻步骤中的高能且定向的离子轰击时,覆盖在蚀刻结构底部中的来自之前沉积步骤的任何聚合物膜将被去除以露出硅表面以便进行进一步蚀刻。侧壁上的聚合物膜将保留,因为其不经受直接的离子轰击,从而抑制横向蚀刻。
波希法的一个局限是蚀刻的深特征的粗糙化侧壁。该局限性是由于在波希法中使用的周期性蚀刻/沉积方案引起的并且在本领域中称为侧壁“扇形化”。对于许多器件应用,期望使得该侧壁的粗糙化或扇形化最小化。通常,扇形化的程度以扇形长度和深度来量度。扇形长度为粗糙化侧壁的峰-峰距离并且与在单个蚀刻循环期间达到的蚀刻深度直接相关。扇形深度为粗糙化侧壁的峰-谷距离并且与单个蚀刻步骤的各向异性程度相关。通过缩短各蚀刻/沉积步骤的持续时间(即,以较高的频率重复较短的蚀刻/沉积步骤),能够使得扇形形成的范围最小化。
除了较平滑的特征侧壁之外,还期望实现较高的总蚀刻率。总蚀刻率被定义在工艺中蚀刻的总深度除以工艺的总持续时间。通过提高工艺步骤内的效率(即,减少停机时间),能够提高总蚀刻率。
图1示出了用于处理衬底120的常规的等离子体处理装置100包括衬底支撑件130和包围衬底支撑件130的处理腔室140。衬底120可以为例如具有诸如4"、6"、8"、12"等直径的半导体晶片。衬底支撑件130可包括例如射频(RF)供电电极。衬底支撑件130可以从腔室140的下端壁支撑或者可以为悬臂式连接,例如,从腔室140的侧壁延伸出。衬底120可通过机械方式或静电方式夹紧到电极130上。处理腔室140可以为例如真空腔室。
通过将处理腔室140中的处理气体激励成高密度等离子体,在处理腔室140中对衬底120进行处理。能量源将高密度(例如,1011-1012离子/cm3)等离子体保持在腔室140中。例如,由适当的RF源或适当的RF阻抗匹配电路供电的诸如图1所示的平面型多匝螺旋线圈、非平面型多匝线圈或具有另一形状的天线之类的天线150将RF能量电感耦合到腔室中以产生高密度等离子体。施加到天线150的RF电力能够根据在腔室140中使用的不同处理气体(例如,包含SF6的蚀刻气体和包含C4F8的沉积气体)而变化。腔室140可包括用于将腔室140的内部保持为期望压强(例如,5托以下,优选地为1-100毫托)的适当的真空泵浦装置。诸如图1所示的均匀厚度的平面型介电窗155的介电窗或非平面型介电窗(未示出)设置在天线150和处理腔室140的内部之间并且在处理腔室140的顶部形成真空壁。气体输送系统110能够用于将处理气体通过介电窗155下方的主气体环170或中央喷射器180供给到腔室140中。在共同拥有的美国专利申请公开No.2001/0010257、No.2003/0070620、美国专利No.6,013,155或美国专利No.6,270,862中公开了图1中的等离子体处理装置100的细节,上述专利申请或专利的全部内容通过引用合并于此。
在共同拥有的美国专利No.7,459,100和No.7,708,859以及美国专利公开No.2007/0158025和No.2007/0066038中公开了设计用于快速气体切换的气体输送系统,上述专利和公开的内容通过引用合并于此。
优选地,衬底120包括诸如硅晶片和/或多晶硅的硅材料。诸如孔、通孔和/或沟槽之类的各种特征要蚀刻到硅材料中。具有用于蚀刻期望特征的开口图案的图案化掩蔽层(例如,光刻胶、氧化硅和/或氮化硅)设置在衬底120上。
图1的装置100的一个问题在于,主气体环170被定位成更靠近衬底120的周边而不是更靠近中心,这会由于在衬底120的表面上将一种处理气体完全替换成另一种处理气体所需的时间而提高蚀刻率并且会由于在处理期间遍布衬底的气体压强非均匀性而导致处理非均匀性。
发明内容
本文描述了一种用于电感耦合等离子体处理装置的陶瓷喷头,所述电感耦合等离子体处理装置包括:处理腔室,在所述处理腔室中处理半导体衬底;衬底支撑件,在半导体衬底处理期间所述半导体衬底支撑在所述衬底支撑件上;以及天线,其能操作以在所述处理腔室中产生并保持等离子体。陶瓷喷头形成腔室的介电窗,并且气体输送系统能操作以交替地供给蚀刻气体和沉积气体至喷头中的稳压室并且在200毫秒内用沉积气体替换所述稳压室中的蚀刻气体或者在200毫秒内用蚀刻气体替换稳压室中的沉积气体。等离子体处理装置能操作以便以至少10μm/分钟的速率在所述半导体衬底上的硅中蚀刻开口。
陶瓷喷头包括:陶瓷材料制下板,其具有平面型的下表面和阶形的上表面,所述下板在其中央部分较厚且在其外部较薄,轴向延伸的气孔位于所述外部上的环形区域中并且在所述上表面和所述下表面之间延伸,真空密封表面位于所述下表面的外周处的所述外部上;陶瓷材料制环形上板,其具有平面型的上表面和下表面,多个径向延伸的气道从其外周向内延伸,并且多个轴向延伸的气道从其所述下表面延伸至所述径向延伸的气道;所述环形上板被构造成围绕所述下板的所述中央部分并且覆盖所述下板的所述外部的所述上表面,以使所述上板的所述轴向延伸的气道与所述下板中的所述轴向延伸的气孔流体连通。
依照优选的实施例,下板包括两排轴向延伸的气孔,每排具有20至50个轴向延伸的气孔。优选地,下板具有大约20英寸的直径、在中央部分大约1.5英寸的厚度以及在外部大约0.8英寸的厚度,两排气道包括具有0.04英寸的直径且定位距下板的中心大约5英寸的内排32个气道以及具有大约0.04英寸的直径且定位距下板的中心大约6.5英寸的外排32个气道,并且密封表面位于下表面的台阶上,所述台阶具有大约0.4英寸的深度以及大约1.2英寸的宽度。上板包括具有大约0.125英寸的直径且定位相隔45°的8个径向延伸的气道、具有大约0.125英寸的直径且定位距上板的中心大约5.75英寸的8个轴向延伸的气道、具有大约1.7英寸的宽度以及大约0.015至0.02英寸的深度的环形稳压室、以及围绕所述环形稳压室的内外O形圈槽。上板还包括具有大约0.4英寸的直径且定位在上板的上表面中的8对轴向延伸的安装孔、具有大约0.35英寸的直径且定位在上板的外周上的平坦安装表面中的8对径向延伸的安装孔,每对安装孔的中心定位相隔大约1英寸。优选地,上板和下板由高纯度氧化铝制成,并且下板的下表面包括覆盖除了所述密封表面之外的全部所述下表面的高纯度氧化钇涂层。可用于上板和下板的其它材料包括氮化铝以及适合于半导体兼容材料的其它陶瓷。
陶瓷喷头形成处理腔室的介电窗,处理腔室具有衬底支撑件,在半导体处理期间半导体支撑在衬底支撑件上,天线可操作以电感耦合RF能量使其通过所述介电窗且进入所述腔室,从而在所述衬底支撑件和所述介电窗之间的腔室间隙中将处理气体激励成等离子体;以及气体输送系统,其能操作以交替地供给包含蚀刻气体和沉积气体的处理气体至所述陶瓷喷头中的所述径向延伸的气道,使得所述环形稳压室中的所述蚀刻气体在200毫秒内替换成所述沉积气体或者所述环形稳压室中的所述沉积气体在200毫秒内替换成所述蚀刻气体,所述等离子体处理装置能操作以便以至少10μm/分钟的速率在所述半导体衬底上的硅材料中蚀刻开口。优选地,蚀刻气体为SF6,并且沉积气体为C4F8。
在处理半导体衬底的方法中,所述方法包括:(a)将所述半导体衬底支撑在所述处理腔室中的所述衬底支撑件上;(b)中断所述沉积气体的流动并且将所述蚀刻气体供给到所述环形稳压室,使得所述蚀刻气体通过所述陶瓷喷头中的所述气孔而流入所述腔室间隙中;(c)将所述腔室间隙中的所述蚀刻气体激励成第一等离子体并且用所述第一等离子体在所述半导体衬底中等离子体蚀刻开口;(d)中断所述蚀刻气体的流动并且将所述沉积气体供给到所述环形稳压室,使得所述沉积气体通过所述陶瓷喷头中的所述气孔流入所述腔室间隙中;(e)将所述腔室间隙中的所述沉积气体激励成第二等离子体并且用所述第二等离子体将聚合物沉积到所述开口中;以及(f)以不大于1.8秒的总循环时间重复步骤(b)-(e)。如果半导体衬底为硅晶片,则能够实施处理使得在步骤(b)中所述蚀刻气体在大约500毫秒的时间段内替换所述腔室间隙中的所述沉积气体,并且在步骤(d)中所述沉积气体在大约500毫秒的时间段内替换所述腔室间隙中的所述蚀刻气体。
附图说明
图1示出了常规的等离子体处理装置。
图2示出了根据优选实施例的等离子体处理装置。
图3A-D示出了下板270的细节,其中图3A为其上表面的立体图,图3B为其下表面的立体图,图3C为其仰视图,图3D为其剖视图。
图4A-H示出了上板280的细节,其中图4A为其上表面的立体图,图4B为其下表面的立体图,图4C为其侧视图,图4D为其剖视图,图4E为图4D中的细节E的视图,图4F为图4E中的细节F的视图,图4G为沿图4H中的线G-G在气体连接位置处的剖视图,并且图4H为图4C中的细节H的端视图。
图5A-B示出了安装在下板270上的上板280,其中图5A为立体俯视图,并且图5B为通过图5A中所示的组件的剖视图。
图6A-C示出了将处理气体供给到陶瓷喷头的气体连接块的细节,其中图6A为块的立体前视图,图6B为块的立体后视图,并且图6C为其仰视图。
图7A-C示出了气体环的细节,其中图7A为气体环的俯视图,图7B为气体环的立体图,并且图7C示出了其中盖板与底部环分隔开的气体环的细节。
图8A-D示出了安装在陶瓷喷头上的气体环的细节,其中图8A为围绕喷头的气体环的立体图,图8B示出了气体连接块的带肩螺钉如何接合装配在喷头中的安装孔中的紧固件中的开口,图8C示出了插入到喷头的外周中的径向延伸安装孔中的带肩螺钉以及完全插入到喷头中的紧固件,并且图8D为附接至气体环和喷头的气体连接块的立体截面图。
具体实施方式
本文描述的等离子体处理装置能够以比上述常规装置100更大的均匀度实现更高的蚀刻率。
根据实施例,如图2所示,用于处理衬底220的等离子体处理装置200包括衬底支撑件230和包围衬底支撑件230的处理腔室240。衬底220可以为例如具有8英寸、12英寸或更大的直径的半导体晶片。衬底支撑件230可以包括例如射频(RF)供电电极。衬底支撑件230可从腔室240的下端壁支撑或者可以为悬臂式连接,例如,从腔室240的侧壁延伸出。衬底220可通过机械方式或静电方式夹紧到衬底支撑件230上。
通过将处理腔室240中的处理气体激励成高密度等离子体,在处理腔室240中处理衬底220。能量源在腔室20中产生并保持高密度(例如,1011-1012离子/cm3)等离子体。例如,通过适当的RF源和适当的RF阻抗匹配电路供电的诸如图2所示的平面型多匝螺旋线圈、非平面型多匝线圈或具有另一形状的天线之类的天线250将RF能量电感耦合到腔室中以产生高密度等离子体。在交替地供给蚀刻气体或沉积气体的循环期间,优选地在小于约1s的时间段内,更优选地在小于约200ms内,施加到天线250的RF电力能够保持在相同的电力水平或者根据在腔室240中使用的不同的处理气体(例如,包含SF6的蚀刻气体以及包含C4F8的沉积气体)而变化。通过适当的真空泵浦装置将腔室240排空,以用于将腔室240的内部保持为期望压强(例如,5托以下,优选地1-500毫托)。在蚀刻和沉积循环期间压强能够保持为相同的水平或者变化。
腔室包括均匀厚度的陶瓷喷头260,陶瓷喷头设置在天线250和处理腔室240的内部之间并且在处理腔室240的顶部形成真空壁。气体输送系统210能够用于通过喷头260中的气道将处理气体供给到腔室240中。气体输送系统210经由快速切换阀(诸如可从位于Santa Clara,CA的Fujikin ofAmerica获得的型号为FSR-SD-71-6.35的阀)将蚀刻气体或沉积气体交替地供给到腔室中,所述快速切换阀在40毫秒内打开和关闭,优选地在30毫秒内打开和关闭。阀能够为开关阀,在蚀刻气体供给到喷头的同时,开关阀不将沉积气体引导至旁通线路,或者反之亦然。快速气体切换阀提供了比MFC阀更快的切换,MFC阀在打开或关闭之前需要花费250毫秒来稳定。
在优选的实施例中,喷头为两件式陶瓷喷头,其包括上板280和下板270(下文将参考图3A-D和图4A-H进行说明),上板和下板由电绝缘陶瓷材料制成,诸如氧化铝、氮化硅、氮化铝、掺杂碳化硅、石英等。为了防止等离子体在喷头气孔中点燃,气孔优选地具有不大约0.06英寸的直径和至少2的深宽比。例如,下板270可具有至少0.2英寸的厚度,优选地为0.2至1英寸。通过使衬底支撑件沿垂直方向移动以调节在喷头板和衬底之间产生等离子体的腔室间隙,能够改变下板270的底面和衬底220之间的垂直距离(腔室间隙)。
优选地,衬底220包括诸如硅晶片和/或多晶硅之类的硅材料。诸如孔、通孔和/或沟槽的各种特征要蚀刻到硅材料中。具有用于蚀刻期望特征的开口图案的图案化掩蔽层(例如,光刻胶、氧化硅和/或氮化硅)布置在衬底220上。
与带侧面气体喷射的常规的等离子体处理装置100比,等离子体处理装置200能够更快速且均匀地将腔室间隙中的处理气体从蚀刻气体切换成沉积气体,并且反之亦然。在衬底220具有300mm的直径且腔室间隙大于4英寸的一个实施例中,装置200能够在大约200毫秒内基本上完全(例如,至少90%)切换上板和下板之间的稳压室中的处理气体,并且在大约700毫秒内基本上完全(例如,至少90%)切换腔室间隙中的处理气体。这种快速气体切换使能利用等离子体处理装置200来显著提高硅中开口的蚀刻率至10μm/min以上,并且根据待蚀刻特征的关键尺寸(CD),蚀刻率能够高于20μm/min,而带侧面气体喷射的提供大约3μm/min的蚀刻率。
图3A-D示出了下板270的细节,其中图3A为其上表面的立体图,图3B为其下表面的立体图,图3C为其仰视图,并且图3D为其剖视图。
如图3A-D所示,下板270包括平面型下表面302和阶形上表面304,上表面在其中央部分306较厚并且在其外部308较薄,两排轴向延伸的气孔310位于外部308上的环形区域312中并且在上表面304和下表面302之间延伸。下表面302包括在其外部中的台阶320并且包括环形真空密封表面314,环形真空密封表面314被真空密封到等离子体腔室的温控壁上。下板270包括在环形区域312任一侧在上表面304上的环形内真空密封表面316和环形外真空密封表面318。盲孔322位于中央部分306的上表面上,用于安装监控下板270的温度的温度传感器。
较厚的中央部分306将热高效地散发至中央部分306的暴露的上表面上方的环境气氛中。喷头的外边缘能够被设定为高温以抵消喷头上的温度梯度。一个或多个热垫圈506能够用于促进下板270的外部308和上覆板280之间的热传递。下板270暴露于大部分的热和真空负荷并且将经受高的热应力。通过在上板280中提供复杂的气体馈送导管,在腔室中的衬底的等离子体处理期间由于热应力造成的破坏风险很低。此外,由于上板和下板通过真空力保持在一起且由O形圈密封,所以容易周期性地移除和清洁这两个部分。为了提供耐腐蚀性,下板的等离子体暴露表面能够涂有氧化钇。
在设计为处理300mm晶片的腔室中,下板270比晶片宽,并且真空密封表面312接合腔室240的顶部上的配合密封表面。例如,下板270可具有大约20英寸的直径、在中央部分306处大约1.5英寸的厚度以及在外部308处大约0.8英寸的厚度,气孔310布置成两排气孔,包括具有大约0.04英寸的直径且定位距下板270的中心大约5英寸的内排32个气孔以及具有大约0.04英寸的直径且定位距下板270的中心大约6.5英寸的外排32个气孔,并且密封表面314位于下表面302中的台阶320上,台阶314具有大约0.4英寸的深度以及大约1.2英寸的宽度。
图4A-H示出了上板280的细节,其中图4A为其上表面的立体图,图4B为其下表面的立体图,图4C为其侧视图,图4D为其剖视图,图4E为图4D中的细节E的视图,图4F为图4E中的细节F的视图,图4G为在气体连接安装表面处的上板的剖视图,并且图4H为安装表面的侧视图。
上板280为具有平面型上表面402、平面型下表面404、内表面406和外表面408的陶瓷材料制环形板。多个径向延伸的气道410从外表面408向内延伸,并且多个轴向延伸的气道412从下表面404延伸至径向延伸的气道410。环形上板280被构造成围绕下板270的中央部分306并且上覆下板270的外部308的上表面304,使得上板280的轴向延伸的气道412与环形稳压室414流体连通,环形稳压室414与下板270中的轴向延伸的气孔310流体连通。
为处理300mm的晶片,上板280被定尺寸以与下板270匹配,并且包括供给下板270中的气孔310的多个径向延伸的气道410。例如,上板280可包括具有大约0.125英寸的直径且定位相隔45°的8个径向延伸的气道410、具有大约0.125英寸的直径且定位距上板270的中心大约5.75英寸的8个轴向延伸的气道412,环形稳压室414具有大约1.7英寸的宽度以及大约0.015至0.02英寸的深度,内O形圈槽416和外O形圈槽418围绕环形稳压室414。根据工艺要求,下板270可包括呈任何期望图案且具有任意期望几何形状和尺寸的气孔310的不同布置,诸如多于或少于64个气孔。
为将处理气体供给到气道410,上板280包括用于附接气体连接安装块的安装孔。安装孔包括8对轴向延伸的安装孔420和8对径向延伸的安装孔422。孔420具有大约0.4英寸的直径,定位距上板280的上表面402的外边缘大约0.5英寸,并且延伸通过上板280至下表面404。安装孔422具有大约0.35英寸的直径,位于上板280的外周408上的平坦安装表面424中,并且延伸到孔420中。每对安装孔420、422的中心相隔大约1英寸。优选地,上板280和下板270由高纯度氧化铝制成,并且下板270的下表面包括覆盖除了密封真空表面314之外的整个下表面的高纯度氧化钇涂层。
图5A-B示出了安装在下板270上的上板280,其中图5A为立体俯视图,并且图5B为通过图5A所示的组件的剖视图。上板上的安装孔420接收紧固件504,紧固件504容许将八个气体连接块(未示出)附接到上板280的外表面408。气体块将处理气体输送到八个气体连接位置502,在该八个气体连接位置502处理气体流入八个径向延伸的气道410。通过在相等间隔位置处从外表面408馈送处理气体,能够在腔室中实现快速气体切换。优选地,在上板和下板之间的环形稳压室414的气体容积小于500cm3,这允许快速地从蚀刻气体变更成沉积气体。下板270的厚的中央部分306允许散热,并且上板和下板的相对表面之间的热传导垫圈506允许下板270的外部308保持在期望温度。下板270暴露于大部分热和真空负荷并且将经受高的热应力。因此,期望使得可能引发热破裂的下板上的特征最小化。通过两件式设计,可能引发热破裂的复杂的加工特征位于上板280上。上板和下板不是通过螺栓连接在一起,而是仅通过真空力和通过位于O形圈槽416、418中的两个O形圈密封件密封的真空保持在一起。该安装布置使得能容易拆除以进行上板和下板的清洁。
通过上述等离子体处理装置200,气体输送系统可操作以交替地供给蚀刻气体和沉积气体至稳压室并且在200毫秒内用沉积气体替换上板和下板之间的稳压室中的蚀刻气体或者在200毫秒内用蚀刻气体替换稳压室中的沉积气体。等离子体处理装置能够用于以至少10μm/min的速率蚀刻支撑在衬底支撑件上的半导体衬底上的硅。等离子体处理装置可操作以在200毫秒内且在处理腔室中的等离子体约束区(腔室间隙)中将稳压室中的处理气体基本完全地从蚀刻气体切换到沉积气体,或者在大约500ms内反之亦然。
在优选实施例中,蚀刻气体为SF6,并且沉积气体为C4F8。在操作中,气体供给系统在将沉积气体供给到稳压室期间不将蚀刻气体转向到真空线路并且在将蚀刻气体供给到稳压室期间不将沉积气体转向到真空线路。利用上述等离子体处理装置处理衬底优选地包括:(a)将衬底支撑在腔室中,(b)将蚀刻气体供给到稳压室并且使蚀刻气体通过下板中的气孔流入腔室间隙中,(c)将腔室中的蚀刻气体激励成第一等离子体并且用所述第一等离子体来处理衬底,(d)将沉积气体供给到稳压室,从而基本上替换蚀刻气体并且使沉积气体通过下板中的气孔流入腔室间隙中,(e)将腔室中的沉积气体激励成第二等离子体并且用第二等离子体来处理衬底,(f)以不大于1.8秒的总循环时间来重复步骤(b)-(e)。
优选地,在步骤(b)中在大约500毫秒的时间段内蚀刻气体替换腔室间隙中的沉积气体的至少90%,并且优选地在步骤(d)中在大约500毫秒的时间段内沉积气体替换腔室间隙中的蚀刻气体的至少90%。在处理期间,在步骤(b)-(e)期间稳压室中的压强至少为5托。在供给蚀刻气体和沉积气体的循环期间,供给蚀刻气体的总时间可以为1.3秒或更少,并且供给沉积气体的总时间可以为0.7秒或更少。
能够调节腔室压强,使得在供给蚀刻气体期间腔室间隙中的压强大于150毫托并且在供给沉积气体期间腔室间隙中的压强小于150毫托。在优选工艺中,蚀刻气体以至少500sccm的流率供给到稳压室,并且沉积气体以小于500sccm的流率供给到稳压室。优选地,衬底和下板之间的腔室间隙大于4英寸。在供给蚀刻气体期间,衬底可在200毫秒期间在蚀刻步骤的聚合物清除阶段中以保持为小于150毫托的腔室间隙中压强且对于等离子体蚀刻步骤的其余部分以保持为高于150毫托的腔室间隙中压强进行高深宽比开口的等离子体蚀刻。在供给沉积气体期间,第二等离子体能够在整个沉积步骤中以保持为小于150毫托的腔室间隙中压强在开口的侧壁上沉积聚合物涂层。蚀刻气体可以为SF6、CF4、XeF2、NF3、诸如CCl4之类的含Cl气体中的一种或多种,并且沉积气体可以为C4F8、C4F6、CHF3、CH2F2、CH4、C3F6、CH3F中的一种或多种。
蚀刻气体可通过第一阀供给至八个蚀刻气体线路,八个蚀刻气体线路将蚀刻气体输送到上板的外周中的气体入口,其中八个蚀刻气体线路具有相等的传导率。同样,沉积气体通过第二阀供给至八个沉积气体线路,八个沉积气体线路将沉积气体输送至气体入口,其中八个沉积气体线路具有相等的传导率。能够使用快速动作阀,其中快速动作螺线管阀在接收到来自控制器的信号时在10毫秒内发送气动空气至快速切换阀,并且打开或关闭快速切换阀的总时间可以为30毫秒或更少。
图6A-C示出了由诸如不锈钢之类的耐腐蚀金属材料或聚合物材料制成的示例性的气体连接块600,其用于将处理气体供给至上板280中的径向延伸的气道410中的一个。图6A为立体前视图,图6B为立体后视图,并且图6C为连接块600的仰视图。连接块600包括安装表面602,安装表面602接触平坦安装表面424,使得安装表面602中的气体出口604与气道410对准。成对的镗孔606与平坦面424中的孔422对准,并且成对的带肩螺钉608能够沿着远离表面602的方向在镗孔606中滑动,使得带肩螺钉608上的压配合的塑料套筒609进入孔422以将块600定位在上板280上。在镗孔606的相对端处的弹性挡圈611防止带肩螺钉从镗孔606中掉落。围绕气体出口604的表面602中的O形圈槽612接纳诸如O形圈的垫圈以提供块600和上板280上的平坦安装表面424之间的密封。成对的安装孔610延伸通过凸缘607以将块600安装在气体输送环上。块600包括安装表面613,安装表面613具有贯通其中的气体入口615和围绕入口615的O形圈槽617。浅的矩形凹部619减少了块600和气体输送环之间的热传递。
图7A-C示出了气体输送环700的细节。图7A示出了其上面安装有八个气体连接块600的环700,每个块600提供块内部与上板280中的气体入口410之间的流体连通。图7B示出了未安装有块600的气体环700的细节。气体环700包括在上盖板704中的八个气体出口702、其中具有由上盖704封闭的通道的底环706、让处理气体通过以进入环700的气体入口708,以及连接底环的与气体入口708相对的端712的延伸限制器710。如图7C所示,盖板704包括相互连接的部分,其中第一部分714延伸环706的1/2直径,成对的第二部分716各自在其中点处附接至第一部分714的相应端并且延伸环706的1/4直径,以及四个第三部分718各自在其中点处附接至第二部分716其中之一的相应端以将八个气体出口702定位成相隔均等距离。底环706包括其中相互连接的通道,其中第一通道720延伸环706的1/2直径,成对的第二通道722各自在其中点处连接至第一通道720的相应端并且延伸环706的1/4直径,以及四个第三通道724各自在其中点处连接至第二通道722其中之一的相应端。盖板704包括附接至第一部分714的中部的L形部分726。L形部分覆盖下环706的气体入口部分730中的L形通道728,通道728将气体入口708连接至第一通道720。底环706包括在安装表面734中的安装孔732,孔732与八个气体连接块600的相应一个中的孔610对准。
优选地,盖板704和底环706由耐腐蚀金属材料(诸如不锈钢)或聚合物材料制成,并且盖板704能够通过诸如电子束焊接之类的适当制造工艺密封到下环706。盖板和/或底环的内和/或外表面能够涂有诸如硅涂层之类的保护材料。优选的硅涂层为“SILCOLLOY1000”,可从位于Bellefonte,PA的SilcoTek获得的化学蒸汽沉积(CVD)多层硅涂层。适当的CVD硅涂层的细节可见于美国专利No.7070833,该专利的公开内容通过引用合并于此。尽管尺寸能够根据喷头和气体入口布置的尺寸而改变,在优选实施例中,底环706中的通道720/722/724能够为大约0.1英寸宽且大约0.32英寸高,气体出口702能够定位在大约10.4英寸的半径上。盖板704可比底环中的通道略宽且装配在每个通道的顶部处的凹部内。例如,第一、第二和第三部分714/716/718可具有大约0.03英寸的厚度以及大约0.12英寸的宽度。如图7C所示,盖环704的第三部分718的端部736可向内成角度并且包括圆角端738。圆角端738可具有大约0.32英寸的直径,并且形成气体出口702的开口可具有在圆角端738的中心的大约0.19英寸的直径。
为避免通道720/722/724之间的突然的方向变化,第一通道720的端部和第二通道722的中部之间的两个连接部优选地以大约0.13英寸的半径成圆形,并且第二通道722的端部和第三通道724的中部之间的四个连接部以大约0.13英寸的半径成圆形。在底环的一些部分中,有单个通道(诸如第一通道720的部分和第三通道724的部分)、两个相邻通道(诸如第一和第三通道同心的部分,第一和第二通道同心的部分或者第二和第三通道同心的部分)、或三个相邻通道(其中第一、第二和第三通道同心)。
优选地,气体环700为圆形,但是如果陶瓷喷头具有不同的形状,则其它构造是可能的。为了将气体环700附接至喷头,延伸限制器710松散,并且气体环位于上板280周围。在带肩螺钉608和与气体入口410流体连通密封的孔422和气道616接合之后,延伸限制器710被紧固以使气体环700的端部712同心对准。
图8A为经由气体连接块600附接至喷头260的上板280的气体环700的立体图。图8B示出了在气体连接块600中的镗孔606中滑动的带肩螺钉608如何装配在延伸到上板280中的安装孔420中的紧固件504中的水平开口中。如图8C所示,带肩螺钉608包括塑料衬套609以使陶瓷上板280中的水平孔422的磨损最小化。当带肩螺钉608插入到上板280的外周上的平坦安装表面424中的孔422中时,带肩螺钉608的端部进入紧固件504中的开口以将块600保持在适当位置上。安装在孔610中的螺钉614将气体连接块600紧固到气体环700上。如图8D所示,每个气体连接块600包括L形通道616,L形通道616将气体环700的出口702连接至上板280中的径向延伸的气道410中的一个的入口。O形圈槽612中的O形圈围绕L形通道616的出口604以提供气体连接块600和上板280上的平坦安装表面424之间的密封。同样,O形圈槽617中的O形圈提供气体连接块600和气体环700上的安装表面734之间的密封。
将气体环700组装到上板280上需要利用螺钉614将气体连接块600附接至气体环700,气体环700散开并且在上板280上方滑动,紧固件504完全插入到垂直孔420中,紧固件504中的开口与开口422对准,气体环在上板280周围闭合,并且板710被收紧以防止环打开,并且螺钉608插入到孔422中并且通过紧固件504中的开口。优选地,紧固件504由塑料制成并且将块600保持在喷头周围的适当位置上。
通过气体环700,处理气体能够通过单个入口供给并且沿着等长度流路输送至出口702,从而使得从每个出口702喷出的气体的压强或流率相同并且使从每个出口均匀地喷出气体。因此,能够使得来自每个出口的流过阻力(传导率)相等。如上所述,出口和通道的数量能够根据需要改变,而无需限制为八个出口或上述特定通道布置。
在该说明书中,用语“大约”通常结合数值使用以表明不意在该值的数学精度。因此,目的在于,在结合数值使用“大约”的情况下,对于该数值预期10%的容差。
尽管上文已经参照具体实施例详细描述了可操作以快速地切换处理气体的等离子体处理装置,但是本领域技术人员显而易见的是,能够进行各种改变和变型以及所采用等同方案,而不偏离随附权利要求书的范围。
Claims (15)
1.一种用于电感耦合等离子体处理装置的陶瓷喷头,其中将支撑在衬底支撑件上的半导体衬底进行等离子体蚀刻,所述陶瓷喷头包括:
陶瓷材料制下板,其具有平面型的下表面和阶形的上表面,所述下板在其中央部分较厚且在其外部较薄,轴向延伸的气孔位于所述外部上的环形区域中并且在所述上表面和所述下表面之间延伸,真空密封表面位于所述下表面的外周处的所述外部上,并且所述上表面上的内外真空密封表面限定所述轴向延伸的气孔所在的所述环形区域;
陶瓷材料制环形上板,其具有平面型的上表面和下表面,多个径向延伸的气道从其外周向内延伸,并且多个轴向延伸的气道从其所述下表面延伸至所述径向延伸的气道;
所述环形上板被构造成围绕所述下板的所述中央部分并且覆盖所述下板的所述外部的所述上表面,以使所述上板的所述轴向延伸的气道与所述下板中的所述轴向延伸的气孔流体连通。
2.如权利要求1所述的陶瓷喷头,其中所述下板包括至少两排轴向延伸的气孔,每排具有20至50个所述轴向延伸的气孔。
3.如权利要求2所述的陶瓷喷头,其中所述下板具有大约20英寸的直径、在所述中央部分为大约1.5英寸的厚度且在所述外部为大约0.8英寸的厚度,所述两排气孔包括具有0.04英寸的直径且位于距所述下板的中心大约5英寸处的内排32个气孔以及具有大约0.04英寸的直径且位于距所述下板的所述中心大约6.5英寸处的外排32个气孔,并且所述密封表面定位在所述下表面的台阶上,所述台阶具有大约0.4英寸的深度以及大约1.2英寸的宽度。
4.如权利要求1所述的陶瓷喷头,其中所述上板包括具有大约0.125英寸的直径且相隔45°定位的至少8个径向延伸的气道、具有大约0.125英寸的直径且位于距所述上板的中心大约5.75英寸处的至少8个轴向延伸的气道、限定具有大约1.7英寸的宽度和0.015英寸至0.02英寸的深度的环形稳压室的环形凹部、以及围绕所述环形稳压室的内外O形圈槽,所述环形稳压室提供所述上板中的所述轴向延伸的气道和所述下板中的所述气孔之间的流体连通。
5.如权利要求4所述的陶瓷喷头,其中所述上板还包括具有大约0.4英寸的直径且位于所述上板的所述上表面中的8对轴向延伸的安装孔、具有大约0.35英寸的直径且位于所述上板的外周上的平坦安装表面中的8对径向延伸的安装孔,每对所述安装孔的中心定位相隔大约1英寸。
6.如权利要求1所述的陶瓷喷头,其中所述上板和下板由高纯度氧化铝制成,并且所述下板的所述下表面包括覆盖除了所述密封表面之外的全部所述下表面的高纯度氧化钇涂层。
7.一种处理腔室,在所述处理腔室中处理半导体衬底;
衬底支撑件,在所述半导体处理期间所述半导体支撑在所述衬底支撑件上;
如权利要求1所述的陶瓷喷头,其形成所述腔室的介电窗;
天线,其能操作以电感耦合RF能量使其通过所述介电窗且进入所述腔室,从而在所述衬底支撑件和所述介电窗之间的腔室间隙中将处理气体激励成等离子体;以及
气体输送系统,其能操作以交替地供给包含蚀刻气体和沉积气体的处理气体至所述陶瓷喷头中的所述径向延伸的气道,使得环形稳压室中的所述蚀刻气体在200毫秒内更换成所述沉积气体或者所述环形稳压室中的所述沉积气体在200毫秒内更换成所述蚀刻气体,所述等离子体处理装置能操作以便以至少10μm/分钟的速率在所述半导体衬底上的硅材料中蚀刻开口。
8.如权利要求7所述的处理腔室,其中所述蚀刻气体选自SF6、NF3和CF4,并且所述沉积气体选自C4F8、C4F6、CH2F2、CHF3、CH3F。
9.一种利用如权利要求7所述的处理腔室来处理半导体衬底的方法,所述方法包括:
(a)将所述半导体衬底支撑在所述处理腔室中的所述衬底支撑件上;
(b)中断所述沉积气体的流动并且将所述蚀刻气体供给到所述环形稳压室,使得所述蚀刻气体通过所述陶瓷喷头中的所述气孔而流入所述腔室间隙中;
(c)将所述腔室间隙中的所述蚀刻气体激励成第一等离子体并且用所述第一等离子体在所述半导体衬底中等离子体蚀刻开口;
(d)中断所述蚀刻气体的流动并且将所述沉积气体供给到所述环形稳压室,使得所述沉积气体通过所述陶瓷喷头中的所述气孔流入所述腔室间隙中;
(e)将所述腔室间隙中的所述沉积气体激励成第二等离子体并且用所述第二等离子体将聚合物沉积到所述开口中;
(f)以不大于1.8秒的总循环时间重复步骤(b)-(e)。
10.如权利要求9所述的方法,其中所述半导体衬底为硅晶片,在步骤(b)中所述蚀刻气体在大约500毫秒的时间段内替换所述腔室间隙中的所述沉积气体,并且在步骤(d)中所述沉积气体在大约500毫秒的时间段内替换所述腔室间隙中的所述蚀刻气体。
11.如权利要求9所述的方法,其中在步骤(b)-(e)期间所述稳压室中的压强至少为1托。
12.如权利要求9所述的方法,其中供给所述蚀刻气体的总时间为1.3秒或更少,并且供给所述沉积气体的总时间为0.7秒或更少。
13.如权利要求9所述的方法,其中在所述蚀刻气体供给期间所述腔室间隙中的压强为至少150毫托,并且在所述沉积气体供给期间所述腔室间隙中的压强在150毫托以下。
14.如权利要求9所述的方法,其中所述蚀刻气体以至少500sccm的流率被供给到所述稳压室,并且所述沉积气体以500sccm以下的流率被供给到所述稳压室。
15.如权利要求9所述的方法,其中所述半导体衬底和所述陶瓷喷头的所述下板的平面型的下表面之间的所述腔室间隙为至少4英寸。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/118,899 US8562785B2 (en) | 2011-05-31 | 2011-05-31 | Gas distribution showerhead for inductively coupled plasma etch reactor |
US13/118,899 | 2011-05-31 | ||
PCT/US2012/038091 WO2012166364A1 (en) | 2011-05-31 | 2012-05-16 | Gas distribution showerhead for inductively coupled plasma etch reactor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103597113A CN103597113A (zh) | 2014-02-19 |
CN103597113B true CN103597113B (zh) | 2016-08-17 |
Family
ID=47259746
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201280026355.7A Active CN103597113B (zh) | 2011-05-31 | 2012-05-16 | 用于电感耦合等离子体蚀刻反应器的气体分配喷头 |
Country Status (6)
Country | Link |
---|---|
US (3) | US8562785B2 (zh) |
JP (1) | JP5891300B2 (zh) |
KR (1) | KR101985031B1 (zh) |
CN (1) | CN103597113B (zh) |
TW (3) | TWI559392B (zh) |
WO (1) | WO2012166364A1 (zh) |
Families Citing this family (193)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8673080B2 (en) | 2007-10-16 | 2014-03-18 | Novellus Systems, Inc. | Temperature controlled showerhead |
US9324576B2 (en) | 2010-05-27 | 2016-04-26 | Applied Materials, Inc. | Selective etch for silicon films |
US10283321B2 (en) | 2011-01-18 | 2019-05-07 | Applied Materials, Inc. | Semiconductor processing system and methods using capacitively coupled plasma |
US9441296B2 (en) | 2011-03-04 | 2016-09-13 | Novellus Systems, Inc. | Hybrid ceramic showerhead |
US8999856B2 (en) | 2011-03-14 | 2015-04-07 | Applied Materials, Inc. | Methods for etch of sin films |
US9064815B2 (en) | 2011-03-14 | 2015-06-23 | Applied Materials, Inc. | Methods for etch of metal and metal-oxide films |
US8562785B2 (en) * | 2011-05-31 | 2013-10-22 | Lam Research Corporation | Gas distribution showerhead for inductively coupled plasma etch reactor |
US9245717B2 (en) | 2011-05-31 | 2016-01-26 | Lam Research Corporation | Gas distribution system for ceramic showerhead of plasma etch reactor |
US8940642B2 (en) * | 2011-07-20 | 2015-01-27 | Applied Materials, Inc. | Method of multiple patterning of a low-K dielectric film |
US8771536B2 (en) | 2011-08-01 | 2014-07-08 | Applied Materials, Inc. | Dry-etch for silicon-and-carbon-containing films |
US8927390B2 (en) | 2011-09-26 | 2015-01-06 | Applied Materials, Inc. | Intrench profile |
US8808563B2 (en) | 2011-10-07 | 2014-08-19 | Applied Materials, Inc. | Selective etch of silicon by way of metastable hydrogen termination |
US8900364B2 (en) * | 2011-11-29 | 2014-12-02 | Intermolecular, Inc. | High productivity vapor processing system |
US9394615B2 (en) * | 2012-04-27 | 2016-07-19 | Applied Materials, Inc. | Plasma resistant ceramic coated conductive article |
US9267739B2 (en) | 2012-07-18 | 2016-02-23 | Applied Materials, Inc. | Pedestal with multi-zone temperature control and multiple purge capabilities |
US9373517B2 (en) | 2012-08-02 | 2016-06-21 | Applied Materials, Inc. | Semiconductor processing with DC assisted RF power for improved control |
US9034770B2 (en) | 2012-09-17 | 2015-05-19 | Applied Materials, Inc. | Differential silicon oxide etch |
US9023734B2 (en) | 2012-09-18 | 2015-05-05 | Applied Materials, Inc. | Radical-component oxide etch |
US9390937B2 (en) | 2012-09-20 | 2016-07-12 | Applied Materials, Inc. | Silicon-carbon-nitride selective etch |
US9132436B2 (en) | 2012-09-21 | 2015-09-15 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
US8969212B2 (en) * | 2012-11-20 | 2015-03-03 | Applied Materials, Inc. | Dry-etch selectivity |
US8980763B2 (en) | 2012-11-30 | 2015-03-17 | Applied Materials, Inc. | Dry-etch for selective tungsten removal |
US9111877B2 (en) | 2012-12-18 | 2015-08-18 | Applied Materials, Inc. | Non-local plasma oxide etch |
US8921234B2 (en) | 2012-12-21 | 2014-12-30 | Applied Materials, Inc. | Selective titanium nitride etching |
US10316409B2 (en) | 2012-12-21 | 2019-06-11 | Novellus Systems, Inc. | Radical source design for remote plasma atomic layer deposition |
US8970114B2 (en) * | 2013-02-01 | 2015-03-03 | Lam Research Corporation | Temperature controlled window of a plasma processing chamber component |
US10256079B2 (en) | 2013-02-08 | 2019-04-09 | Applied Materials, Inc. | Semiconductor processing systems having multiple plasma configurations |
US9362130B2 (en) | 2013-03-01 | 2016-06-07 | Applied Materials, Inc. | Enhanced etching processes using remote plasma sources |
US9040422B2 (en) | 2013-03-05 | 2015-05-26 | Applied Materials, Inc. | Selective titanium nitride removal |
US8801952B1 (en) | 2013-03-07 | 2014-08-12 | Applied Materials, Inc. | Conformal oxide dry etch |
US10170282B2 (en) | 2013-03-08 | 2019-01-01 | Applied Materials, Inc. | Insulated semiconductor faceplate designs |
US20140262031A1 (en) * | 2013-03-12 | 2014-09-18 | Sergey G. BELOSTOTSKIY | Multi-mode etch chamber source assembly |
US20140271097A1 (en) | 2013-03-15 | 2014-09-18 | Applied Materials, Inc. | Processing systems and methods for halide scavenging |
US8895449B1 (en) | 2013-05-16 | 2014-11-25 | Applied Materials, Inc. | Delicate dry clean |
US9114438B2 (en) | 2013-05-21 | 2015-08-25 | Applied Materials, Inc. | Copper residue chamber clean |
US9493879B2 (en) | 2013-07-12 | 2016-11-15 | Applied Materials, Inc. | Selective sputtering for pattern transfer |
US9583369B2 (en) | 2013-07-20 | 2017-02-28 | Applied Materials, Inc. | Ion assisted deposition for rare-earth oxide based coatings on lids and nozzles |
US9773648B2 (en) | 2013-08-30 | 2017-09-26 | Applied Materials, Inc. | Dual discharge modes operation for remote plasma |
US8956980B1 (en) | 2013-09-16 | 2015-02-17 | Applied Materials, Inc. | Selective etch of silicon nitride |
US8951429B1 (en) | 2013-10-29 | 2015-02-10 | Applied Materials, Inc. | Tungsten oxide processing |
US9576809B2 (en) | 2013-11-04 | 2017-02-21 | Applied Materials, Inc. | Etch suppression with germanium |
US9236265B2 (en) | 2013-11-04 | 2016-01-12 | Applied Materials, Inc. | Silicon germanium processing |
US9520303B2 (en) | 2013-11-12 | 2016-12-13 | Applied Materials, Inc. | Aluminum selective etch |
US9245762B2 (en) | 2013-12-02 | 2016-01-26 | Applied Materials, Inc. | Procedure for etch rate consistency |
US9117855B2 (en) | 2013-12-04 | 2015-08-25 | Applied Materials, Inc. | Polarity control for remote plasma |
US9725799B2 (en) | 2013-12-06 | 2017-08-08 | Applied Materials, Inc. | Ion beam sputtering with ion assisted deposition for coatings on chamber components |
US9287095B2 (en) | 2013-12-17 | 2016-03-15 | Applied Materials, Inc. | Semiconductor system assemblies and methods of operation |
US9263278B2 (en) | 2013-12-17 | 2016-02-16 | Applied Materials, Inc. | Dopant etch selectivity control |
US9190293B2 (en) | 2013-12-18 | 2015-11-17 | Applied Materials, Inc. | Even tungsten etch for high aspect ratio trenches |
US9657397B2 (en) * | 2013-12-31 | 2017-05-23 | Lam Research Ag | Apparatus for treating surfaces of wafer-shaped articles |
US9597701B2 (en) * | 2013-12-31 | 2017-03-21 | Lam Research Ag | Apparatus for treating surfaces of wafer-shaped articles |
US9287134B2 (en) | 2014-01-17 | 2016-03-15 | Applied Materials, Inc. | Titanium oxide etch |
US9396989B2 (en) | 2014-01-27 | 2016-07-19 | Applied Materials, Inc. | Air gaps between copper lines |
US9293568B2 (en) | 2014-01-27 | 2016-03-22 | Applied Materials, Inc. | Method of fin patterning |
US9385028B2 (en) | 2014-02-03 | 2016-07-05 | Applied Materials, Inc. | Air gap process |
US9499898B2 (en) | 2014-03-03 | 2016-11-22 | Applied Materials, Inc. | Layered thin film heater and method of fabrication |
US9299575B2 (en) | 2014-03-17 | 2016-03-29 | Applied Materials, Inc. | Gas-phase tungsten etch |
US9299537B2 (en) | 2014-03-20 | 2016-03-29 | Applied Materials, Inc. | Radial waveguide systems and methods for post-match control of microwaves |
US9299538B2 (en) | 2014-03-20 | 2016-03-29 | Applied Materials, Inc. | Radial waveguide systems and methods for post-match control of microwaves |
US9136273B1 (en) | 2014-03-21 | 2015-09-15 | Applied Materials, Inc. | Flash gate air gap |
US9903020B2 (en) | 2014-03-31 | 2018-02-27 | Applied Materials, Inc. | Generation of compact alumina passivation layers on aluminum plasma equipment components |
US9580360B2 (en) * | 2014-04-07 | 2017-02-28 | Lam Research Corporation | Monolithic ceramic component of gas delivery system and method of making and use thereof |
US9269590B2 (en) | 2014-04-07 | 2016-02-23 | Applied Materials, Inc. | Spacer formation |
US10741365B2 (en) * | 2014-05-05 | 2020-08-11 | Lam Research Corporation | Low volume showerhead with porous baffle |
US9309598B2 (en) | 2014-05-28 | 2016-04-12 | Applied Materials, Inc. | Oxide and metal removal |
US9847289B2 (en) | 2014-05-30 | 2017-12-19 | Applied Materials, Inc. | Protective via cap for improved interconnect performance |
US9378969B2 (en) | 2014-06-19 | 2016-06-28 | Applied Materials, Inc. | Low temperature gas-phase carbon removal |
US9406523B2 (en) | 2014-06-19 | 2016-08-02 | Applied Materials, Inc. | Highly selective doped oxide removal method |
US10249511B2 (en) | 2014-06-27 | 2019-04-02 | Lam Research Corporation | Ceramic showerhead including central gas injector for tunable convective-diffusive gas flow in semiconductor substrate processing apparatus |
US9425058B2 (en) | 2014-07-24 | 2016-08-23 | Applied Materials, Inc. | Simplified litho-etch-litho-etch process |
US9159606B1 (en) | 2014-07-31 | 2015-10-13 | Applied Materials, Inc. | Metal air gap |
US9378978B2 (en) | 2014-07-31 | 2016-06-28 | Applied Materials, Inc. | Integrated oxide recess and floating gate fin trimming |
US9496167B2 (en) | 2014-07-31 | 2016-11-15 | Applied Materials, Inc. | Integrated bit-line airgap formation and gate stack post clean |
US9165786B1 (en) | 2014-08-05 | 2015-10-20 | Applied Materials, Inc. | Integrated oxide and nitride recess for better channel contact in 3D architectures |
US9659753B2 (en) | 2014-08-07 | 2017-05-23 | Applied Materials, Inc. | Grooved insulator to reduce leakage current |
US9553102B2 (en) | 2014-08-19 | 2017-01-24 | Applied Materials, Inc. | Tungsten separation |
US9355856B2 (en) | 2014-09-12 | 2016-05-31 | Applied Materials, Inc. | V trench dry etch |
US9368364B2 (en) | 2014-09-24 | 2016-06-14 | Applied Materials, Inc. | Silicon etch process with tunable selectivity to SiO2 and other materials |
US9355862B2 (en) | 2014-09-24 | 2016-05-31 | Applied Materials, Inc. | Fluorine-based hardmask removal |
US9613822B2 (en) | 2014-09-25 | 2017-04-04 | Applied Materials, Inc. | Oxide etch selectivity enhancement |
US9355922B2 (en) | 2014-10-14 | 2016-05-31 | Applied Materials, Inc. | Systems and methods for internal surface conditioning in plasma processing equipment |
US9966240B2 (en) | 2014-10-14 | 2018-05-08 | Applied Materials, Inc. | Systems and methods for internal surface conditioning assessment in plasma processing equipment |
US9905400B2 (en) | 2014-10-17 | 2018-02-27 | Applied Materials, Inc. | Plasma reactor with non-power-absorbing dielectric gas shower plate assembly |
US11637002B2 (en) | 2014-11-26 | 2023-04-25 | Applied Materials, Inc. | Methods and systems to enhance process uniformity |
US9299583B1 (en) | 2014-12-05 | 2016-03-29 | Applied Materials, Inc. | Aluminum oxide selective etch |
US10224210B2 (en) | 2014-12-09 | 2019-03-05 | Applied Materials, Inc. | Plasma processing system with direct outlet toroidal plasma source |
US10573496B2 (en) | 2014-12-09 | 2020-02-25 | Applied Materials, Inc. | Direct outlet toroidal plasma source |
US9502258B2 (en) | 2014-12-23 | 2016-11-22 | Applied Materials, Inc. | Anisotropic gap etch |
US9343272B1 (en) | 2015-01-08 | 2016-05-17 | Applied Materials, Inc. | Self-aligned process |
US11257693B2 (en) | 2015-01-09 | 2022-02-22 | Applied Materials, Inc. | Methods and systems to improve pedestal temperature control |
US9373522B1 (en) | 2015-01-22 | 2016-06-21 | Applied Mateials, Inc. | Titanium nitride removal |
US9449846B2 (en) | 2015-01-28 | 2016-09-20 | Applied Materials, Inc. | Vertical gate separation |
US20160225652A1 (en) | 2015-02-03 | 2016-08-04 | Applied Materials, Inc. | Low temperature chuck for plasma processing systems |
US9728437B2 (en) | 2015-02-03 | 2017-08-08 | Applied Materials, Inc. | High temperature chuck for plasma processing systems |
US10167552B2 (en) * | 2015-02-05 | 2019-01-01 | Lam Research Ag | Spin chuck with rotating gas showerhead |
CN105986245A (zh) * | 2015-02-16 | 2016-10-05 | 中微半导体设备(上海)有限公司 | 改善mocvd反应工艺的部件及改善方法 |
US9881805B2 (en) | 2015-03-02 | 2018-01-30 | Applied Materials, Inc. | Silicon selective removal |
US9570289B2 (en) * | 2015-03-06 | 2017-02-14 | Lam Research Corporation | Method and apparatus to minimize seam effect during TEOS oxide film deposition |
US10378107B2 (en) | 2015-05-22 | 2019-08-13 | Lam Research Corporation | Low volume showerhead with faceplate holes for improved flow uniformity |
US10023959B2 (en) | 2015-05-26 | 2018-07-17 | Lam Research Corporation | Anti-transient showerhead |
US9691645B2 (en) | 2015-08-06 | 2017-06-27 | Applied Materials, Inc. | Bolted wafer chuck thermal management systems and methods for wafer processing systems |
US9741593B2 (en) | 2015-08-06 | 2017-08-22 | Applied Materials, Inc. | Thermal management systems and methods for wafer processing systems |
US9349605B1 (en) | 2015-08-07 | 2016-05-24 | Applied Materials, Inc. | Oxide etch selectivity systems and methods |
US10504700B2 (en) | 2015-08-27 | 2019-12-10 | Applied Materials, Inc. | Plasma etching systems and methods with secondary plasma injection |
JP6868616B2 (ja) * | 2015-10-08 | 2021-05-12 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | 背面でのプラズマ点火が低減されたシャワーヘッド |
WO2017083309A1 (en) * | 2015-11-10 | 2017-05-18 | Imagine Tf, Llc | Microfluidic laminar flow nozzle apparatuses |
US10522429B2 (en) * | 2015-11-30 | 2019-12-31 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of manufacturing semiconductor device |
TWI677593B (zh) * | 2016-04-01 | 2019-11-21 | 美商應用材料股份有限公司 | 用於提供均勻流動的氣體的設備及方法 |
US10504754B2 (en) | 2016-05-19 | 2019-12-10 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US10522371B2 (en) | 2016-05-19 | 2019-12-31 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US9865484B1 (en) | 2016-06-29 | 2018-01-09 | Applied Materials, Inc. | Selective etch using material modification and RF pulsing |
US10062575B2 (en) | 2016-09-09 | 2018-08-28 | Applied Materials, Inc. | Poly directional etch by oxidation |
US10629473B2 (en) | 2016-09-09 | 2020-04-21 | Applied Materials, Inc. | Footing removal for nitride spacer |
US10062585B2 (en) | 2016-10-04 | 2018-08-28 | Applied Materials, Inc. | Oxygen compatible plasma source |
US9721789B1 (en) | 2016-10-04 | 2017-08-01 | Applied Materials, Inc. | Saving ion-damaged spacers |
US10546729B2 (en) | 2016-10-04 | 2020-01-28 | Applied Materials, Inc. | Dual-channel showerhead with improved profile |
US9934942B1 (en) | 2016-10-04 | 2018-04-03 | Applied Materials, Inc. | Chamber with flow-through source |
US10062579B2 (en) | 2016-10-07 | 2018-08-28 | Applied Materials, Inc. | Selective SiN lateral recess |
US9947549B1 (en) | 2016-10-10 | 2018-04-17 | Applied Materials, Inc. | Cobalt-containing material removal |
CN107993914B (zh) * | 2016-10-26 | 2019-09-06 | 中微半导体设备(上海)股份有限公司 | 气体流量调节装置及其调节方法 |
US10403476B2 (en) | 2016-11-09 | 2019-09-03 | Lam Research Corporation | Active showerhead |
US9768034B1 (en) | 2016-11-11 | 2017-09-19 | Applied Materials, Inc. | Removal methods for high aspect ratio structures |
US10163696B2 (en) | 2016-11-11 | 2018-12-25 | Applied Materials, Inc. | Selective cobalt removal for bottom up gapfill |
US10026621B2 (en) | 2016-11-14 | 2018-07-17 | Applied Materials, Inc. | SiN spacer profile patterning |
US10242908B2 (en) | 2016-11-14 | 2019-03-26 | Applied Materials, Inc. | Airgap formation with damage-free copper |
US10604841B2 (en) | 2016-12-14 | 2020-03-31 | Lam Research Corporation | Integrated showerhead with thermal control for delivering radical and precursor gas to a downstream chamber to enable remote plasma film deposition |
US10566206B2 (en) | 2016-12-27 | 2020-02-18 | Applied Materials, Inc. | Systems and methods for anisotropic material breakthrough |
US10431429B2 (en) | 2017-02-03 | 2019-10-01 | Applied Materials, Inc. | Systems and methods for radial and azimuthal control of plasma uniformity |
US10403507B2 (en) | 2017-02-03 | 2019-09-03 | Applied Materials, Inc. | Shaped etch profile with oxidation |
US10043684B1 (en) | 2017-02-06 | 2018-08-07 | Applied Materials, Inc. | Self-limiting atomic thermal etching systems and methods |
US10319739B2 (en) | 2017-02-08 | 2019-06-11 | Applied Materials, Inc. | Accommodating imperfectly aligned memory holes |
US10943834B2 (en) | 2017-03-13 | 2021-03-09 | Applied Materials, Inc. | Replacement contact process |
US10319649B2 (en) | 2017-04-11 | 2019-06-11 | Applied Materials, Inc. | Optical emission spectroscopy (OES) for remote plasma monitoring |
US11276590B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Multi-zone semiconductor substrate supports |
US11276559B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Semiconductor processing chamber for multiple precursor flow |
US10497579B2 (en) | 2017-05-31 | 2019-12-03 | Applied Materials, Inc. | Water-free etching methods |
US10049891B1 (en) | 2017-05-31 | 2018-08-14 | Applied Materials, Inc. | Selective in situ cobalt residue removal |
US10920320B2 (en) | 2017-06-16 | 2021-02-16 | Applied Materials, Inc. | Plasma health determination in semiconductor substrate processing reactors |
US10541246B2 (en) | 2017-06-26 | 2020-01-21 | Applied Materials, Inc. | 3D flash memory cells which discourage cross-cell electrical tunneling |
US10727080B2 (en) | 2017-07-07 | 2020-07-28 | Applied Materials, Inc. | Tantalum-containing material removal |
US10541184B2 (en) | 2017-07-11 | 2020-01-21 | Applied Materials, Inc. | Optical emission spectroscopic techniques for monitoring etching |
US10354889B2 (en) | 2017-07-17 | 2019-07-16 | Applied Materials, Inc. | Non-halogen etching of silicon-containing materials |
US10170336B1 (en) | 2017-08-04 | 2019-01-01 | Applied Materials, Inc. | Methods for anisotropic control of selective silicon removal |
US10950454B2 (en) * | 2017-08-04 | 2021-03-16 | Lam Research Corporation | Integrated atomic layer passivation in TCP etch chamber and in-situ etch-ALP method |
US10043674B1 (en) | 2017-08-04 | 2018-08-07 | Applied Materials, Inc. | Germanium etching systems and methods |
US10297458B2 (en) | 2017-08-07 | 2019-05-21 | Applied Materials, Inc. | Process window widening using coated parts in plasma etch processes |
US10851457B2 (en) | 2017-08-31 | 2020-12-01 | Lam Research Corporation | PECVD deposition system for deposition on selective side of the substrate |
US10283324B1 (en) | 2017-10-24 | 2019-05-07 | Applied Materials, Inc. | Oxygen treatment for nitride etching |
US10128086B1 (en) | 2017-10-24 | 2018-11-13 | Applied Materials, Inc. | Silicon pretreatment for nitride removal |
US10256112B1 (en) | 2017-12-08 | 2019-04-09 | Applied Materials, Inc. | Selective tungsten removal |
WO2019113478A1 (en) | 2017-12-08 | 2019-06-13 | Lam Research Corporation | Integrated showerhead with improved hole pattern for delivering radical and precursor gas to a downstream chamber to enable remote plasma film deposition |
US10903054B2 (en) | 2017-12-19 | 2021-01-26 | Applied Materials, Inc. | Multi-zone gas distribution systems and methods |
US11328909B2 (en) | 2017-12-22 | 2022-05-10 | Applied Materials, Inc. | Chamber conditioning and removal processes |
US10854426B2 (en) | 2018-01-08 | 2020-12-01 | Applied Materials, Inc. | Metal recess for semiconductor structures |
KR102560283B1 (ko) * | 2018-01-24 | 2023-07-26 | 삼성전자주식회사 | 샤워 헤드를 설계하고 제조하는 장치 및 방법 |
US10679870B2 (en) | 2018-02-15 | 2020-06-09 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus |
US10964512B2 (en) | 2018-02-15 | 2021-03-30 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus and methods |
TWI716818B (zh) | 2018-02-28 | 2021-01-21 | 美商應用材料股份有限公司 | 形成氣隙的系統及方法 |
US10593560B2 (en) | 2018-03-01 | 2020-03-17 | Applied Materials, Inc. | Magnetic induction plasma source for semiconductor processes and equipment |
US10319600B1 (en) | 2018-03-12 | 2019-06-11 | Applied Materials, Inc. | Thermal silicon etch |
US10497573B2 (en) | 2018-03-13 | 2019-12-03 | Applied Materials, Inc. | Selective atomic layer etching of semiconductor materials |
US10573527B2 (en) | 2018-04-06 | 2020-02-25 | Applied Materials, Inc. | Gas-phase selective etching systems and methods |
SG11202009444QA (en) * | 2018-04-10 | 2020-10-29 | Applied Materials Inc | Resolving spontaneous arcing during thick film deposition of high temperature amorphous carbon deposition |
US10490406B2 (en) | 2018-04-10 | 2019-11-26 | Appled Materials, Inc. | Systems and methods for material breakthrough |
US10699879B2 (en) | 2018-04-17 | 2020-06-30 | Applied Materials, Inc. | Two piece electrode assembly with gap for plasma control |
US10886137B2 (en) | 2018-04-30 | 2021-01-05 | Applied Materials, Inc. | Selective nitride removal |
US10872778B2 (en) | 2018-07-06 | 2020-12-22 | Applied Materials, Inc. | Systems and methods utilizing solid-phase etchants |
US10755941B2 (en) | 2018-07-06 | 2020-08-25 | Applied Materials, Inc. | Self-limiting selective etching systems and methods |
US10672642B2 (en) | 2018-07-24 | 2020-06-02 | Applied Materials, Inc. | Systems and methods for pedestal configuration |
US10889894B2 (en) * | 2018-08-06 | 2021-01-12 | Applied Materials, Inc. | Faceplate with embedded heater |
US11600517B2 (en) * | 2018-08-17 | 2023-03-07 | Taiwan Semiconductor Manufacturing Co., Ltd. | Screwless semiconductor processing chambers |
US10892198B2 (en) | 2018-09-14 | 2021-01-12 | Applied Materials, Inc. | Systems and methods for improved performance in semiconductor processing |
US11049755B2 (en) | 2018-09-14 | 2021-06-29 | Applied Materials, Inc. | Semiconductor substrate supports with embedded RF shield |
US11062887B2 (en) | 2018-09-17 | 2021-07-13 | Applied Materials, Inc. | High temperature RF heater pedestals |
US11417534B2 (en) | 2018-09-21 | 2022-08-16 | Applied Materials, Inc. | Selective material removal |
US11682560B2 (en) | 2018-10-11 | 2023-06-20 | Applied Materials, Inc. | Systems and methods for hafnium-containing film removal |
US11121002B2 (en) | 2018-10-24 | 2021-09-14 | Applied Materials, Inc. | Systems and methods for etching metals and metal derivatives |
US11437242B2 (en) | 2018-11-27 | 2022-09-06 | Applied Materials, Inc. | Selective removal of silicon-containing materials |
US11721527B2 (en) | 2019-01-07 | 2023-08-08 | Applied Materials, Inc. | Processing chamber mixing systems |
US10920319B2 (en) | 2019-01-11 | 2021-02-16 | Applied Materials, Inc. | Ceramic showerheads with conductive electrodes |
US20200258718A1 (en) * | 2019-02-07 | 2020-08-13 | Mattson Technology, Inc. | Gas Supply With Angled Injectors In Plasma Processing Apparatus |
US20210032753A1 (en) * | 2019-07-30 | 2021-02-04 | Applied Materials, Inc. | Methods and apparatus for dual channel showerheads |
KR102505474B1 (ko) | 2019-08-16 | 2023-03-03 | 램 리써치 코포레이션 | 웨이퍼 내에서 차동 보우를 보상하기 위한 공간적으로 튜닝 가능한 증착 |
TWI731463B (zh) * | 2019-11-06 | 2021-06-21 | 聚昌科技股份有限公司 | 側向擾流式高均勻度感應耦合電漿蝕刻機之製造方法及其結構 |
WO2021154673A1 (en) * | 2020-01-28 | 2021-08-05 | Lam Research Corporation | Segmented gas distribution plate for high-power, high-pressure processes |
CN111599717B (zh) * | 2020-05-09 | 2024-03-26 | 北京北方华创微电子装备有限公司 | 一种半导体反应腔室及原子层等离子体刻蚀机 |
CN111564399B (zh) * | 2020-05-25 | 2023-12-22 | 北京北方华创微电子装备有限公司 | 半导体工艺设备中的匀流机构及半导体工艺设备 |
CN116235275A (zh) * | 2020-09-21 | 2023-06-06 | 朗姆研究公司 | 用于浮动变压器耦合等离子体室气体板的承载环 |
USD967351S1 (en) | 2020-10-20 | 2022-10-18 | Applied Materials, Inc. | Showerhead reflector |
USD969980S1 (en) | 2020-10-20 | 2022-11-15 | Applied Materials, Inc. | Deposition chamber showerhead |
KR20240141826A (ko) * | 2022-12-16 | 2024-09-27 | 램 리써치 코포레이션 | 기판 프로세싱 도구용 샤워헤드 |
CN116288269B (zh) * | 2023-02-20 | 2024-09-06 | 拓荆科技(上海)有限公司 | 一种薄膜沉积设备和一种薄膜沉积方法 |
WO2024206029A1 (en) * | 2023-03-28 | 2024-10-03 | Lam Research Corporation | Systems and methods for controlling a supply of multiple gases to a plasma chamber |
Family Cites Families (84)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4241045C1 (de) | 1992-12-05 | 1994-05-26 | Bosch Gmbh Robert | Verfahren zum anisotropen Ätzen von Silicium |
US5680013A (en) * | 1994-03-15 | 1997-10-21 | Applied Materials, Inc. | Ceramic protection for heated metal surfaces of plasma processing chamber exposed to chemically aggressive gaseous environment therein and method of protecting such heated metal surfaces |
US5597439A (en) * | 1994-10-26 | 1997-01-28 | Applied Materials, Inc. | Process gas inlet and distribution passages |
JP2975885B2 (ja) * | 1996-02-01 | 1999-11-10 | キヤノン販売株式会社 | ガス分散器及びプラズマ処理装置 |
US5895530A (en) * | 1996-02-26 | 1999-04-20 | Applied Materials, Inc. | Method and apparatus for directing fluid through a semiconductor processing chamber |
US6440221B2 (en) * | 1996-05-13 | 2002-08-27 | Applied Materials, Inc. | Process chamber having improved temperature control |
JP2000514136A (ja) | 1996-06-28 | 2000-10-24 | ラム リサーチ コーポレイション | 高密度プラズマ化学蒸着装置および方法 |
US6013155A (en) | 1996-06-28 | 2000-01-11 | Lam Research Corporation | Gas injection system for plasma processing |
US5993594A (en) * | 1996-09-30 | 1999-11-30 | Lam Research Corporation | Particle controlling method and apparatus for a plasma processing chamber |
JPH10134997A (ja) * | 1996-10-24 | 1998-05-22 | Samsung Electron Co Ltd | 2次電位による放電を除去したプラズマ処理装置 |
US6152070A (en) * | 1996-11-18 | 2000-11-28 | Applied Materials, Inc. | Tandem process chamber |
EP0854210B1 (en) * | 1996-12-19 | 2002-03-27 | Toshiba Ceramics Co., Ltd. | Vapor deposition apparatus for forming thin film |
US6286451B1 (en) * | 1997-05-29 | 2001-09-11 | Applied Materials, Inc. | Dome: shape and temperature controlled surfaces |
US5968276A (en) * | 1997-07-11 | 1999-10-19 | Applied Materials, Inc. | Heat exchange passage connection |
US6110556A (en) * | 1997-10-17 | 2000-08-29 | Applied Materials, Inc. | Lid assembly for a process chamber employing asymmetric flow geometries |
US6106625A (en) * | 1997-12-02 | 2000-08-22 | Applied Materials, Inc. | Reactor useful for chemical vapor deposition of titanium nitride |
US6129808A (en) * | 1998-03-31 | 2000-10-10 | Lam Research Corporation | Low contamination high density plasma etch chambers and methods for making the same |
US6230651B1 (en) | 1998-12-30 | 2001-05-15 | Lam Research Corporation | Gas injection system for plasma processing |
US7515264B2 (en) * | 1999-06-15 | 2009-04-07 | Tokyo Electron Limited | Particle-measuring system and particle-measuring method |
US6415736B1 (en) * | 1999-06-30 | 2002-07-09 | Lam Research Corporation | Gas distribution apparatus for semiconductor processing |
US6245192B1 (en) * | 1999-06-30 | 2001-06-12 | Lam Research Corporation | Gas distribution apparatus for semiconductor processing |
JP3485505B2 (ja) * | 1999-09-17 | 2004-01-13 | 松下電器産業株式会社 | 処理装置 |
US6635117B1 (en) * | 2000-04-26 | 2003-10-21 | Axcelis Technologies, Inc. | Actively-cooled distribution plate for reducing reactive gas temperature in a plasma processing system |
AU2002211730A1 (en) | 2000-10-16 | 2002-04-29 | Tokyo Electron Limited | Plasma reactor with reduced reaction chamber |
US6417626B1 (en) * | 2001-03-01 | 2002-07-09 | Tokyo Electron Limited | Immersed inductively—coupled plasma source |
JP2002280357A (ja) | 2001-03-21 | 2002-09-27 | Sony Corp | プラズマエッチング装置およびエッチング方法 |
US6761796B2 (en) * | 2001-04-06 | 2004-07-13 | Axcelis Technologies, Inc. | Method and apparatus for micro-jet enabled, low-energy ion generation transport in plasma processing |
KR100400044B1 (ko) * | 2001-07-16 | 2003-09-29 | 삼성전자주식회사 | 간격 조절 장치를 가지는 웨이퍼 처리 장치의 샤워 헤드 |
JP4608827B2 (ja) * | 2001-08-15 | 2011-01-12 | ソニー株式会社 | プラズマ処理装置及びプラズマ処理方法 |
US20030070620A1 (en) | 2001-10-15 | 2003-04-17 | Cooperberg David J. | Tunable multi-zone gas injection system |
JP2009260377A (ja) | 2001-12-25 | 2009-11-05 | Tokyo Electron Ltd | 成膜方法及び処理装置 |
US6998014B2 (en) * | 2002-01-26 | 2006-02-14 | Applied Materials, Inc. | Apparatus and method for plasma assisted deposition |
TWI283899B (en) * | 2002-07-09 | 2007-07-11 | Applied Materials Inc | Capacitively coupled plasma reactor with magnetic plasma control |
JP3869778B2 (ja) * | 2002-09-11 | 2007-01-17 | エア・ウォーター株式会社 | 成膜装置 |
JP4260450B2 (ja) * | 2002-09-20 | 2009-04-30 | 東京エレクトロン株式会社 | 真空処理装置における静電チャックの製造方法 |
KR100862658B1 (ko) * | 2002-11-15 | 2008-10-10 | 삼성전자주식회사 | 반도체 처리 시스템의 가스 주입 장치 |
US7270713B2 (en) * | 2003-01-07 | 2007-09-18 | Applied Materials, Inc. | Tunable gas distribution plate assembly |
CN100418187C (zh) * | 2003-02-07 | 2008-09-10 | 东京毅力科创株式会社 | 等离子体处理装置、环形部件和等离子体处理方法 |
US7070833B2 (en) | 2003-03-05 | 2006-07-04 | Restek Corporation | Method for chemical vapor deposition of silicon on to substrates for use in corrosive and vacuum environments |
JP4394073B2 (ja) * | 2003-05-02 | 2010-01-06 | 東京エレクトロン株式会社 | 処理ガス導入機構およびプラズマ処理装置 |
US8580076B2 (en) * | 2003-05-22 | 2013-11-12 | Lam Research Corporation | Plasma apparatus, gas distribution assembly for a plasma apparatus and processes therewith |
US7771562B2 (en) * | 2003-11-19 | 2010-08-10 | Tokyo Electron Limited | Etch system with integrated inductive coupling |
KR100550342B1 (ko) * | 2004-02-24 | 2006-02-08 | 삼성전자주식회사 | 가스 산포 방법, 및 샤워 헤드, 및 샤워 헤드를 구비하는반도체 기판 가공 장치 |
US20050230350A1 (en) * | 2004-02-26 | 2005-10-20 | Applied Materials, Inc. | In-situ dry clean chamber for front end of line fabrication |
US20050223986A1 (en) * | 2004-04-12 | 2005-10-13 | Choi Soo Y | Gas diffusion shower head design for large area plasma enhanced chemical vapor deposition |
US7785672B2 (en) * | 2004-04-20 | 2010-08-31 | Applied Materials, Inc. | Method of controlling the film properties of PECVD-deposited thin films |
US20070066038A1 (en) | 2004-04-30 | 2007-03-22 | Lam Research Corporation | Fast gas switching plasma processing apparatus |
US7708859B2 (en) | 2004-04-30 | 2010-05-04 | Lam Research Corporation | Gas distribution system having fast gas switching capabilities |
US8074599B2 (en) * | 2004-05-12 | 2011-12-13 | Applied Materials, Inc. | Plasma uniformity control by gas diffuser curvature |
US20050284573A1 (en) * | 2004-06-24 | 2005-12-29 | Egley Fred D | Bare aluminum baffles for resist stripping chambers |
JP4845385B2 (ja) * | 2004-08-13 | 2011-12-28 | 東京エレクトロン株式会社 | 成膜装置 |
JP4701691B2 (ja) * | 2004-11-29 | 2011-06-15 | 東京エレクトロン株式会社 | エッチング方法 |
US7459100B2 (en) | 2004-12-22 | 2008-12-02 | Lam Research Corporation | Methods and apparatus for sequentially alternating among plasma processes in order to optimize a substrate |
US20060162661A1 (en) * | 2005-01-22 | 2006-07-27 | Applied Materials, Inc. | Mixing energized and non-energized gases for silicon nitride deposition |
JP2007123766A (ja) * | 2005-10-31 | 2007-05-17 | Tokyo Electron Ltd | エッチング方法、プラズマ処理装置及び記憶媒体 |
TWI409873B (zh) * | 2005-11-02 | 2013-09-21 | Panasonic Corp | 電漿處理裝置 |
US20070119371A1 (en) * | 2005-11-04 | 2007-05-31 | Paul Ma | Apparatus and process for plasma-enhanced atomic layer deposition |
US8088248B2 (en) | 2006-01-11 | 2012-01-03 | Lam Research Corporation | Gas switching section including valves having different flow coefficients for gas distribution system |
US20070227659A1 (en) * | 2006-03-31 | 2007-10-04 | Tokyo Electron Limited | Plasma etching apparatus |
US8440049B2 (en) * | 2006-05-03 | 2013-05-14 | Applied Materials, Inc. | Apparatus for etching high aspect ratio features |
US8475625B2 (en) * | 2006-05-03 | 2013-07-02 | Applied Materials, Inc. | Apparatus for etching high aspect ratio features |
KR20090106617A (ko) * | 2007-01-19 | 2009-10-09 | 어플라이드 머티어리얼스, 인코포레이티드 | 플라스마 함침 챔버 |
US8906249B2 (en) * | 2007-03-22 | 2014-12-09 | Panasonic Corporation | Plasma processing apparatus and plasma processing method |
JP5444599B2 (ja) * | 2007-09-28 | 2014-03-19 | 東京エレクトロン株式会社 | ガス供給装置及び成膜装置 |
WO2009086013A2 (en) * | 2007-12-21 | 2009-07-09 | Applied Materials, Inc. | Method and apparatus for controlling temperature of a substrate |
SG188141A1 (en) | 2008-02-08 | 2013-03-28 | Lam Res Corp | A protective coating for a plasma processing chamber part and a method of use |
US20090275206A1 (en) * | 2008-05-05 | 2009-11-05 | Applied Materials, Inc. | Plasma process employing multiple zone gas distribution for improved uniformity of critical dimension bias |
US8291857B2 (en) * | 2008-07-03 | 2012-10-23 | Applied Materials, Inc. | Apparatuses and methods for atomic layer deposition |
US8221582B2 (en) * | 2008-07-07 | 2012-07-17 | Lam Research Corporation | Clamped monolithic showerhead electrode |
US8272346B2 (en) * | 2009-04-10 | 2012-09-25 | Lam Research Corporation | Gasket with positioning feature for clamped monolithic showerhead electrode |
WO2011009002A2 (en) * | 2009-07-15 | 2011-01-20 | Applied Materials, Inc. | Flow control features of cvd chambers |
KR200478069Y1 (ko) * | 2009-09-10 | 2015-08-24 | 램 리써치 코포레이션 | 플라즈마 처리 장치의 교체가능한 상부 체임버 부품 |
SG169960A1 (en) * | 2009-09-18 | 2011-04-29 | Lam Res Corp | Clamped monolithic showerhead electrode |
US9034142B2 (en) * | 2009-12-18 | 2015-05-19 | Novellus Systems, Inc. | Temperature controlled showerhead for high temperature operations |
US20110206833A1 (en) * | 2010-02-22 | 2011-08-25 | Lam Research Corporation | Extension electrode of plasma bevel etching apparatus and method of manufacture thereof |
US9523155B2 (en) * | 2012-12-12 | 2016-12-20 | Novellus Systems, Inc. | Enhancement of electrolyte hydrodynamics for efficient mass transfer during electroplating |
US8573152B2 (en) * | 2010-09-03 | 2013-11-05 | Lam Research Corporation | Showerhead electrode |
US9245717B2 (en) * | 2011-05-31 | 2016-01-26 | Lam Research Corporation | Gas distribution system for ceramic showerhead of plasma etch reactor |
US8562785B2 (en) * | 2011-05-31 | 2013-10-22 | Lam Research Corporation | Gas distribution showerhead for inductively coupled plasma etch reactor |
US9394615B2 (en) * | 2012-04-27 | 2016-07-19 | Applied Materials, Inc. | Plasma resistant ceramic coated conductive article |
JP6157061B2 (ja) * | 2012-05-11 | 2017-07-05 | 東京エレクトロン株式会社 | ガス供給装置及び基板処理装置 |
US9132436B2 (en) * | 2012-09-21 | 2015-09-15 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
JP6007143B2 (ja) * | 2013-03-26 | 2016-10-12 | 東京エレクトロン株式会社 | シャワーヘッド、プラズマ処理装置、及びプラズマ処理方法 |
US20150348755A1 (en) * | 2014-05-29 | 2015-12-03 | Charm Engineering Co., Ltd. | Gas distribution apparatus and substrate processing apparatus including same |
-
2011
- 2011-05-31 US US13/118,899 patent/US8562785B2/en active Active
-
2012
- 2012-05-16 JP JP2014513542A patent/JP5891300B2/ja active Active
- 2012-05-16 CN CN201280026355.7A patent/CN103597113B/zh active Active
- 2012-05-16 WO PCT/US2012/038091 patent/WO2012166364A1/en active Application Filing
- 2012-05-16 KR KR1020137035183A patent/KR101985031B1/ko active IP Right Grant
- 2012-05-30 TW TW101119341A patent/TWI559392B/zh active
- 2012-05-31 TW TW105129730A patent/TWI612179B/zh active
- 2012-05-31 TW TW101119590A patent/TWI563121B/zh active
-
2013
- 2013-09-19 US US14/031,840 patent/US9099398B2/en active Active
-
2015
- 2015-07-16 US US14/800,850 patent/US9934979B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US20140065827A1 (en) | 2014-03-06 |
US9934979B2 (en) | 2018-04-03 |
TWI612179B (zh) | 2018-01-21 |
TW201250831A (en) | 2012-12-16 |
US20120309204A1 (en) | 2012-12-06 |
JP5891300B2 (ja) | 2016-03-22 |
CN103597113A (zh) | 2014-02-19 |
KR101985031B1 (ko) | 2019-05-31 |
TWI559392B (zh) | 2016-11-21 |
KR20140039010A (ko) | 2014-03-31 |
JP2014523635A (ja) | 2014-09-11 |
US20150318147A1 (en) | 2015-11-05 |
US8562785B2 (en) | 2013-10-22 |
US9099398B2 (en) | 2015-08-04 |
TW201641741A (zh) | 2016-12-01 |
TWI563121B (en) | 2016-12-21 |
TW201300570A (zh) | 2013-01-01 |
WO2012166364A1 (en) | 2012-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103597113B (zh) | 用于电感耦合等离子体蚀刻反应器的气体分配喷头 | |
US10366865B2 (en) | Gas distribution system for ceramic showerhead of plasma etch reactor | |
US10541113B2 (en) | Chamber with flow-through source | |
CN107895683B (zh) | 具有改良轮廓的双通道喷淋头 | |
US10354843B2 (en) | Chemical control features in wafer process equipment | |
US9287095B2 (en) | Semiconductor system assemblies and methods of operation | |
US9011631B2 (en) | Rapid and uniform gas switching for a plasma etch process | |
KR100774228B1 (ko) | 동적 가스 분배 제어를 갖는 플라즈마 처리 시스템 | |
CN107895700A (zh) | 氧气相容等离子体源 | |
US20150170943A1 (en) | Semiconductor system assemblies and methods of operation | |
CN104981895A (zh) | 具有多个等离子体配置的半导体处理系统 | |
KR20140134293A (ko) | 고속 가스 스위칭을 위해서 유용한 플라즈마 에칭 챔버용 챔버 필러 키트 | |
CN111886670A (zh) | 用于半导体处理及设备的磁感应等离子体源 | |
US20210032753A1 (en) | Methods and apparatus for dual channel showerheads |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |