CN103594506A - 半导体器件 - Google Patents

半导体器件 Download PDF

Info

Publication number
CN103594506A
CN103594506A CN201210293234.0A CN201210293234A CN103594506A CN 103594506 A CN103594506 A CN 103594506A CN 201210293234 A CN201210293234 A CN 201210293234A CN 103594506 A CN103594506 A CN 103594506A
Authority
CN
China
Prior art keywords
layer
semiconductor device
channel layer
alloy
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201210293234.0A
Other languages
English (en)
Other versions
CN103594506B (zh
Inventor
马小龙
殷华湘
许淼
朱慧珑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN201210293234.0A priority Critical patent/CN103594506B/zh
Priority to PCT/CN2012/001379 priority patent/WO2014026308A1/zh
Priority to US13/812,504 priority patent/US8796744B1/en
Publication of CN103594506A publication Critical patent/CN103594506A/zh
Application granted granted Critical
Publication of CN103594506B publication Critical patent/CN103594506B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/775Field effect transistors with one dimensional charge carrier gas channel, e.g. quantum wire FET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66431Unipolar field-effect transistors with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明公开了一种半导体器件,包括衬底、衬底上的缓冲层、缓冲层上的反型掺杂隔离层、反型掺杂隔离层上的阻挡层、阻挡层上的沟道层、沟道层上的栅极堆叠结构、栅极堆叠结构两侧的源漏区,其特征在于:缓冲层和/或阻挡层和/或反型掺杂隔离层为SiGe合金或者SiGeSn合金,沟道层为GeSn合金。依照本发明的半导体器件,采用SiGe/GeSn/SiGe的量子阱结构,限制载流子的输运,并且通过晶格失配引入应力,大大提高了载流子迁移率,从而提高了器件驱动能力以适应高速高频应用。

Description

半导体器件
技术领域
本发明涉及半导体集成电路制造领域,更具体地,涉及一种具有GeSn量子阱的场效应晶体管。
背景技术
随着集成电路工艺持续发展,特别是器件尺寸不断等比例缩减,器件的各个关键参数例如阈值电压等也随之减小,功耗减小、集成度提高这些优点促进了器件整体性能提高。然而与此同时,器件的驱动能力却受制于传统的硅材料工艺的限制,载流子迁移率较低,面临了器件驱动能力相比而言不足的问题,难以用于高速高频应用领域。因此,高迁移率器件特别是高迁移率晶体管(HEMT)在未来具有重要应用背景。
一种现有的高迁移率场效应晶体管(FET)是AlGaAs/GaAs基的,例如是在GaAs衬底上依次包括本征的GaAs层(用作缓冲层和/或下盖层)、本征的AlxGal-xAs层(用作势阱层、活性层、控制层)、n掺杂的AlxGal-xAs层(用作上盖层),在上盖层之上再形成栅极堆叠以及栅极堆叠两侧的源漏(接触)区。器件工作时,作为载流子的电子基本上被限制在势阱层中,形成二维电子气,在该层中载流子迁移率得到极大提升,因此提高了器件的驱动能力。
然而,上述各项材料和工艺与现有的Si基CMOS工艺兼容度不高,在制造高迁移率器件时需要大量额外的工艺和设备,因此成本较高。作为替代,另一种现有的高迁移率场效应晶体管则是在Si衬底上依次沉积不同配比的SiGe合金作为量子阱层并且采用Si或SiGe作为缓冲层、阻挡层、盖层。这种SiGe/Si基的高迁移率FET虽然降低了成本,但是由于材料本身限制,导致迁移率提高幅度有限。
因此,需要一种工艺简单、载流子迁移率更高的FET。
发明内容
有鉴于此,本发明的目的在于提供一种具有GeSn量子阱的场效应晶体管,以简化工艺、降低成本的同时还能大幅提高载流子迁移率。
实现本发明的上述目的,是通过提供一种半导体器件,包括衬底、衬底上的缓冲层、缓冲层上的反型掺杂隔离层、反型掺杂隔离层上的阻挡层、阻挡层上的沟道层、沟道层上的栅极堆叠结构、栅极堆叠结构两侧的源漏区,其特征在于:缓冲层和/或阻挡层和/或反型掺杂隔离层为SiGe合金或者SiGeSn合金,沟道层为GeSn合金。
其中,缓冲层和/或阻挡层和/或反型掺杂隔离层中Ge含量大于50%。
其中,缓冲层和/或阻挡层和/或反型掺杂隔离层中Sn含量小于25%。
其中,缓冲层厚度为100nm~2μm。
其中,沟道层中Sn含量大于1%并且小于25%。
其中,沟道层厚度为5nm~200nm。
其中,沟道层与栅极堆叠结构之间还包括SiGe合金的盖层。
其中,源漏区为Si GeSn合金。
其中,源漏区具有第一导电类型,反型掺杂隔离层、阻挡层、沟道区具有与第一导电类型相反的第二导电类型。
其中,阻挡层材料的禁带宽度大于沟道层材料的带隙宽度。
依照本发明的半导体器件,采用SiGe/GeSn/SiGe的量子阱结构,限制载流子的输运,并且通过晶格失配引入应力,大大提高了载流子迁移率,从而提高了器件驱动能力以适应高速高频应用。
附图说明
以下参照附图来详细说明本发明的技术方案,其中:
图1为根据本发明实施例的半导体器件的剖视图。
具体实施方式
以下参照附图并结合示意性的实施例来详细说明本发明技术方案的特征及其技术效果。需要指出的是,类似的附图标记表示类似的结构,本申请中所用的术语“第一”、“第二”、“上”、“下”、“厚”、“薄”等等可用于修饰各种器件结构。这些修饰除非特别说明并非暗示所修饰器件结构的空间、次序或层级关系。
参照图1,为根据本发明一个实施例的半导体器件的剖视图。
提供衬底1,其材质可以是(体)Si(例如单晶Si晶片)、SOI、GeOI(绝缘体上Ge)。优选地,衬底1选用体Si或SOI,以便与CMOS工艺兼容。
通过PECVD、MOCVD、MBE、ALD等方法,在衬底1上沉积形成缓冲层2,用于降低衬底1与上层的GeSn沟道层之间的晶格失配。缓冲层2的材质的晶格常数要介于衬底1的Si/Ge与上层的GeSn之间,优选为SiGe合金,具体地可以是Sil-xGex,其中Ge含量(原子数目百分比)x大于50%也即x>0.5。缓冲层2的厚度例如是100nm~2μm。此外,缓冲层2也可以是SiGeSn三元合金例如Sil-u-vGeuSnv,其中Ge含量u大于50%并且优选介于60%~70%之间也即0.6<u<0.7,Sn含量v小于25%并且优选地介于1%~10%之间也即0.01<v<0.1。
通过PECVD、MOCVD、MBE、ALD等方法,在缓冲层2上沉积形成反型掺杂隔离层3,其导电类型缓冲层2和/或稍后的阻挡层4相同,但是与稍后的源漏区8(具有第一导电类型,例如n或者p)不同,例如具有第二导电类型(p或n),用于通过掺杂而调整控制势垒,调节阈值电压。反型掺杂隔离层3的材质可以是S iGe合金,具体地可以是Si1-yGey,其中Ge含量(原子数目百分比)y介于55%~75%之间,也即0.55<y<0.75。反型掺杂隔离层3的厚度例如是50nm~500nm。反型掺杂隔离层3形成过程中可以原位掺杂,也可以形成反型掺杂隔离层3之后注入掺杂,掺杂剂例如包括B、P、N、Al、Ga等,用于调节导电类型。
同样通过PECVD、MOCVD、MBE、ALD等方法,在反型掺杂隔离层3上沉积形成阻挡层4,用于将作为载流子的二维电子气限制在其上的沟道层中。阻挡层4的材质可以是SiGe合金,具体地可以是Sil-yGey,其中Ge含量(原子数目百分比)y大于50%并且优选介于55%~75%之间,也即0.55<y<0.75。阻挡层4的厚度例如是50nm~500nm。此外,阻挡层4也可以是上述SiGeSn三元合金。阻挡层4具有第二导电类型,并且掺杂浓度较轻,也即为p-或者n-型。特别地,阻挡层4材料的禁带宽度E2大于沟道层5材料的带隙宽度E1。
在阻挡层4上沉积形成量子阱层5,用作器件的沟道层。量子阱层5的材质是GeSn合金,具体地可以是Ge1-zSnz,其中Sn含量(原子数目百分比)z介于1%~25%之间,也即0.01<z<0.25。量子阱层5的厚度例如是5nm~200nm。形成GeSn基量子阱层的方法可以是传统的MBE、MOCVD、ALD等方法,也可以是依次沉积非晶Ge和金属Sn层并且激光快速退火使得两者相互反应而形成。
可选地,在量子阱层5上还通过PECVD、MOCVD、MBE、ALD等方法沉积形成盖层6,用于将作为载流子的二维电子气限制在其下的沟道层5中。盖层6的材质可以是SiGe合金,具体地可以是Si1-wGew,其中Ge含量(原子数目百分比)w大于50%并且优选介于60%~85%之间,也即0.60<w<0.85。盖层6的厚度例如是100nm~500nm。
随后,在量子阱的沟道层5(以及盖层6)上形成栅极堆叠结构7。例如采用LPCVD、PECVD、HDPCVD、MOCVD、MBE、ALD、蒸发、溅射等常规沉积方法,依次沉积并且随后刻蚀形成栅极绝缘层7A和栅极导电层7B。当栅极堆叠结构采用前栅工艺时:栅极绝缘层7A是高k材料,包括但不限于氮化物(例如SiN、AlN、TiN)、金属氧化物(主要为副族和镧系金属元素氧化物,例如Al2O3、Ta2O5、TiO2、ZnO、ZrO2、HfO2、CeO2、Y2O3、La2O3)、钙钛矿相氧化物(例如PbZrxTi1-xO3(PZT)、BaxSr1-xTiO3(BST));栅极导电层7B是金属、金属氮化物及其组合,其中金属包括Al、Ti、Cu、Mo、W、Ta以用作栅极填充层,金属氮化物包括TiN、TaN以用作功函数调节层。当栅极堆叠结构采用后栅工艺时,用作假栅极堆叠结构,因此假栅极绝缘层是氧化硅,假栅极导电层是多晶硅、非晶硅,随后工艺中刻蚀去除假栅极堆叠结构形成栅极沟槽,在栅极沟槽中依次填充如前述高k材料的栅极绝缘层7A以及金属材料的栅极导电层7B,因此栅极绝缘层7A包围了栅极导电层7B的底部以及侧面。在栅极绝缘层7A/栅极导电层7B两侧通过沉积后刻蚀形成了氮化硅、氮氧化硅、类金刚石无定形碳(DLC)的材质的栅极侧墙7C,这些构成了栅极堆叠结构6。
在栅极堆叠结构7两侧形成源漏区8。
当不包含盖层6时(未示出),直接在量子阱的沟道层5上通过MBE、MOCVD、ALD等方法沉积形成了源漏区8,其材质为SiGeSn合金。具体地,源漏区8包括Sil-u-vGeuSnv,其中Ge含量u大于50%并且优选介于60%~70%之间也即0.6<u<0.7,Sn含量v小于25%并且优选介于1%~10%之间也即0.01<v<0.1。源漏区8的厚度可以是500nm~2μm。此外,也可以在GeSn的沟道层5栅极堆叠结构7两侧的位置处注入Si并且退火激活,使得形成S iGeSn三元合金的源漏区8,此时源漏区8将与图1所示不同而深入沟道层5中、但是不接触更下方的阻挡层4,也即深入深度不大于沟道层5厚度(未示出)。优选地,继续采用外延技术,形成抬升的源漏区8,使得源漏区8的上表面高于栅极绝缘层6A的上表面。
如图1所示,当沟道层5上包含了盖层6时,可以先刻蚀形成沟槽,刻蚀可以停止在沟道层5与盖层6的界面上,也可以停止在沟道层5中并且未到达阻挡层4。此后通过MBE、MOCVD、ALD等方法沉积形成了上述SiGeSn三元合金的源漏区8。
优选地,形成源漏区8时或者形成源漏区8之后,可以原位掺杂或者注入掺杂使得源漏区8具有第一导电类型。掺杂剂可以包括B、P、Al、Ga等,用于调节源漏区导电类型和浓度。
最后,可以在源漏区8上形成源漏接触层9,例如是金属硅化物,以降低源漏电阻。在整个器件上形成层间介质层(ILD)10,刻蚀ILD10形成源漏接触孔,在接触孔中填充W、Al、Mo等金属形成源漏接触塞11。
因此,根据本发明第一实施例,半导体器件包括衬底1、衬底1上的缓冲层2、缓冲层2上的SiGe反型掺杂隔离层3、反型掺杂隔离层3上SiGe合金的阻挡层4、阻挡层4上GeSn合金的沟道层5、沟道层5上的栅极堆叠结构7、栅极堆叠结构7两侧的源漏区8。其中,沟道层5与栅极堆叠结构7之间还可以包括S iGe合金的盖层6。其中,缓冲层2、反型掺杂隔离层3、阻挡层4、盖层6除了是SiGe合金之外,还可以是与源漏区8相同或者类似的SiGeSn三元合金,例如前述的Sil-u-vGeuSnv。其余各个部件的材料配比、厚度等参数均描述在上述制造方法中,因此不再赘述。
依照本发明的半导体器件,采用SiGe/GeSn/SiGe的量子阱结构,限制载流子的输运,并且通过晶格失配引入应力,大大提高了载流子迁移率,从而提高了器件驱动能力以适应高速高频应用。
尽管已参照一个或多个示例性实施例说明本发明,本领域技术人员可以知晓无需脱离本发明范围而对形成器件结构的方法做出各种合适的改变和等价方式。此外,由所公开的教导可做出许多可能适于特定情形或材料的修改而不脱离本发明范围。因此,本发明的目的不在于限定在作为用于实现本发明的最佳实施方式而公开的特定实施例,而所公开的器件结构及其制造方法将包括落入本发明范围内的所有实施例。

Claims (10)

1.一种半导体器件,包括衬底、衬底上的缓冲层、缓冲层上的反型掺杂隔离层、反型掺杂隔离层上的阻挡层、阻挡层上的沟道层、沟道层上的栅极堆叠结构、栅极堆叠结构两侧的源漏区,其特征在于:缓冲层和/或阻挡层和/或反型掺杂隔离层为SiGe合金或者SiGeSn合金,沟道层为GeSn合金。
2.如权利要求1的半导体器件,其中,缓冲层和/或阻挡层和/或反型掺杂隔离层中Ge含量大于50%。
3.如权利要求1的半导体器件,其中,缓冲层和/或阻挡层和/或反型掺杂隔离层中Sn含量小于25%。
4.如权利要求1的半导体器件,其中,缓冲层厚度为100nm~2μm。
5.如权利要求1的半导体器件,其中,沟道层中Sn含量大于1%并且小于25%。
6.如权利要求1的半导体器件,其中,沟道层厚度为5nm~200nm。
7.如权利要求1的半导体器件,其中,沟道层与栅极堆叠结构之间还包括SiGe合金的盖层。
8.如权利要求1的半导体器件,其中,源漏区为Si GeSn合金。
9.如权利要求1的半导体器件,其中,源漏区具有第一导电类型,反型掺杂隔离层、阻挡层、沟道区具有与第一导电类型相反的第二导电类型。
10.如权利要求1的半导体器件,其中,阻挡层材料的禁带宽度大于沟道层材料的带隙宽度。
CN201210293234.0A 2012-08-16 2012-08-16 半导体器件 Active CN103594506B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201210293234.0A CN103594506B (zh) 2012-08-16 2012-08-16 半导体器件
PCT/CN2012/001379 WO2014026308A1 (zh) 2012-08-16 2012-10-12 半导体器件
US13/812,504 US8796744B1 (en) 2012-08-16 2012-10-12 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210293234.0A CN103594506B (zh) 2012-08-16 2012-08-16 半导体器件

Publications (2)

Publication Number Publication Date
CN103594506A true CN103594506A (zh) 2014-02-19
CN103594506B CN103594506B (zh) 2017-03-08

Family

ID=50084578

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210293234.0A Active CN103594506B (zh) 2012-08-16 2012-08-16 半导体器件

Country Status (3)

Country Link
US (1) US8796744B1 (zh)
CN (1) CN103594506B (zh)
WO (1) WO2014026308A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103811557A (zh) * 2014-03-06 2014-05-21 重庆大学 无掺杂GeSn量子阱的金属氧化物半导体场效应晶体管
CN103824885A (zh) * 2014-02-20 2014-05-28 重庆大学 带有源应变源的GeSnn沟道隧穿场效应晶体管
CN103839786A (zh) * 2014-02-25 2014-06-04 清华大学 选区SiGeSn层及其形成方法
CN103839789A (zh) * 2014-02-25 2014-06-04 清华大学 选区SiGeSn层及其形成方法
CN105789283A (zh) * 2016-03-28 2016-07-20 西安电子科技大学 基于新型High-K材料的GeSn沟道场效应晶体管
WO2020062706A1 (zh) * 2018-09-27 2020-04-02 中国科学院上海微系统与信息技术研究所 一种硅基锗锡高电子迁移率晶体管
CN111584344A (zh) * 2020-05-25 2020-08-25 中国科学院半导体研究所 一种GeSn和SiGeSn合金材料及其外延方法
CN113517348A (zh) * 2021-06-28 2021-10-19 西安电子科技大学芜湖研究院 一种直接带隙GeSn增强型nMOS器件及其制备方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140095738A (ko) * 2013-01-25 2014-08-04 삼성전자주식회사 트랜지스터 및 그 제조 방법
US9666702B2 (en) * 2013-03-15 2017-05-30 Matthew H. Kim Advanced heterojunction devices and methods of manufacturing advanced heterojunction devices
US9437772B2 (en) * 2013-03-15 2016-09-06 Matthew H. Kim Method of manufacture of advanced heterojunction transistor and transistor laser
US9299566B2 (en) * 2014-02-25 2016-03-29 Tsinghua University Method for forming germanium-based layer
CN103811352A (zh) * 2014-02-25 2014-05-21 清华大学 具有GeSn源漏的MOSFET及其形成方法
US9640656B2 (en) 2014-04-04 2017-05-02 Micron Technology, Inc. Transistors having strained channel under gate in a recess
CN105762068A (zh) 2014-12-19 2016-07-13 联华电子股份有限公司 半导体元件及其制作方法
CN104900729A (zh) * 2015-06-18 2015-09-09 西安电子科技大学 横向GeSn/SiGeSn量子阱光电发光器件及其制备方法
US10079288B2 (en) * 2016-06-07 2018-09-18 International Business Machines Corporation Contact formation on germanium-containing substrates using hydrogenated silicon
WO2018004554A1 (en) * 2016-06-29 2018-01-04 Intel Corporation Quantum dot devices with modulation doped stacks
CN110957360A (zh) * 2018-09-27 2020-04-03 上海新微技术研发中心有限公司 一种硅基锗锡高电子迁移率晶体管及其制造方法
US11749721B2 (en) * 2018-09-28 2023-09-05 Intel Corporation Gate walls for quantum dot devices
KR20240024828A (ko) * 2021-06-25 2024-02-26 위스콘신 얼럼나이 리서어치 화운데이션 증가된 합금 불규칙성 및 강화된 밸리 분할을 갖는 실리콘-게르마늄 합금 기반 양자점

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1343374A (zh) * 1999-03-12 2002-04-03 国际商业机器公司 场效应器件的高速锗沟道异质结构
US7416605B2 (en) * 2007-01-08 2008-08-26 Freescale Semiconductor, Inc. Anneal of epitaxial layer in a semiconductor device
US7435987B1 (en) * 2007-03-27 2008-10-14 Intel Corporation Forming a type I heterostructure in a group IV semiconductor
CN102640269A (zh) * 2009-09-30 2012-08-15 苏沃塔公司 电子装置和系统及其制造和使用方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031469A (ja) * 1998-07-14 2000-01-28 Hitachi Ltd 半導体装置およびその製造方法
EP2701198A3 (en) * 2012-08-24 2017-06-28 Imec Device with strained layer for quantum well confinement and method for manufacturing thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1343374A (zh) * 1999-03-12 2002-04-03 国际商业机器公司 场效应器件的高速锗沟道异质结构
US7416605B2 (en) * 2007-01-08 2008-08-26 Freescale Semiconductor, Inc. Anneal of epitaxial layer in a semiconductor device
US7435987B1 (en) * 2007-03-27 2008-10-14 Intel Corporation Forming a type I heterostructure in a group IV semiconductor
CN102640269A (zh) * 2009-09-30 2012-08-15 苏沃塔公司 电子装置和系统及其制造和使用方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103824885A (zh) * 2014-02-20 2014-05-28 重庆大学 带有源应变源的GeSnn沟道隧穿场效应晶体管
CN103839786A (zh) * 2014-02-25 2014-06-04 清华大学 选区SiGeSn层及其形成方法
CN103839789A (zh) * 2014-02-25 2014-06-04 清华大学 选区SiGeSn层及其形成方法
CN103811557A (zh) * 2014-03-06 2014-05-21 重庆大学 无掺杂GeSn量子阱的金属氧化物半导体场效应晶体管
CN105789283A (zh) * 2016-03-28 2016-07-20 西安电子科技大学 基于新型High-K材料的GeSn沟道场效应晶体管
WO2020062706A1 (zh) * 2018-09-27 2020-04-02 中国科学院上海微系统与信息技术研究所 一种硅基锗锡高电子迁移率晶体管
CN111584344A (zh) * 2020-05-25 2020-08-25 中国科学院半导体研究所 一种GeSn和SiGeSn合金材料及其外延方法
CN113517348A (zh) * 2021-06-28 2021-10-19 西安电子科技大学芜湖研究院 一种直接带隙GeSn增强型nMOS器件及其制备方法
CN113517348B (zh) * 2021-06-28 2023-08-04 西安电子科技大学芜湖研究院 一种直接带隙GeSn增强型nMOS器件及其制备方法

Also Published As

Publication number Publication date
WO2014026308A1 (zh) 2014-02-20
US8796744B1 (en) 2014-08-05
CN103594506B (zh) 2017-03-08
US20140197376A1 (en) 2014-07-17

Similar Documents

Publication Publication Date Title
CN103594506A (zh) 半导体器件
US10879352B2 (en) Vertically stacked nFETs and pFETs with gate-all-around structure
US8912070B2 (en) Method for manufacturing semiconductor device
US9178045B2 (en) Integrated circuit devices including FinFETS and methods of forming the same
US9324853B2 (en) III-V semiconductor device having self-aligned contacts
CN103594496B (zh) 半导体器件及其制造方法
US7872303B2 (en) FinFET with longitudinal stress in a channel
CN105489652B (zh) 半导体器件及其制造方法
CN102983165B (zh) 控制沟道厚度的FinFET设计
CN106098771B (zh) 具有半导体鳍结构的隧穿场效应晶体管
US9543387B2 (en) Semiconductor device and manufacturing method thereof
US8889519B2 (en) Semiconductor device and method for manufacturing the same
CN105489651B (zh) 半导体器件及其制造方法
US20150243756A1 (en) Integrated circuit devices including finfets and methods of forming the same
TW200905876A (en) N-face high electron mobility transistors with low buffer leakage and low parasitic resistance
US11735658B2 (en) Tunnel field-effect transistor with reduced subthreshold swing
US9099341B2 (en) Field effect transistor
CN102593172B (zh) 半导体结构及其制造方法
CN103594512A (zh) 半导体器件及其制造方法
CN105405764A (zh) 半导体器件制造方法
CN102315268B (zh) 半导体器件及其制造方法
CN105448985B (zh) 半导体器件及其制造方法
US11476163B2 (en) Confined gate recessing for vertical transport field effect transistors
KR20210033346A (ko) 전자 소자 및 그 제조방법
CN105118784B (zh) 具有突变隧穿结的utb‑soi隧穿场效应晶体管及制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant