CN104465914B - 具有势垒高度渐变超晶格层的led结构及其制备方法 - Google Patents

具有势垒高度渐变超晶格层的led结构及其制备方法 Download PDF

Info

Publication number
CN104465914B
CN104465914B CN201410719477.5A CN201410719477A CN104465914B CN 104465914 B CN104465914 B CN 104465914B CN 201410719477 A CN201410719477 A CN 201410719477A CN 104465914 B CN104465914 B CN 104465914B
Authority
CN
China
Prior art keywords
layer
superlattices
built
value
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410719477.5A
Other languages
English (en)
Other versions
CN104465914A (zh
Inventor
逯瑶
曲爽
王成新
马旺
徐现刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Inspur Huaguang Optoelectronics Co Ltd
Original Assignee
Shandong Inspur Huaguang Optoelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Inspur Huaguang Optoelectronics Co Ltd filed Critical Shandong Inspur Huaguang Optoelectronics Co Ltd
Priority to CN201410719477.5A priority Critical patent/CN104465914B/zh
Publication of CN104465914A publication Critical patent/CN104465914A/zh
Application granted granted Critical
Publication of CN104465914B publication Critical patent/CN104465914B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body

Abstract

一种具有势垒高度渐变超晶格层的LED结构及其制备方法,该LED结构包括衬底,在衬底上自下至上依次设置有成核层、缓冲层、n型导电层、超晶格层、多量子阱层和p型导电层,所述超晶格层是交替生长的AlxGa1‑x‑yInyN超晶格阱和AluGa1‑u‑vInvN超晶格垒,重复周期2‑50个,其中0<x≤u<1,0<v≤y<1;由n型导电层至p型导电层方向的各个超晶格阱中x和y的取值恒定不变,各个超晶格垒中u的取值按等差数列逐渐降低,v的取值按等差数列逐渐增加。在MOCVD反应腔室中生长各层。本发明提高了对载流子的束缚能力,增强了电子和空穴波函数的空间重合率,有效减少电子泄露,增加载流子与空穴的复合效率,提高器件的发光效率,光输出功率提高5%。

Description

具有势垒高度渐变超晶格层的LED结构及其制备方法
技术领域
本发明涉及一种GaN基LED的结构及其制备方法,属于光电子技术领域。
背景技术
III-V族宽禁带直接带隙半导体具有宽带隙、高电子迁移率、高热导率、高硬度、稳定的化学性质、较小介电常数和耐高温的一系列优点,因此其在高亮度蓝色发光二极管、蓝色半导体激光器以及抗辐射、高频、高温、高压等电子电力器件中有着广泛的实际应用和巨大的市场前景。GaN是半导体III族氮化物的基本材料,质地坚硬,且化学性质异常稳定,室温下不与酸、碱反应,不溶于水,具有较高的熔点1700℃。GaN具有优秀的电学性质,电子迁移率最高可达900cm2/(V·s)。n型掺杂的GaN材料很容易得到,但是p型掺杂 GaN 却不易得到,p型GaN曾经是GaN器件的制约瓶颈。在热退火技术提出之后,GaN 较容易地实现Mg杂质的掺杂,目前p型载流子浓度可以达到1017~1020/cm3。近十几年来,采用缓冲层的外延技术和p型掺杂的提高,使得GaN基器件研究重新振兴,变为热点。
GaN 基多量子阱发光二极管(LED)已经进入市场并取得很大进展,但是芯片出光效率低下并且衰减的问题仍未得到很好解决。现有的LED结构是在蓝宝石(α-Al2O3)或者碳化硅(SiC)衬底上沿着[0001]方向外延得到的GaN基材料存在自发极化和压电极化,致使能带产生严重弯曲。传统通用结构中, InGaN 量子阱和GaN量子垒之间由于存在极化效应,阱和垒的能带产生形变。形变的量子阱对载流子的束缚能力大幅下降,产生很大的漏电流。而且量子垒的形变对载流子尤其是空穴的输运产生附加势垒,使空穴不能均匀的分布在各个量子阱内,只能集中在靠近p侧的一两个阱内。因此传统结构 LED 的内量子效率在较高电流密度注入下出现衰减。
中国专利文献CN103474539A公开的《一种含有超晶格层的LED 结构外延生长方法及其结构》,是在生长发光层步骤与生长P型AlGaN层步骤之间,包括生长InN/GaN超晶格层的步骤:在温度为740-770℃、 100mbar 到800mbar压力的反应室内,采用H2和/或N2作为载气, 生长InN/GaN超晶格层, 每层InN厚度为1-2nm,每层GaN厚度为1-2nm;InN/GaN超晶格层的周期数为10-15层,总厚度为20-30nm。该方法在传统的发光层量子阱层和电子阻挡层(AlGaN:Mg)之间插入InN/GaN超晶格层,利用InN的晶格系数从GaN顺利过渡到AlGaN,减小应力,增加量子阱的空穴浓度,提高发光效率。但是在量子阱层和电子阻挡层之间加入超晶格结构,晶格缺陷较大,不利于改善晶体质量。
中国专利文献CN 103633214 A公开的《一种InGaN/GaN超晶格缓冲层结构制备方法及含该结构的LED芯片》,包括浅量子阱层和MQW层,包括设置于浅量子阱层和MQW层之间的超晶格缓冲层;超晶格缓冲层包括多个依次叠置的缓冲层单元,其中,每个缓冲层单元包括:InGaN层以及多个掺杂层;掺杂层包括依次叠置的uGaN层和nGaN层,并设置在 InGaN层上;该InGaN/GaN超晶格缓冲层结构能提高具有该结构的LED芯片有源区晶体质量,降低有源区晶格失和热应力失配,有效减少电子泄露,增加载流子与空穴的复合效率,提高器件的发光效率。通过设置了InGaN/GaN超晶格缓冲层结构,虽在一定程度上提升了晶体质量,但可掺杂的浓度较少,容易导致芯片电压高。
上述专利文献中的 LED 结构中,虽然采用超晶格缓冲层结构,但是超晶格垒与超晶格阱之间的极化效应仍然较强,对载流子的束缚能力大,减弱了电子和空穴波函数的空间重合率,较强的极化效应使得晶格缺陷较多,不能进一步提高LED芯片有源区晶体质量和器件的发光效率。
发明内容
本发明针对现有超晶格缓冲层的LED结构存在的不足,提供一种能够增强内量子效率和光输出功率的具有势垒高度渐变超晶格层的LED结构,同时提供一种该LED结构的制备方法。
本发明的具有势垒高度渐变超晶格层的LED结构,包括衬底,在衬底上自下至上依次设置有成核层、缓冲层、n型导电层、超晶格层、多量子阱层和p型导电层,在n型导电层上和p型导电层上分别设置有欧姆接触层;所述超晶格层是交替生长的AlxGa1-x-yInyN超晶格阱和AluGa1-u-vInvN超晶格垒,重复周期2-50 个,其中0<x≤u<1,0<v≤y<1;由n型导电层至p型导电层方向的各个超晶格阱中x和y的取值恒定不变,各个超晶格垒中u的取值按等差数列逐渐降低,v的取值按等差数列逐渐增加。
AlxGa1-x-yInyN超晶格阱的厚度为0.5-30nm 2nm-50nm。
AluGa1-u-vInvN超晶格垒的厚度为2-75nm 10nm-60nm。
对于不同势垒高度的AluGa1-u-vInvN超晶格垒,u和v的数值要满足如下条件:使得超晶格垒的势垒高度(也就是禁带宽度) 由n型导电层至p型导电层方向逐步降低;而且超晶格垒的势垒高度大于超晶格阱的势垒高度。
u和v按等差数列变化指的是:对于n个超晶格垒,u最大值为u(max),最小值u(min),相邻垒内u相差常数k=[u(max)-u(min)]/(n-1),u是按等差数列降低;同理对于n个超晶格垒,v最大值为v(max),最小值v(min),相邻垒内v相差常数k=[v(max)-v(min)]/(n-1),v是按等差数列增加。对于不同势垒高度的AluGa1-u-vInvN,u和v的数值要满足如下条件:使得超晶格垒的势垒高度(也就是禁带宽度)从由n型导电层至p型导电层方向逐步降低;使得超晶格垒的禁带宽度大于超晶格阱材料的禁带宽度。
根据本领域内通用的半导体物理知识, AlGaInN 材料中 Al 组分的增加或 In组分的减小都会使得材料的禁带宽度减小。超晶格垒材料,u的取值需要大于等于x,v的取值需要小于等于y。并且为了得到从 n侧到 p 侧势垒高度逐步降低的超晶格垒,需要靠近n 侧超晶格垒中 Al 组分不低于相邻的靠近 p侧的超晶格垒中 Al 的组分,或者靠近 n侧超晶格垒中 In 组分不高于相邻的靠近 p 侧的超晶格垒中In 的组分。
上述具有势垒高度渐变超晶格层的LED结构的制备方法,包括以下步骤 :
(1)在MOCVD(金属有机化合物化学气相沉淀设备)反应腔室中将衬底层加热300℃-1200℃,在氢气气氛下处理2-10分钟,然后温度降至200℃-600℃生长GaN成核层,厚度1nm-800nm;
(2)然后温度升到500℃-950℃,氢气作为载气,生长1μm-100μm厚的非掺杂GaN缓冲层 ;
(3)MOCVD反应腔室中,将温度调节至850℃-1300℃,氢气作为载气的条件下,生长厚度为1μm-10μm 的掺Si的n型GaN层,Si的掺杂浓度范围:1×1017cm-3-1×1020cm-3
(4)MOCVD反应腔室中,将温度调节至420℃-1200℃,通入金属有机源TMGa、TMIn和TMAl,生长超晶格层;所述的超晶格层是交替生长的厚度为0.5-30nm的AlxGa1-x-yInyN超晶格阱和厚度为2-75nm的AluGa1-u-vInvN超晶格垒,重复周期2-50 个,其中0<x≤u<1,0<v≤y<1;由n型导电层至p型导电层方向的各个超晶格阱中x和y的取值恒定不变,各个超晶格垒中u的取值按等差数列逐渐降低,v的取值按等差数列逐渐增加。
(5)MOCVD反应腔室中,将温度调节至500℃-1200℃,通入金属有机源TMGa、TMIn和TMAl,生长多量子阱层;所述的多量子阱层是交替生长的厚度为1-30nm的InGaN阱和厚度为10-80nm的GaN垒,重复周期为2-60个;
(6)MOCVD 反应腔室中,将温度调节至500℃-1200℃,生长80nm-500nm厚的掺Mg的p型GaN层,Mg掺杂浓度范围为1×1018cm-3-1×1020cm-3
(7)最后在n型GaN层和p型GaN层上分别制作TiAlNiAu电极,制作成欧姆接触层。
本发明的 LED 结构中,采用AlxGa1-x-yInyN/AluGa1-u-vInvN超晶格缓冲层结构,超晶格垒中加入In组分,导致阱垒之间应力减小,压电极化电场强度降低,所以增强了电子和空穴波函数的空间重合率;同时,极化效应的减弱使得晶格缺陷较少,特别是靠近量子阱一侧的Al组分逐渐减少,为多量子阱层的生长和有效发光提供了结构支持。该超晶格缓冲层可以提高具有该结构的LED芯片有源区晶体质量,降低有源区晶格失和热应力失配,有效减少电子泄露,增加载流子与空穴的复合效率,提高器件的发光效率。
本发明的 LED 结构增强了LED结构的内量子效率和光输出功率,试验证明,光输出功率提高5%。
附图说明
图1是本发明LED结构的示意图。
图中:1、衬底;2、成核层;3、缓冲层;4、n型导电层(n型GaN层);5、超晶格层;6、多量子阱层;7、p型导电层(p型GaN层);8、欧姆接触层。
具体实施方式
如图1所示,本发明的具有势垒高度渐变超晶格层的LED结构,包括衬底1,在衬底上自下至上依次设置有成核层2、缓冲层3、n型导电层4、超晶格层5、多量子阱层6和p型导电层7,在n型导电层4上和p型导电层7上分别设置有欧姆接触层8。衬底1为蓝宝石衬底、碳化硅衬底、氮化镓衬底、硅衬底之一。成核层2是厚度为1nm-800nm的非掺杂GaN。缓冲层3是厚度为1μm-100μm的非掺杂GaN。n型导电层4是厚度为1μm-10μm的掺Si的n型GaN层,Si的掺杂浓度是1×1017cm-3-1×1020cm-3。多量子阱层6为交替生长的厚度为1-30nm的InGaN阱和厚度为10-80nm的GaN垒,重复周期为2-60个。p型导电层7是厚度为80nm-500nm的掺Mg的p型GaN层,Mg掺杂浓度是1×1018cm-3-1×1020cm-3。欧姆接触层8为TiAlNiAu电极。
所述超晶格层6是交替生长的厚度为2nm-50nm的AlxGa1-x-yInyN超晶格阱和厚度为10nm-60nm 的AluGa1-u-vInvN超晶格垒,重复周期2-75个,其中0<x≤u<1,0<v≤y<1;自n侧至 p侧(n侧至p侧指:从n型导电层方向到p型导电层方向,也即LED结构中从下到上)x和y的取值恒定不变,u的取值按等差数列逐渐降低,v的取值按等差数列逐渐增加。对于不同势垒高度的AluGa1-u-vInvN,u和v的数值要满足如下条件:使得超晶格垒的禁带宽度 (也就是势垒高度)从n侧到p侧逐步降低;而且超晶格垒的禁带宽度大于超晶格阱的禁带宽度。
上述具有势垒高度渐变超晶格层的LED结构的制备过程如下所述:
(1)在MOCVD反应腔室中将衬底1加热300℃-1200℃,在氢气气氛下处理2-10分钟,然后温度降至200℃-600℃生长GaN成核层;(2)然后温度升到500℃-950℃,氢气作为载气,生长GaN缓冲层 ;(3)将温度调节至850℃-1300℃,氢气作为载气的条件下,生长掺Si的n型GaN层;(4)将温度调节至420℃-1200℃,通入金属有机源TMGa、TMIn和TMAl,生长超晶格层;(5)将温度调节至500℃-1200℃,通入金属有机源TMGa、TMIn和TMAl,生长多量子阱层;即交替生长InGaN阱和GaN垒,重复周期为2-60个;(6)MOCVD 反应腔室中,将温度调节至500℃-1200℃,生长掺Mg的p型GaN层;(7)最后在n型GaN层和p型GaN层上分别制作TiAlNiAu电极,制作成欧姆接触层。
实施例1
衬底层1为氮化镓衬底。成核层2是厚度为10nm的GaN。缓冲层3是厚度为3μm的非掺杂GaN。n型导电层4是厚度为4μm的掺Si的n型GaN层,Si的掺杂浓度5×1017cm-3。超晶格层5是交替生长的厚度为4nm为AlxGa1-x-yInyN超晶格阱和厚度为15nm的AluGa1-u-vInvN超晶格垒,重复周期5个;自n侧至p侧方向: AlxGa1-x-yInyN超晶格阱中的x=0.05,y=0.17,x和y的取值恒定不变;AluGa1-u-vInvN超晶格垒中的u的取值按等差数列逐渐降低,v的取值按等差数列逐渐增加,自n侧至p侧方向,五个超晶格垒中u的取值分别是u1=0.2、 u2=0.175、u3=0.15、u4=0.125和u5=0.1,v的取值分别是v1=0.11、v2=0.12、v3=0.13、v4=0.14和v5=0.15多量子阱层6是交替生长的厚度为3nm的InGaN阱(750℃)和厚度为14nm的GaN垒(800℃ ),重复周期5个(6个垒夹杂5个阱)。p型导电层7是厚度为200nm的掺Mg的p型GaN层,Mg掺杂浓度5×1018cm-3。欧姆接触层8为TiAlNiAu电极。。
实施例2
超晶格层是交替生长的厚度为10nm的AlxGa1-x-yInyN超晶格阱和厚度为15nm 的AluGa1-u-vInvN超晶格垒,重复周期20个。其中,x=0.15,y=0.275。对于20个AluGa1-u-vInvN垒,选取u(min)=0.2,从n侧到p侧20个超晶格垒中,Al组分为u1=u(max)=0.6,u5=u(min)=0.2,u的取值按等差数列逐渐降低;从n侧到 p侧20个超晶格垒中In组分为v1=v(min)=0.21,v5=v(max)=0.25,v的取值按等差数列逐渐增加。
实施例3
本实施例与实施例 1不同之处是:
AlxGa1-x-yInyN超晶格阱中的x=0.1,y=0.302,x和y的取值恒定不变。AluGa1-u- vInvN超晶格垒中的u的取值按等差数列逐渐降低,v的取值按等差数列逐渐增加,自n侧至p侧方向,u的取值分别是u1=0.25,u2=0.225,u3=0.2,u4=0.175, u5=0.15;自n侧至p侧方向,v的取值分别是v1=0.25,v2=0.26,v3=0.27,v4=0.28, v5=0.29。
实施例4
本实施例与实施例 1不同之处是:
AlxGa1-x-yInyN超晶格阱中的x=0.15,y=0.275,x和y的取值恒定不变。AluGa1-u- vInvN超晶格垒中的u的取值按等差数列逐渐降低,v的取值按等差数列逐渐增加,自n侧至p侧方向,u的取值分别是u1=0.3,u2=0.275,u3=0.25,u4=0.225, u5=0.2;自n侧至p侧方向,v的取值分别是v1=0.21,v2=0.22,v3=0.23,v4=0.24, v5=0.25。

Claims (5)

1.一种具有势垒高度渐变超晶格层的LED结构,包括衬底,在衬底上自下至上依次设置有成核层、缓冲层、n型导电层、超晶格层、多量子阱层和p型导电层,在n型导电层上和p型导电层上分别设置有欧姆接触层;其特征是:所述超晶格层是交替生长的AlxGa1-x-yInyN超晶格阱和AluGa1-u-vInvN超晶格垒,重复周期2-50 个,其中0<x≤u<1,0<v≤y<1;由n型导电层至p型导电层方向的各个超晶格阱中x和y的取值恒定不变,各个超晶格垒中u的取值按等差数列逐渐降低,v的取值按等差数列逐渐增加。
2.根据权利要求1所述的具有势垒高度渐变超晶格层的LED结构,其特征是:所述AlxGa1-x-yInyN超晶格阱的厚度为0.5-30nm。
3.根据权利要求1所述的具有势垒高度渐变超晶格层的LED结构,其特征是:所述AluGa1-u-vInvN超晶格垒的厚度为2-75nm。
4.根据权利要求1所述的具有势垒高度渐变超晶格层的LED结构,其特征是:对于不同势垒高度的AluGa1-u-vInvN超晶格垒,u和v的数值要满足如下条件:使得超晶格垒的势垒高度 由n型导电层至p型导电层方向逐步降低;而且超晶格垒的势垒高度大于超晶格阱的势垒高度。
5.一种权利要求1所述具有势垒高度渐变超晶格层的LED结构的制备方法,其特征是,包括以下步骤 :
(1)在MOCVD反应腔室中将衬底层加热300℃-1200℃,在氢气气氛下处理2-10分钟,然后温度降至200℃-600℃生长GaN成核层,厚度 1nm-800nm;
(2)然后温度升到500℃-950℃,氢气作为载气,生长1μm-100μm厚的非掺杂GaN缓冲层;
(3)MOCVD反应腔室中,将温度调节至850℃-1300℃,氢气作为载气的条件下,生长厚度为1μm-10μm 的掺Si的n型GaN层,Si的掺杂浓度范围:1×1017cm-3-1×1020cm-3
(4)MOCVD反应腔室中,将温度调节至420℃-1200℃,通入金属有机源TMGa、TMIn和TMAl,生长超晶格层;所述的超晶格层是交替生长的厚度为0.5-30nm的AlxGa1-x-yInyN超晶格阱和厚度为2-75nm的AluGa1-u-vInvN超晶格垒,重复周期2-50 个,其中0<x≤u<1,0<v≤y<1;由n型导电层至p型导电层方向的各个超晶格阱中x和y的取值恒定不变,各个超晶格垒中u的取值按等差数列逐渐降低,v的取值按等差数列逐渐增加;
(5)MOCVD反应腔室中,将温度调节至500℃-1200℃,通入金属有机源TMGa、TMIn和TMAl,生长多量子阱层;所述的多量子阱层是交替生长的厚度为1-30nm的InGaN阱和厚度为10-80nm的GaN垒,重复周期为2-60个;
(6)MOCVD 反应腔室中,将温度调节至500℃-1200℃,生长80nm-500nm厚的掺Mg的p型GaN层,Mg掺杂浓度范围为1×1018cm-3-1×1020cm-3
(7)最后在n型GaN层和p型GaN层上分别制作TiAlNiAu电极,制作成欧姆接触层。
CN201410719477.5A 2014-12-03 2014-12-03 具有势垒高度渐变超晶格层的led结构及其制备方法 Active CN104465914B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410719477.5A CN104465914B (zh) 2014-12-03 2014-12-03 具有势垒高度渐变超晶格层的led结构及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410719477.5A CN104465914B (zh) 2014-12-03 2014-12-03 具有势垒高度渐变超晶格层的led结构及其制备方法

Publications (2)

Publication Number Publication Date
CN104465914A CN104465914A (zh) 2015-03-25
CN104465914B true CN104465914B (zh) 2017-08-04

Family

ID=52911643

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410719477.5A Active CN104465914B (zh) 2014-12-03 2014-12-03 具有势垒高度渐变超晶格层的led结构及其制备方法

Country Status (1)

Country Link
CN (1) CN104465914B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110635004A (zh) * 2019-08-28 2019-12-31 映瑞光电科技(上海)有限公司 GaN基发光二极管外延结构
CN110635006A (zh) * 2019-08-28 2019-12-31 映瑞光电科技(上海)有限公司 GaN基发光二极管外延结构
CN113224193B (zh) * 2021-04-12 2022-06-14 华南理工大学 结合嵌入电极与钝化层结构的InGaN/GaN多量子阱蓝光探测器及其制备方法与应用
CN114497297B (zh) * 2021-12-21 2023-02-24 重庆康佳光电技术研究院有限公司 红光外延层及其生长方法、红光led芯片及显示面板
CN115988956B (zh) * 2023-01-31 2023-06-02 北京大学 一种相变温度可调的超晶格Mott相变器件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1431722A (zh) * 2003-02-18 2003-07-23 华南师范大学 Ⅲ族氮化物半导体蓝色发光器件
CN1659713A (zh) * 2002-06-04 2005-08-24 氮化物半导体株式会社 氮化镓(GaN)类化合物半导体装置及其制造方法
CN102820395A (zh) * 2011-06-07 2012-12-12 山东华光光电子有限公司 一种采用势垒高度渐变量子垒的led结构及其制备方法
CN103887381A (zh) * 2014-03-28 2014-06-25 西安神光皓瑞光电科技有限公司 一种提升紫外led外延材料结晶质量的生长方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1659713A (zh) * 2002-06-04 2005-08-24 氮化物半导体株式会社 氮化镓(GaN)类化合物半导体装置及其制造方法
CN1431722A (zh) * 2003-02-18 2003-07-23 华南师范大学 Ⅲ族氮化物半导体蓝色发光器件
CN102820395A (zh) * 2011-06-07 2012-12-12 山东华光光电子有限公司 一种采用势垒高度渐变量子垒的led结构及其制备方法
CN103887381A (zh) * 2014-03-28 2014-06-25 西安神光皓瑞光电科技有限公司 一种提升紫外led外延材料结晶质量的生长方法

Also Published As

Publication number Publication date
CN104465914A (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
CN106663718B (zh) 光电装置
KR102383970B1 (ko) 매립된 활성화된 p-(Al,In)GaN 층
CN102820395B (zh) 一种采用势垒高度渐变量子垒的led结构及其制备方法
CN101488550B (zh) 高In组分多InGaN/GaN量子阱结构的LED的制造方法
CN105633235B (zh) 一种n型GaN结构的GaN基LED外延结构及生长方法
Zhang et al. On the effect of step-doped quantum barriers in InGaN/GaN light emitting diodes
JP4332720B2 (ja) 半導体素子形成用板状基体の製造方法
US7417258B2 (en) Semiconductor light-emitting device, and a method of manufacture of a semiconductor device
CN104465914B (zh) 具有势垒高度渐变超晶格层的led结构及其制备方法
JP2011155241A (ja) 歪平衡発光デバイス及びその製造方法
JP5521068B1 (ja) Iii族窒化物半導体発光素子
US8445938B2 (en) Nitride semi-conductive light emitting device
Chiu et al. Reduction of efficiency droop in semipolar (1101) InGaN/GaN light emitting diodes grown on patterned silicon substrates
JP2015046598A (ja) 正孔注入層を備える半導体発光素子及びその製造方法
CN106299052B (zh) 一种用于LED的GaN外延结构以及制备方法
CN105206726A (zh) 一种led结构及其生长方法
CN209104183U (zh) 一种高性能的绿光二极管多量子阱结构
CN205092260U (zh) GaN基LED外延结构
CN102637793B (zh) 三族氮化合物半导体紫外光发光二极管
CN110047980B (zh) 一种紫外led外延结构及其制备方法
KR100957724B1 (ko) 화합물 반도체 발광소자 및 발광소자를 위한 발광소자의화합물 반도체 조성비 결정방법
CN104733571B (zh) 一种led外延生长方法
Zhang et al. Study on the electron overflow in 264 nm AlGaN light-emitting diodes
CN104241458A (zh) 一种垒宽可变的氮化镓基led外延片的制备方法
CN115036402B (zh) 诱导增强型Micro-LED同质外延结构及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant