CN111180527A - 一种GaN基PN二极管及其制备方法 - Google Patents

一种GaN基PN二极管及其制备方法 Download PDF

Info

Publication number
CN111180527A
CN111180527A CN201911395458.0A CN201911395458A CN111180527A CN 111180527 A CN111180527 A CN 111180527A CN 201911395458 A CN201911395458 A CN 201911395458A CN 111180527 A CN111180527 A CN 111180527A
Authority
CN
China
Prior art keywords
gan
layer
diode
type
gradient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911395458.0A
Other languages
English (en)
Inventor
刘新科
胡聪
高博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Third Generation Semiconductor Research Institute
Original Assignee
Shenzhen Third Generation Semiconductor Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Third Generation Semiconductor Research Institute filed Critical Shenzhen Third Generation Semiconductor Research Institute
Priority to CN201911395458.0A priority Critical patent/CN111180527A/zh
Publication of CN111180527A publication Critical patent/CN111180527A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/66196Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices with an active layer made of a group 13/15 material
    • H01L29/66204Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明提出一种GaN基PN二极管及其制备方法,所述二极管结构自下而上依次为高掺杂的n+型GaN衬底1、非掺杂GaN层2、p型AlGaN层3、p型AlGaN渐变结构4,其中p型AlGaN层3中Al组分摩尔含量为Al和Ga组分之和的0.2‑0.4;所述p型AlGaN渐变结构4中,Al组分从下而上逐渐减小且减小梯度逐渐增大至所述p型AlGaN渐变结构顶部为GaN层。由于渐变结构的极化效应会引入固定负极化电荷诱导自由空穴的产生,有利于提高掺杂效率,在以相对较低的掺杂浓度实现高的空穴浓度的同时,还可以降低载流子散射概率,提高载流子的迁移率,这会使得PN二极管更易获得高质量的P型欧姆接触以及更大的输出电流。

Description

一种GaN基PN二极管及其制备方法
技术领域
本发明属于半导体器件领域,具体为一种GaN基PN二极管及其制备方法。
背景技术
氮化镓作为第三代半导体材料,具有宽禁带,击穿场强高,散热性好以及自发极化等特性,同时又具备物理化学性质稳定,耐腐蚀,抗辐射等性质,被视为是下一代在高压高频等复杂环境下工作的电子器件的首选材料。由于高耐压及高电子迁移率的材料特性,氮化镓被广泛应用在PN二极管等电力电子器件中。然而,在氮化镓PN结外延生长的过程中,P型区往往是通过在外延生长中引入掺杂元素Mg,再通过退火等方式释放出氢激活P型氮化镓来形成的,而且由于激活效率低下,即使引入大量掺杂元素,想要使P型区的载流子浓度达到很高的程度也非常困难,而且大量的掺杂元素会增大载流子的散射概率,降低迁移率。而在PN二极管中,P型区高的载流子浓度有利于形成良好的欧姆接触,增大输出电流。而现有的技术方案不仅在获得高载流子浓度的P型区时有很大的困难,而且通过提高掺杂元素浓度来提高载流子浓度的方式会使得材料载流子的散射概率增大,不利于器件的输出电流的提高。
发明内容
为解决上述问题,本发明提供一种GaN基PN二极管,所述二极管结构自下而上依次为高掺杂的n+型GaN衬底1、非掺杂GaN层2、p型AlGaN层3、p型AlGaN渐变结构4,其中p型AlGaN层3中Al组分摩尔含量为Al和Ga组分之和的0.2-0.4;所述p型AlGaN渐变结构4中,Al组分从下而上逐渐减小且减小梯度逐渐增大至所述p型AlGaN渐变结构顶部为GaN层。
优选的,所述p型AlGaN渐变结构4至少包括第一渐变层、第二渐变层和第三渐变层;所述第一渐变层、所述第二渐变层和所述第三渐变层中的Al组分摩尔含量分别为Al和Ga组分之和的0.3-0.2、0.1-0.05、0.05-0。
优选的,所述高掺杂的n+型GaN衬底1的厚度为,电子浓度为1018cm-3~1020cm-3
优选的,所述非掺杂GaN层2的厚度为5μm-10μm,电子浓度为1015cm-3~1017cm-3
优选的,所述p型AlGaN层3的厚度为400nm-600nm,空穴浓度为1015cm-3~1017cm-3
基于同样的发明构思,本发明另提供一种GaN基PN二极管制备方法,包括如下步骤
S1:高温清洗高掺杂的n+型GaN衬底1;
S2:温度大于1000℃,反应室压力小于50mBar的条件下,通入NH3作为N源,TMGa作为Ga源,在所述高掺杂的n+型GaN衬底1上外延生长5μm-10μm的非掺杂GaN层2;
S3:通入TMAl气体作为Al源,外延生长400nm-600nm的P型AlGaN层;
S4:将TMAl气体的流量逐渐减小至0,TMGa的气体流量增大,外延生长Al组分逐渐减小,减小梯度逐渐增大的p型渐变AlGaN结构。
优选的,所述S1中清洗方式为在外延系统中,1000℃-1200℃下,H2氛围中清洗5min-20min。
优选的,所述S1中的外延系统为金属有机化学气相沉积(MOCVD)、分子束外延(MBE)或氢化物气相外延(HPVE)。
此结构可在衬底背面蒸镀一层Ti/Al/Ni/Au金属叠层,经退火后形成n型欧姆接触,在渐变层上层蒸镀Ni/Au金属叠层,形成P型欧姆接触,制备成一个氮化镓基的垂直PN二极管。
将PN结的P型氮化镓替换成AlGaN可改变材料的能带结构,增大禁带宽度,使材料的反向击穿电压增大;由于渐变层的极化效应会引入固定负极化电荷诱导自由空穴的产生,有利于提高掺杂效率,在以相对较低的掺杂浓度实现高的空穴浓度的同时,还可以降低载流子散射概率,提高载流子的迁移率,这会使得PN二极管更易获得高质量的P型欧姆接触以及更大的输出电流。
利用渐变AlGaN材料诱导空穴自由载流子的原理如下:
首先,当沿(0001)方向外延生长Al组分渐变AlGaN基材料时,由于AlGaN材料电偶极子强度随着Al组分降低而降低,沿(0001)方向极化偶极子分布;沿(0001)面,随Al组分由高到低变化,会产生负净极化电荷;负净极化电荷可提高材料能带,从而提高施主杂质电离能,降低受主杂质电离能,降低背景电子载流子产生概率同时,促进自由空穴载流子的产生;因此,利用极化效应可以提高P型AlGaN材料的空穴载流子浓度,提高掺杂效率,增大器件的输出电流和击穿电压。
本发明引入AlGaN宽禁带材料,可改变能带结构,增大反向击穿电压;利用极化掺杂可以提高掺杂效率,更容易获得P型材料;极化掺杂可不用掺杂剂(或者用量少),可以降低载流子散射概率,对保持载流子迁移率有好处。
附图说明
图1为本发明实施例1的GaN基PN二极管;
图2为本发明实施例1的渐变AlGaN层的极化效应图。
n+型GaN衬底1,非掺杂GaN层2,p型AlGaN层3,p型AlGaN渐变结构4
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。
实施例本实施例提供一种垂直GaN基PN二极管及其制备方法
如图1所示,本实例的GaN基PN二极管结构自下而上依次为厚度为9μm的高掺杂的n+型GaN衬底1、非掺杂GaN层2、厚度为450nm的p型AlGaN层3和厚度为50nm的p型AlGaN渐变结构4,其中0≤x≤0.4,n+型GaN衬底1的电子浓度为1018cm-3~1020cm-3,非掺杂GaN层2的电子浓度为1015cm-3~1017cm-3,p型AlGaN层3的空穴浓度为1017cm-3~1018cm-3,p型AlGaN层3中Al组分为0.3,p型AlGaN渐变结构4中,Al组分从靠近p型AlGaN层3到远离p型AlGaN层3逐渐减小,且减小梯度逐渐增大至AlGa1N渐变结构顶部为GaN层。AlxGa1-xN渐变结构4至少包括第一渐变层、第二渐变层和第三渐变层,所述第一渐变层、第二渐变层、第三渐变层中的x分别为0.2,0.1,0.05。
基于同样的发明构思,本实施例还提供一种垂直GaN基PN二极管制备方法,步骤如下:
将n+型氮化镓衬底放置在MOCVD反应腔中,在1150℃高温,H2氛围中清洗衬底10分钟;
在温度大于1000℃,反应室压力小于50mBar的条件下,通入NH3作为N源,TMGa作为Ga源,在n+型GaN衬底上外延生长9μm的非掺杂GaN层;
在上一步的基础上,通入TMAl气体作为Al源,外延生长450nm的P型AlGaN层;
在上一步的基础上,TMAl气体的流量逐渐减小至0,TMGa的气体相应增大,外延生长Al组分渐变的AlxGa1-xN层50nm,完成PN结的外延生长。
以上所述仅是本发明的较佳实施例而已,并非对本发明做任何形式的限制。虽然本发明已以较佳实例揭露如上,然而并非用以限定本发明。任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述所述的方法及技术内容做出些许的更改或修饰为等同变化的等效实施例,但凡是未脱离本发明技术发案的内容,依据本发明的技术实质对以上实例所做的任何简单修改、等同变化与修饰,仍属于本发明技术方案的范围。

Claims (8)

1.一种GaN基PN二极管,其特征在于:所述二极管结构自下而上依次为高掺杂的n+型GaN衬底、非掺杂GaN层、p型AlGaN层、p型AlGaN渐变结构,其中p型AlGaN层中Al组分摩尔含量为Al和Ga组分之和的0.2-0.4;所述p型AlGaN渐变结构中,Al组分从下而上逐渐减小且减小梯度逐渐增大至所述p型AlGaN渐变结构顶部为GaN层。
2.如权利要求1所述的GaN基PN二极管,其特征在于:所述p型AlGaN渐变结构至少包括第一渐变层、第二渐变层和第三渐变层;所述第一渐变层、所述第二渐变层和所述第三渐变层中的Al组分摩尔含量分别为Al和Ga组分之和的0.3-0.2、0.1-0.05、0.05-0。
3.如权利要求1所述的GaN基PN二极管,其特征在于:所述高掺杂的n+型GaN衬底的厚度为,电子浓度为1018cm-3~1020cm-3
4.如权利要求1所述的GaN基PN二极管,其特征在于:所述非掺杂GaN层的厚度为5μm-10μm,电子浓度为1015cm-3~1017cm-3
5.如权利要求1所述的GaN基PN二极管,其特征在于:所述p型AlGaN层的厚度为400nm-600nm,空穴浓度为1015cm-3~1017cm-3
6.一种GaN基PN二极管制备方法,其特征在于:包括如下步骤
S1:高温清洗高掺杂的n+型GaN衬底;
S2:温度大于1000℃,反应室压力小于50mBar的条件下,通入NH3作为N源,TMGa作为Ga源,在所述高掺杂的n+型GaN衬底上外延生长5μm-10μm的非掺杂GaN层;
S3:通入TMAl气体作为Al源,外延生长400nm-600nm的P型AlGaN层;
S4:将TMAl气体的流量逐渐减小至0,TMGa的气体流量增大,外延生长Al组分逐渐减小,减小梯度逐渐增大的p型渐变AlGaN结构。
7.如权利要求6所述的GaN基PN二极管制备方法,其特征在于:所述S1中清洗方式为在外延系统中,1000℃-1200℃下,H2氛围中清洗5min-20min。
8.如权利要求6所述的GaN基PN二极管制备方法,其特征在于:所述S1中的外延系统为金属有机化学气相沉积、分子束外延或氢化物气相外延。
CN201911395458.0A 2019-12-30 2019-12-30 一种GaN基PN二极管及其制备方法 Pending CN111180527A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911395458.0A CN111180527A (zh) 2019-12-30 2019-12-30 一种GaN基PN二极管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911395458.0A CN111180527A (zh) 2019-12-30 2019-12-30 一种GaN基PN二极管及其制备方法

Publications (1)

Publication Number Publication Date
CN111180527A true CN111180527A (zh) 2020-05-19

Family

ID=70655927

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911395458.0A Pending CN111180527A (zh) 2019-12-30 2019-12-30 一种GaN基PN二极管及其制备方法

Country Status (1)

Country Link
CN (1) CN111180527A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111710762A (zh) * 2020-06-28 2020-09-25 中国科学院半导体研究所 具有p型极化掺杂的III族氮化物光电子器件
CN111769034A (zh) * 2020-06-04 2020-10-13 东莞市天域半导体科技有限公司 一种渐变式pn结材料的制备方法
CN113790744A (zh) * 2021-09-10 2021-12-14 华能新能源股份有限公司 一种光探测方法及光探测器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1656616A (zh) * 2002-04-30 2005-08-17 克利公司 高压开关器件和形成该器件的工艺
US20070096239A1 (en) * 2005-10-31 2007-05-03 General Electric Company Semiconductor devices and methods of manufacture
JP2007214515A (ja) * 2006-02-13 2007-08-23 Nippon Telegr & Teleph Corp <Ntt> 窒化物半導体構造
US20110235665A1 (en) * 2009-12-14 2011-09-29 John Simon Compositionally graded heterojunction semiconductor device and method of making same
CN103887385A (zh) * 2014-03-13 2014-06-25 中国科学院半导体研究所 提高发光效率的极性面氮化镓基发光器件
CN107134517A (zh) * 2017-05-03 2017-09-05 湘能华磊光电股份有限公司 一种led外延生长方法
CN109216331A (zh) * 2018-07-23 2019-01-15 西安电子科技大学 一种基于pin二极管的毫米波预失真集成电路及制作方法
CN109300980A (zh) * 2018-09-25 2019-02-01 中国科学院长春光学精密机械与物理研究所 一种高迁移率高空穴浓度P型AlGaN材料及其生长方法
CN110544719A (zh) * 2019-09-16 2019-12-06 河北工业大学 一种GaN基PIN二极管器件结构及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1656616A (zh) * 2002-04-30 2005-08-17 克利公司 高压开关器件和形成该器件的工艺
US20070096239A1 (en) * 2005-10-31 2007-05-03 General Electric Company Semiconductor devices and methods of manufacture
JP2007214515A (ja) * 2006-02-13 2007-08-23 Nippon Telegr & Teleph Corp <Ntt> 窒化物半導体構造
US20110235665A1 (en) * 2009-12-14 2011-09-29 John Simon Compositionally graded heterojunction semiconductor device and method of making same
CN103887385A (zh) * 2014-03-13 2014-06-25 中国科学院半导体研究所 提高发光效率的极性面氮化镓基发光器件
CN107134517A (zh) * 2017-05-03 2017-09-05 湘能华磊光电股份有限公司 一种led外延生长方法
CN109216331A (zh) * 2018-07-23 2019-01-15 西安电子科技大学 一种基于pin二极管的毫米波预失真集成电路及制作方法
CN109300980A (zh) * 2018-09-25 2019-02-01 中国科学院长春光学精密机械与物理研究所 一种高迁移率高空穴浓度P型AlGaN材料及其生长方法
CN110544719A (zh) * 2019-09-16 2019-12-06 河北工业大学 一种GaN基PIN二极管器件结构及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘红侠等: "极化效应对AlGaN/GaN异质结p-i-n光探测器的影响", 《物理学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111769034A (zh) * 2020-06-04 2020-10-13 东莞市天域半导体科技有限公司 一种渐变式pn结材料的制备方法
CN111769034B (zh) * 2020-06-04 2022-03-29 东莞市天域半导体科技有限公司 一种渐变式pn结材料的制备方法
CN111710762A (zh) * 2020-06-28 2020-09-25 中国科学院半导体研究所 具有p型极化掺杂的III族氮化物光电子器件
CN113790744A (zh) * 2021-09-10 2021-12-14 华能新能源股份有限公司 一种光探测方法及光探测器
WO2023035445A1 (zh) * 2021-09-10 2023-03-16 中国华能集团清洁能源技术研究院有限公司 一种光探测方法及光探测器

Similar Documents

Publication Publication Date Title
US7919791B2 (en) Doped group III-V nitride materials, and microelectronic devices and device precursor structures comprising same
CN103003931B (zh) 半导体元件用外延基板、半导体元件、pn接合二极管元件以及半导体元件用外延基板的制造方法
US9153648B2 (en) Semiconductor stacked body, method for manufacturing same, and semiconductor element
CN104813479B (zh) 具有部分凹陷阳极的GaN基肖特基二极管
CN111180527A (zh) 一种GaN基PN二极管及其制备方法
US20160079370A1 (en) Semiconductor device, semiconductor wafer, and semiconductor device manufacturing method
US20150084163A1 (en) Epitaxial substrate, semiconductor device, and method for manufacturing semiconductor device
CN110137244B (zh) GaN基自支撑衬底的垂直结构HEMT器件及制备方法
US8431936B2 (en) Method for fabricating a p-type semiconductor structure
CN105957881A (zh) 具有背势垒的AlGaN/GaN极化掺杂场效应晶体管及制造方法
CN110838514B (zh) 一种半导体器件的外延结构及其制备方法、半导体器件
Limb et al. Low on-resistance GaN pin rectifiers grown on 6H-SiC substrates
US11588096B2 (en) Method to achieve active p-type layer/layers in III-nitrtde epitaxial or device structures having buried p-type layers
JP2012186449A (ja) 半導体装置
US20180287002A1 (en) High voltage photovoltaics with stacked multi-junctions using wide bandgap materials
CN113675260A (zh) 基于线性缓变掺杂漂移层的GaN肖特基二极管及其制备方法
CN112563380A (zh) Si衬底的AlGaN基深紫外LED外延片及制备方法
CN105489724A (zh) 一种半极性led外延结构及其制备方法
CN109346573A (zh) 一种氮化镓基发光二极管外延片及其制备方法
CN111739946B (zh) 一种同型异质结构impatt二极管及其制作方法
US20140027770A1 (en) Semiconductor laminate and process for production thereof, and semiconductor element
JP2007042936A (ja) Iii−v族化合物半導体エピタキシャルウェハ
CN213816182U (zh) Si衬底的AlGaN基深紫外LED外延片
CN114497185B (zh) 一种碳掺杂绝缘层的制备方法、hemt器件及其制备方法
CN109545921B (zh) 一种led芯片、led外延片及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200519

RJ01 Rejection of invention patent application after publication