CN104393088A - InGaN/AlInGaN多量子阱太阳能电池结构 - Google Patents

InGaN/AlInGaN多量子阱太阳能电池结构 Download PDF

Info

Publication number
CN104393088A
CN104393088A CN201410592387.4A CN201410592387A CN104393088A CN 104393088 A CN104393088 A CN 104393088A CN 201410592387 A CN201410592387 A CN 201410592387A CN 104393088 A CN104393088 A CN 104393088A
Authority
CN
China
Prior art keywords
layer
quantum well
ingan
gallium nitride
multiple quantum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410592387.4A
Other languages
English (en)
Other versions
CN104393088B (zh
Inventor
杨静
赵德刚
乐伶聪
李晓静
何晓光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CN201410592387.4A priority Critical patent/CN104393088B/zh
Publication of CN104393088A publication Critical patent/CN104393088A/zh
Application granted granted Critical
Publication of CN104393088B publication Critical patent/CN104393088B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种InGaN/AlInGaN多量子阱太阳能电池结构,包括:一衬底;在衬底上依序制作有低温成核层、非故意掺杂缓冲层、n型掺杂GaN层、非掺杂InGaN/AlInGaN多量子阱层、P型掺杂氮化镓层,该n型掺杂GaN层上面的一侧有一台面,该台面上制作一N型欧姆电极,一P型欧姆电极,其制作在P型接触层上。本发明可以增加多量子阱太阳能电池吸收层的总电场,提高载流子的分离效率,从而提高太阳能电池的转换效率。

Description

InGaN/AlInGaN多量子阱太阳能电池结构
技术领域
本发明涉及半导体材料制备技术领域,特别是涉及一种InGaN/AlInGaN多量子阱太阳能电池结构。
背景技术
III-V族氮化物半导体具有宽带隙、高电子迁移率、高热导率、高硬度、稳定的化学性质、较小介电常数和耐高温等一系列优点,因此其在高亮度蓝色发光二极管、蓝色半导体激光器以及抗辐射、高频、高温、高压等电子电力器件中有着广泛的实际应用和巨大的市场前景。近年来,由于发现铟镓氮三元合金的带隙从近红外光谱区域到紫外光谱区域连续可调,与太阳光谱完美匹配,对铟镓氮基太阳能电池的研究越来越受到人们的关注。然而,由于氮化物材料的晶格排列缺乏反演对称性,因此展现出强烈的极化效应。包括自发极化和压电极化。自发极化是纤锌矿结构在[0001]方向的不对称引起的,而压电极化产生的原因是在异质结界面处,由于不同材料之间彼此晶格不匹配产生应力,使得阴离子和阳离子的排列发生移动,产生极化电荷,于是在材料内部产生强电场。而在InGaN量子阱材料内部,由于压电极化产生的极化电场与内建电场反向,这造成在通常的InGaN/GaN多量子阱的阱区总电场很弱甚至反向。这对太阳能电池中光生载流子的分离是非常不利的。
发明内容
有鉴于此,本发明的主要目的在于提供一种InGaN/AlInGaN多量子阱太阳能电池结构,通过更改GaN垒层为AlInGaN垒层,并通过调节AlInGaN材料的Al和In组分,在量子垒层引入适当的张应力,抵消InGaN阱层由于压应力产生的与内建电场反向的压电极化电场,使得量子阱区域的总电场增加,增加吸收区中载流子的分离。
为达到上述目的,本发明提供一种InGaN/AlInGaN多量子阱太阳能电池结构,包括:
一衬底10;
一低温成核层11,其制作在衬底10上,该低温成核层11为后续生长氮化镓材料提供成核中心;
一非故意掺杂氮化镓缓冲层12,其制作在低温成核层11上;
一n型掺杂氮化镓层13,其制作在非故意掺杂氮化镓缓冲层12上;
一非故意掺杂多量子阱层14,其制作在n型掺杂氮化镓层13上面的一侧,另一侧的n型掺杂氮化镓层13上面形成一台面131,该非故意掺杂多量子阱层14为铟镓氮太阳能电池的吸收层;
一p型掺杂氮化镓层15,其制作在非故意掺杂多量子阱层14上;
一N型欧姆电极20,其制作在n型掺杂氮化镓层13上的台面131上;
一P型欧姆电极21,其制作在p型掺杂氮化镓层15上。
与以往的技术相比,本发明具有如下有益效果:
1、本发明提供的InGaN/AlInGaN多量子阱太阳能电池结构,通过在量子垒层引入了适当的张应力,抵消InGaN阱层由于压应力产生的与内建电场反向的压电极化电场,使得量子阱区域的总电场增加,增加吸收区中载流子的分离,减少载流子的漂移时间。
2、本发明提供的InGaN/AlInGaN多量子阱太阳能电池结构,在保证阱区总电场比较大的前提下,可以通过调整Al组分和In组分,降低垒层AlInGaN的势垒高度,增加载流子在量子阱内热电子发射和隧穿几率,增加载流子的分离效率。
附图说明
为了进一步说明本发明的内容,下面结合具体实例和附图,详细说明如后,其中:
图1是本发明的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
请参阅图1所示,本发明提供一种InGaN/AlInGaN多量子阱太阳能电池结构,包括:
一衬底10,所述衬底10的材料为蓝宝石、碳化硅或氮化镓;
一低温成核层11,其制作在衬底10上,该低温成核层11的材料为氮化镓或者氮化铝,该低温成核层11的生长温度为500-600℃,厚度为20-30nm,该低温成核层11为后续生长氮化镓材料提供成核中心;
一非故意掺杂氮化镓缓冲层12,其制作在低温成核层11上,该故意掺杂氮化镓缓冲层的生长温度1000-1050℃,厚度为1-2μm;
一n型掺杂氮化镓层13,其制作在非故意掺杂氮化镓缓冲层12上,所述n型掺杂氮化镓层13采用的n型掺杂剂是Si,其生长温度为1000-1050℃,厚度为3μm,自由电子浓度为1×1017-1×1019cm-3
一非故意掺杂多量子阱层14,其制作在n型掺杂氮化镓层13上面的一侧,另一侧的n型掺杂氮化镓层13上面形成一台面131,该非故意掺杂多量子阱层14为铟镓氮太阳能电池的吸收层。该非故意掺杂多量子阱层14包括10-20个InxGa1-xN/AlyInzGa1-y-zN周期结构,每个周期由InxGa1-xN阱层141和AlyInzGa1-y-zN垒层140构成,其中0<x≤1,InxGa1-xN阱层141的生长温度为700-800℃,厚度为2-5nm。AlInGaN垒层140生长温度为800-900℃,厚度为3-8nm。用AlInGaN垒层代替传统的GaN垒层的目的是在量子垒中引入适当的张应力,抵消InGaN阱内压应力产生的极化电场,使量子阱区的总电场增大,提高太阳能电池中光生载流子的分离效率。其中AlyInzGa1-y-zN垒层中的Al组分y,In组分z的确定要保证阱内总电场最大,同时AlyInzGa1-y-zN垒层的禁带宽度大于或等于阱层InGaN的禁带宽度,但小于或等于GaN的禁带宽度,即Eg(GaN)≥Eg(AlInGaN)≥Eg(InGaN)。
量子阱区极化电场可以通过计算极化强度得到,其计算方法如下,材料的极化包括自发极化和压电极化。首先是AlyInzGa1-y-zN自发极化Psp,根据公式(1)和自发极化参数表格1
P Al y In z Ga 1 - y - z N = y P sp ( AlN ) + z P sp ( InN ) + ( 1 - y - z ) P sp ( GaN ) - B ( AlGaN ) x ( 1 - x - y ) - B ( InGaN ) y ( 1 - x - y ) - B ( AlInN ) xy - - - ( 1 )
其次是计算AlyInzGa1-y-zN压电极化Ppz,根据公式(2)
P Al y In z Ga 1 - y - z N = y P pz ( AlN ) + z P pz ( InN ) + ( 1 - y - z ) P pz ( GaN ) - - - ( 2 )
式中
Ppz(AlN)=-1.808ε+5.624ε2,ε<0
Ppz(AlN)=-1.808ε-7.888ε2,ε>0
Ppz(GaN)=-0.918ε+9.541ε2,                 (3)
Ppz(InN)=-1.373ε+7.559ε2
ε(x)=[asubs-alayer]/alayer
式中ε是失配度,asubs和alayer分别是衬底和外延层的晶格常数;
最后得到垒层总极化强度
P(AlyInzGa1-y-zN)=Psp(AlyInzGa1-y-zN)+Ppz(AlyInzGa1-y-zN);  (4)
对于InGaN阱层,其压电极化表示为:
P In x Ga 1 - x N = x P pz ( InN ) + ( 1 - x ) P pz ( GaN ) - - - ( 5 )
自发极化表示为
P In x Ga 1 - x N = x P sp ( InN ) + ( 1 - x ) P sp ( GaN ) + B ( InGaN ) x ( 1 - x ) - - - ( 6 )
P(InxGa1-xN)=Psp(InxGa1-xN)+Ppz(InxGa1-xN)
其中x为InGaN中In组分,为确定值,所以P(InGaN)可以得到一个数值。
令P(AlyInzGa1-y-zN)-P(InxGa1-xN)=0,可以得到量子阱内部极化电场为零的y,z值,此外在满足Eg(GaN)≥Eg(AlInGaN)≥Eg(InGaN)前提下,任何使量子阱内部的极化电场大于(相当于极化电场与内建电场同向)或等于零的AlyInzGa1-y-zN都可以作为本发明InGaN/AlInGaN多量子阱太阳能电池结构中的垒层。
表1
材料 InN GaN AlN
自发计划强度Psp C/cm^2 -0.042 -0.034 -0.09
材料 InGaN AlGaN AlInN
弯曲系数B C/cm^2 -0.037 -0.021 -0.07
一p型掺杂氮化镓层15,其制作在非故意掺杂多量子阱层14上,所述p型掺杂氮化镓层15的生长温度为900-960℃,采用低温生长p型氮化镓层是为了保护高In组分的InGaN/AlInGaN多量子阱层,防止其在高温下发生分解,降低外延片质量。该p型掺杂氮化镓层15采用Mg作为P型掺杂剂,其厚度为100-300nm,自由空穴浓度为1×1017-1×1019cm-3
一N型欧姆电极20,其制作在n型掺杂氮化镓层13上的台面131上,所述的N型欧姆电极20是点状结构或环形结构;
一P型欧姆电极21,其制作在p型掺杂氮化镓层15上,所述的P型欧姆电极21是点状结构或环形结构。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种InGaN/AlInGaN多量子阱太阳能电池结构,包括:
一衬底;
一低温成核层,其制作在衬底上,该低温成核层为后续生长氮化镓材料提供成核中心;
一非故意掺杂氮化镓缓冲层,其制作在低温成核层上;
一n型掺杂氮化镓层,其制作在非故意掺杂氮化镓缓冲层上;
一非故意掺杂多量子阱层,其制作在n型掺杂氮化镓层上面的一侧,另一侧的n型掺杂氮化镓层上面形成一台面,该非故意掺杂多量子阱层为铟镓氮太阳能电池的吸收层;
一p型掺杂氮化镓层,其制作在非故意掺杂多量子阱层上;
一N型欧姆电极,其制作在n型掺杂氮化镓层上的台面上;
一P型欧姆电极,其制作在p型掺杂氮化镓层上。
2.如权利要求1所述的InGaN/AlInGaN多量子阱太阳能电池结构,其中所述衬底的材料为蓝宝石、碳化硅或氮化镓。
3.如权利要求1所述的InGaN/AlInGaN多量子阱太阳能电池结构,其中所述低温成核层的材料为氮化镓或者氮化铝。
4.如权利要求1所述的InGaN/AlInGaN多量子阱太阳能电池结构,其中n型掺杂氮化镓层中的自由电子浓度为1×1017-1×1019cm-3,所述p型掺杂氮化镓层15的自由空穴浓度为1×1017-1×1019cm-3
5.如权利要求1所述的InGaN/AlInGaN多量子阱太阳能电池结构,其中非故意掺杂多量子阱层包括10-20个InxGa1-xN/AlyInzGa1-y-zN周期结构,每个周期由InxGa1-xN阱层141和AlyInzGa1-y-zN垒层140构成,其中0<x≤1。
6.如权利要求5所述的InGaN/AlInGaN多量子阱太阳能电池结构,其中InxGa1-xN阱层的生长温度为700-800℃,厚度为2-5nm。
7.如权利要求5所述的InGaN/AlInGaN多量子阱太阳能电池结构,其中AlInGaN垒层生长温度为800-900℃,厚度为38nm。
8.如权利要求7所述的InGaN/AlInGaN多量子阱太阳能电池结构,其中AlyInzGa1-y-zN垒层中的Al组分y,In组分z的确定要保证阱内总电场最大,同时AlyInzGa1-y-zN垒层的禁带宽度大于或等于InGaN阱层的禁带宽度,但小于或等于GaN的禁带宽度,即Eg(GaN)≥Eg(AlInGaN)≥Eg(InGaN)。
9.如权利要求1所述的InGaN/AlInGaN多量子阱太阳能电池结构,其中所述的N型欧姆电极是点状结构或环形结构。
10.如权利要求1所述的InGaN/AlInGaN多量子阱太阳能电池结构,其中所述的P型欧姆电极是点状结构或环形结构。
CN201410592387.4A 2014-10-29 2014-10-29 InGaN/AlInGaN多量子阱太阳能电池结构 Active CN104393088B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410592387.4A CN104393088B (zh) 2014-10-29 2014-10-29 InGaN/AlInGaN多量子阱太阳能电池结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410592387.4A CN104393088B (zh) 2014-10-29 2014-10-29 InGaN/AlInGaN多量子阱太阳能电池结构

Publications (2)

Publication Number Publication Date
CN104393088A true CN104393088A (zh) 2015-03-04
CN104393088B CN104393088B (zh) 2016-08-17

Family

ID=52610960

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410592387.4A Active CN104393088B (zh) 2014-10-29 2014-10-29 InGaN/AlInGaN多量子阱太阳能电池结构

Country Status (1)

Country Link
CN (1) CN104393088B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106298990A (zh) * 2016-10-27 2017-01-04 东南大学 一种利用自发极化电场的非极性太阳能电池
WO2019196292A1 (zh) * 2018-04-10 2019-10-17 北京创昱科技有限公司 一种氮化物薄膜太阳能电池
CN114709289A (zh) * 2022-03-31 2022-07-05 陕西科技大学 一种太阳能电池外延片及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101540364A (zh) * 2009-04-23 2009-09-23 厦门大学 一种氮化物发光器件及其制备方法
CN101582478A (zh) * 2009-05-21 2009-11-18 上海蓝光科技有限公司 用于光电器件的多量子阱结构及其制造方法
JP2011187591A (ja) * 2010-03-08 2011-09-22 Uv Craftory Co Ltd 窒化物半導体紫外線発光素子
CN103094378A (zh) * 2013-01-28 2013-05-08 中国科学院半导体研究所 含有变In组分InGaN/GaN多层量子阱结构的太阳能电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101540364A (zh) * 2009-04-23 2009-09-23 厦门大学 一种氮化物发光器件及其制备方法
CN101582478A (zh) * 2009-05-21 2009-11-18 上海蓝光科技有限公司 用于光电器件的多量子阱结构及其制造方法
JP2011187591A (ja) * 2010-03-08 2011-09-22 Uv Craftory Co Ltd 窒化物半導体紫外線発光素子
CN103094378A (zh) * 2013-01-28 2013-05-08 中国科学院半导体研究所 含有变In组分InGaN/GaN多层量子阱结构的太阳能电池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106298990A (zh) * 2016-10-27 2017-01-04 东南大学 一种利用自发极化电场的非极性太阳能电池
WO2019196292A1 (zh) * 2018-04-10 2019-10-17 北京创昱科技有限公司 一种氮化物薄膜太阳能电池
CN114709289A (zh) * 2022-03-31 2022-07-05 陕西科技大学 一种太阳能电池外延片及其制备方法

Also Published As

Publication number Publication date
CN104393088B (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
CN102820395B (zh) 一种采用势垒高度渐变量子垒的led结构及其制备方法
CN104465902B (zh) 一种发光二极管结构的制备方法
CN103489975B (zh) 一种具有隧道结结构的氮极性面发光二极管
CN103151435B (zh) 一种具有复合势垒的氮化镓基发光二极管
CN108365069B (zh) 一种高亮度v型极化掺杂深紫外led制备方法
CN106816501B (zh) 一种氮化镓基发光二极管的外延片及其制作方法
CN104393124A (zh) 一种发光二极管外延片结构的制备方法
WO2017202328A1 (zh) 氮化镓基发光二极管及其制备方法
CN106876529B (zh) 一种氮化镓基发光二极管的外延片及其制备方法
CN105206726A (zh) 一种led结构及其生长方法
CN111599903A (zh) 一种具有极化掺杂复合极性面电子阻挡层的紫外led
CN102881784A (zh) Cδ掺杂的p型GaN/AlGaN结构、LED外延片结构及制备方法
Chu et al. On the impact of electron leakage on the efficiency droop for AlGaN based deep ultraviolet light emitting diodes
CN104393088B (zh) InGaN/AlInGaN多量子阱太阳能电池结构
CN103022286A (zh) 一种级联GaN基LED外延片及其制备方法
CN104465914B (zh) 具有势垒高度渐变超晶格层的led结构及其制备方法
CN205092260U (zh) GaN基LED外延结构
CN111180527A (zh) 一种GaN基PN二极管及其制备方法
CN102637793B (zh) 三族氮化合物半导体紫外光发光二极管
CN103022257B (zh) p-i-n结InGaN太阳电池制造方法
CN103824916A (zh) 一种提高氮化镓晶体质量的复合成核层的生长方法
CN104465916A (zh) 氮化镓发光二极管外延片
CN104377283A (zh) 一种发光二极管外延片结构
CN103022211B (zh) 极化增强的p-i-n结InGaN太阳电池
US11588096B2 (en) Method to achieve active p-type layer/layers in III-nitrtde epitaxial or device structures having buried p-type layers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant