CN104900729A - 横向GeSn/SiGeSn量子阱光电发光器件及其制备方法 - Google Patents

横向GeSn/SiGeSn量子阱光电发光器件及其制备方法 Download PDF

Info

Publication number
CN104900729A
CN104900729A CN201510340862.3A CN201510340862A CN104900729A CN 104900729 A CN104900729 A CN 104900729A CN 201510340862 A CN201510340862 A CN 201510340862A CN 104900729 A CN104900729 A CN 104900729A
Authority
CN
China
Prior art keywords
quantum well
gesn
sigesn
component
horizontal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510340862.3A
Other languages
English (en)
Inventor
韩根全
张春福
周久人
张进城
郝跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201510340862.3A priority Critical patent/CN104900729A/zh
Publication of CN104900729A publication Critical patent/CN104900729A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/34Materials of the light emitting region containing only elements of group IV of the periodic system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种横向GeSn/SiGeSn量子阱发光器件,主要解决现有红外发光器件材料毒性大,成本高的问题。其包括:衬底(1)、量子阱(2)、势垒层(3)、N型电极(4)和P型电极(5)。量子阱采用Sn组分为[0,0.3]的GeSn应变单晶材料;势垒层采用Sn组分为[0,0.3]、Ge组分为[0,1]的SiGeSn单晶材料;该量子阱与势垒层横向交叠排列组成发光有源区,且位于衬底上。本发明通过SiGeSn单晶材料在外延过程中的体积改变使GeSn量子阱材料产生横向张应变,减小了GeSn材料带隙,并使导带Γ能谷相对于L能谷下移,提高了发光器件的光谱响应和内量子效率,可用于制作大规模集成电路。

Description

横向GeSn/SiGeSn量子阱光电发光器件及其制备方法
技术领域
本发明属于微电子器件技术领域,特别涉及一种光量子阱光电发光器件,可用于宽带通信,医疗,监测。
背景技术
红外波段包含众多特征谱线,工作在该波段的发光器件在宽带通信、国防、医疗、环境监测以及自动影像等很多方面有重要的应用前景。目前,用于的红外发光器件的半导体材料主要为III-V族材料InGaAs、GaInAsSb、InGaSb和II-VI材料HgCdTe。InGaAs发光器件在近红外波段性能优异,HgxCd1-xTe发光器件是目前性能最好的中红外发光器件,通过调节材料中Hg的组分可以实现带隙0-0.8eV的连续可调。然而无论III-V族或者II-VI族材料,本身都会引起环境问题而且成本非常高,且与Si基技术不兼容。因此,IV族材料体系无毒、廉价、且易实现大规模的硅基集成成为了发光器件的主流方向之一。
Ge在1.3-1.55μm波段范围内有较高的发光效率,但是Ge材料为间接带隙材料,这限制了其发光效率的进一步提升。通过在Ge材料中引入Sn原子形成GeSn合金,GeSn合金具有比Ge更小的直接带隙,因此吸收边可以进一步红移,而且随着Sn组分的加入,GeSn材料可以从间接带隙结构逐渐转变成直接带隙结构,从而提高材料的发光效率。
从理论上说增加Sn的组分可以使GeSn材料的带隙减小到零,但由于Sn在Ge中的固溶度很低,即小于1%,因此制备高质量、无缺陷的高Sn组分的GeSn很困难。现在用低温外延生长的方法也只能制备出Sn组分为20~25%的GeSn材料,见[ECS Transactions,41(7),pp.231,2011;Photonics Research,1(2).pp.69,2013]。并且随着Sn组分的增加,Sn原子会偏析或者分凝,材料质量和热稳定型都会变差,因此单纯依靠提高Sn的组分实现较大范围带隙的调节比较困难。
发明内容
本发明的目的在于针对上述已有技术的不足,根据GeSn材料特性,提供一种横向GeSn/SiGeSn量子阱光电发光器件件及其制备方法,以减小光电发光器件原材料毒性,增大发光器件的吸收谱波长范围,提高器件发光内量子效率。
理论研究和实验证明在GeSn材料中引入张应变可以导致材料直接带隙减小,并有利于材料从间接带隙结构向直接带隙转变。根据此原理本发明的技术方案是这样实现的:
本发明的横向GeSn/SiGeSn量子阱光电发光器件,包括:衬底、量子阱、势垒层、N型电极和P型电极,该量子阱和势垒层组成发光有源区,其特征在于:
量子阱采用通式为Ge1-xSnx的应变单晶材料,其中x为Sn的组分,0≤x≤0.30;
势垒层采用通式为Si1-y-zGeySnz的单晶材料,其中,y为Ge的组分,z为Sn的组分,0≤y≤1,0≤z≤0.30;
所述量子阱与所述势垒层横向交叠排列。
本发明制作上述横向GeSn/SiGeSn量子阱光电发光器件的方法,包括如下步骤:
1)利用分子束外延工艺,在衬底上生长Sn组分为0~0.3的弛豫本征GeSn单晶;
2)利用刻蚀工艺,将弛豫本征GeSn单晶刻成横向量子阱,形成GeSn量子阱与间隙横向排列的结构;
3)利用分子束外延工艺,在横向量子阱的间隙中生长Ge组分为0~1、Sn组分0~0.3的SiGeSn单晶材料,形成GeSn量子阱与间隙横向排列的结构,
4)利用离子注入,在SiGeSn单晶材料中不同区域分别注入剂量为1015cm-2,能量为20KeV的磷、硼元素,分别形成N型电极和P型电极,未被注入的SiGeSn单晶材料区域形成势垒层。
本发明具有如下优点:
1、利用应变,提高了发光有源区材料带隙调节效果
本发明采用GeSn单晶材料形成量子阱,并通过SiGeSn势垒层在GeSn量子阱中引入张应变,减小了GeSn量子阱材料带隙,并促进GeSn由间接带隙结构向直接带隙结构转变,在不改变GeSn量子阱材料组分的情况下,不仅能有效调节器件吸收波长范围,而且还能通过减小GeSn量子阱和SiGeSn势垒的厚度比,增强GeSn量子阱的应变,从而提高了发光有源区材料带隙调节效果。
2、采用材料价格低廉、无毒环保
本发明中所采用的材料均为IV族材料,同现有的III-V族材料和II-VI材料相比,IV族材料无毒环保、价格低廉。同时,目前半导体制造工业中的大部分生产设备是针对Si材料设计的,若采用III-V族材料和II-VI材料,则由于与Si工艺不兼容性,不容易实现Si基集成。而使用IV族材料,容易制备出Si基集成的GeSn光电发光器件。
相比其他光电发光器件,本发明使用GeSn量子阱材料作为有源区材料的光电发光器件具有更好的应用前景。
附图说明
图1为本发明横向GeSn/SiGeSn量子阱光电发光器件的三维结构图;
图2为本发明横向GeSn/SiGeSn量子阱光电发光器件的截面结构图;
图3为本发明横向GeSn/SiGeSn量子阱光电发光器件的制作流程示意图。
具体实施方式
为了使本发明的目的及优点更加清楚明白,以下结合附图和实施例对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
参照图1和图2,本发明的横向GeSn/SiGeSn量子阱光电发光器件包括:衬底1、GeSn量子阱2、SiGeSn势垒层3、N型电极4和P型电极5。量子阱2采用Sn组分为大于等于0小于等于0.3的GeSn应变单晶材料,其通式为Ge1-xSnx,0≤x≤0.30;势垒层3采用Sn组分为大于等于0小于等于0.3、Ge组分为大于等于0小于等于1的单晶材料,其通式为Si1-y-zGeySnz,0≤y≤1,0≤z≤0.30;该量子阱2与该势垒层3横向交叠排列位于衬底1上,N型电极4和P型电极5分别被量子阱2两边的势垒层3包裹。
由于SiGeSn势垒层3的晶格常数比GeSn量子阱2的晶格常数小,使得在GeSn量子阱2沿X方向产生的张应变,减小了GeSn量子阱的带隙,并导致导带Γ能谷相对L能谷下移,提高器件吸收谱波长范围和发光内量子效率。
参照图3,本发明制作横向GeSn/SiGeSn量子阱光电发光器件的方法,给出如下三种实施例。
实施例1:制作量子阱的Sn组分为0.3的,势垒层的Ge组分为0,Si组分为0.7的横向GeSn/SiGeSn量子阱光电发光器件。
步骤1:在Si衬底1上,利用分子束外延工艺,以固体Ge和Sn作为蒸发源,用10-4pa的压强,在180℃环境下,生长弛豫本征GeSn单晶,其中Sn组分为0.3,Ge组分为0.7,如图3a。
步骤2:利用刻蚀技术,采用氯基离子基团,在光刻胶掩蔽作用下,将本征GeSn单晶刻成横向量子阱2结构,如图3b。
步骤3:利用分子束外延工艺,以固体Si、Ge和Sn作为蒸发源,用10-4pa的压强,在180℃环境下,在GeSn量子阱之间间隙中生长Si组分为0.7,Ge组分为0,Sn组分为0.3的SiGeSn单晶材料,如图3c。
由于Si、Ge、Sn三者的晶格常数关系为:aSi<aGe<aSn,所以该SiGeSn单晶材料的晶格常数a1比GeSn单晶材料的晶格常数a2小,即a1<a2;在外延生长过程中,由于Y、Z方向的压应变导致了SiGeSn单晶材料体积的变化,从而会在GeSn量子阱2中形成沿X方向的张应变,形成GeSn应变单晶材料量子阱,从而减小GeSn带隙,使器件吸收边红移。
步骤4:利用离子注入,在量子阱两侧的SiGeSn单晶材料中分别注入剂量为1015cm-2,能量为20KeV的磷元素和硼元素,形成电极,即在注入磷元素的区域形成N型电极4,在注入硼元素的区域形成P型电极5,未被注入的SiGeSn单晶材料区域形成势垒层3,如图3d。
实施例2:制作量子阱的Sn组分为0.15的,势垒层的Ge组分为0.5,Si组分为0.35的横向GeSn/SiGeSn量子阱光电发光器件。
步骤一:外延弛豫本征GeSn单晶
在SOI衬底1上,以固体Ge和Sn作为蒸发源,在温度为190℃,压强为10-4pa的环境下,外延Sn组分为0.15,Ge组分为0.85的弛豫本征GeSn单晶,如图3a。
步骤二:刻蚀量子阱
用氯基离子基团作为刻蚀剂,在光刻胶掩蔽作用下,对步骤一外延的弛豫本征GeSn单晶进行横向刻蚀,形成GeSn单晶材料量子阱2,如图3b。
步骤三:外延SiGeSn单晶材料
利用分子束外延工艺,以固体Si、Ge和Sn作为蒸发源,在温度为190℃,压强为10-4pa的环境下,在GeSn量子阱之间的间隙中生长Si组分为0.35,Ge组分为0.5,Sn组分为0.15的SiGeSn单晶材料,如图3c。该SiGeSn单晶材料的晶格常数a1比GeSn单晶材料的晶格常数a2小,即a1<a2
在外延生长过程中,由于SiGeSn材料体积改变,会在GeSn量子阱2中形成沿X方向的张应变,形成GeSn应变单晶材料量子阱,从而减小GeSn带隙,使器件吸收边向红移。
步骤四:离子注入形成电极和势垒层
利用离子注入,在量子阱两侧的SiGeSn单晶材料中分别注入剂量为1015cm-2,能量为20KeV的磷元素和硼元素,形成电极,即在注入磷元素的区域形成N型电极4,在注入硼元素的区域形成P型电极5,未被注入的SiGeSn单晶材料区域形成势垒层3,如图3d。
实施例3:制作量子阱的Sn组分为0的,势垒层的Ge组分为1,Si组分为0的横向GeSn/SiGeSn量子阱光电发光器件。
步骤A:采用分子束外延工艺在Ge衬底1上,以固体Ge和Sn作为蒸发源,在温度为200℃,压强为10-4pa的环境下,外延Sn组分为0,Ge组分为1的弛豫本征GeSn单晶,如图3a。
步骤B:利用氯基离子基团为刻蚀剂,在光刻胶掩蔽作用下,将本征GeSn单晶刻成横向量子阱结构,如图3b。
步骤C:利用分子束外延工艺,在GeSn量子阱之间间隙中生长Si组分为0,Ge组分为1,Sn组分为0的SiGeSn单晶材料,如图3c。其外延的工艺条件如下:
蒸发源:固体Si、Ge和Sn
温度:200℃,
压强:10-4pa。
该SiGeSn单晶材料的晶格常数a1比GeSn单晶材料的晶格常数a2小,即a1<a2;在外延生长过程中,由于SiGeSn材料体积改变,会在GeSn量子阱2中形成沿X方向的张应变,形成GeSn应变单晶材料量子阱,从而减小GeSn带隙,使器件吸收边向红移。
步骤D:利用离子注入方法,在量子阱两侧的SiGeSn单晶材料中分别注入剂量为1015cm-2,能量为20KeV的磷元素和硼元素,分别形成N型电极4和P型电极5,未被注入的SiGeSn单晶材料区域形成势垒层3,如图3d。

Claims (7)

1.一种横向GeSn/SiGeSn量子阱光电发光器件,包括:衬底(1)、量子阱(2)、势垒层(3)、N型电极(4)和P型电极(5),该量子阱(2)和势垒层(3)组成发光有源区,其特征在于:
量子阱(2)采用Sn组分为大于等于0小于等于0.3的GeSn应变单晶材料;
势垒层(3)采用Sn组分为大于等于0小于等于0.3、Ge组分为大于等于0小于等于1的单晶材料;
所述量子阱(2)与所述势垒层(3)横向交叠排列。
2.如权利要求1所述的横向GeSn/SiGeSn量子阱光电发光器件,其特征在于,势垒层(3)的单晶材料晶格常数a1比量子阱(2)的应变单晶材料的晶格常数a2小,即a1<a2
3.如权利要求1所述的横向GeSn/SiGeSn量子阱光电发光器件,其特征在于:衬底(1)采用Si材料或其他单晶材料。
4.一种横向GeSn/SiGeSn量子阱光电发光器件的制作方法,包括如下步骤:
1)利用分子束外延工艺,在衬底(1)上生长Sn组分为0~0.3的弛豫本征GeSn单晶;
2)利用刻蚀工艺,将弛豫本征GeSn单晶刻成横向量子阱(2),形成GeSn量子阱与间隙横向交错排列的结构;
3)利用分子束外延工艺,在横向量子阱的间隙中生长Ge组分为0~1、Sn组分0~0.3的SiGeSn单晶材料;
4)利用离子注入,在量子阱两侧的SiGeSn单晶材料中分别注入剂量为1015cm-2,能量为20KeV的P元素和B元素,形成电极,即在再注入P元素的区域形成N型电极4和在注入B元素的区域形成P型电极5,未被注入的SiGeSn单晶材料区域形成势垒层(3),形成量子阱。
5.权利要求4所述的横向GeSn/SiGeSn量子阱光电发光器件的制作方法:其中所述步骤1)的分子束外延工艺,是以固体Ge和Sn作为蒸发源,设工作温度为180~200℃,在10-4pa的压强下外延GeSn层。
6.如权利要求4所述的横向GeSn/SiGeSn量子阱光电发光器件的制作方法:其中所述步骤2)的刻蚀工艺,是利用氯基离子基团,在光刻胶掩蔽作用下刻蚀GeSn。
7.如权利要求4所述的横向GeSn/SiGeSn量子阱光电发光器件的制作方法:其中所述步骤3)的分子束外延工艺是,以固体Si、Ge和Sn作为蒸发源,设工作温度为180~200℃,在10-4pa的压强下外延SiGeSn层。
CN201510340862.3A 2015-06-18 2015-06-18 横向GeSn/SiGeSn量子阱光电发光器件及其制备方法 Pending CN104900729A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510340862.3A CN104900729A (zh) 2015-06-18 2015-06-18 横向GeSn/SiGeSn量子阱光电发光器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510340862.3A CN104900729A (zh) 2015-06-18 2015-06-18 横向GeSn/SiGeSn量子阱光电发光器件及其制备方法

Publications (1)

Publication Number Publication Date
CN104900729A true CN104900729A (zh) 2015-09-09

Family

ID=54033267

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510340862.3A Pending CN104900729A (zh) 2015-06-18 2015-06-18 横向GeSn/SiGeSn量子阱光电发光器件及其制备方法

Country Status (1)

Country Link
CN (1) CN104900729A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107221582A (zh) * 2017-05-17 2017-09-29 厦门科锐捷半导体科技有限公司 一种发光二极管及其制备方法
CN115537916A (zh) * 2022-10-13 2022-12-30 上海理工大学 一种iv族直接带隙半导体超晶格材料及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140197376A1 (en) * 2012-08-16 2014-07-17 Institute of Microelectronics Chinese Academy of Sciences (IMECAS) Semiconductor Device
CN104300049A (zh) * 2014-05-05 2015-01-21 重庆大学 带有应变源的GeSn量子阱红外发光器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140197376A1 (en) * 2012-08-16 2014-07-17 Institute of Microelectronics Chinese Academy of Sciences (IMECAS) Semiconductor Device
CN104300049A (zh) * 2014-05-05 2015-01-21 重庆大学 带有应变源的GeSn量子阱红外发光器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107221582A (zh) * 2017-05-17 2017-09-29 厦门科锐捷半导体科技有限公司 一种发光二极管及其制备方法
CN115537916A (zh) * 2022-10-13 2022-12-30 上海理工大学 一种iv族直接带隙半导体超晶格材料及其应用

Similar Documents

Publication Publication Date Title
CN105006500B (zh) 横向ⅳ族元素量子阱光电探测器及制备方法
Bhuiyan et al. InGaN solar cells: present state of the art and important challenges
CN102388466B (zh) 光伏电池
CN102804383B (zh) 将稀释氮化物功能性地集成至高效iii-v太阳能电池
CN104300013B (zh) 带有应变源的GeSn红外探测器
JP2012521090A5 (zh)
CN103337568B (zh) 应变超晶格隧道结紫外led外延结构及其制备方法
CN104300049B (zh) 带有应变源的GeSn量子阱红外发光器
US9722122B2 (en) Boron, bismuth co-doping of gallium arsenide and other compounds for photonic and heterojunction bipolar transistor devices
CN102832274B (zh) 倒装太阳能电池及其制备方法
CN104409530A (zh) 应变SiGeSn鳍型光电探测器
CN104900729A (zh) 横向GeSn/SiGeSn量子阱光电发光器件及其制备方法
CN103545389B (zh) 一种多结聚光砷化镓太阳能电池及其制备方法
CN102738267B (zh) 具有超晶格结构的太阳能电池及其制备方法
CN102214721A (zh) 一种iii族氮化物双异质结太阳能光伏电池
CN102290458A (zh) 一种InGaN太阳能电池外延片及其制备方法
CN104393088A (zh) InGaN/AlInGaN多量子阱太阳能电池结构
CN109449757B (zh) SiGe/Ge/SiGe双异质结激光器及其制备方法
Dharmadasa et al. Effective harvesting of photons for improvement of solar energy conversion by graded bandgap multilayer solar cells
CN103258874A (zh) 一种基于图形化锗衬底的三结太阳能电池及其制备方法
CN102738266B (zh) 掺杂超晶格结构的太阳能电池及其制备方法
KR100913114B1 (ko) 고온 특성이 개선된 벌크형 실리콘 태양 전지 및 그 제조방법
JP2013172072A (ja) 2接合太陽電池
CN103311354A (zh) Si衬底三结级联太阳电池及其制作方法
WO2012084259A2 (de) Bipolardiode mit optischem quantenstrukturabsorber

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150909