CN114709289A - 一种太阳能电池外延片及其制备方法 - Google Patents

一种太阳能电池外延片及其制备方法 Download PDF

Info

Publication number
CN114709289A
CN114709289A CN202210343816.9A CN202210343816A CN114709289A CN 114709289 A CN114709289 A CN 114709289A CN 202210343816 A CN202210343816 A CN 202210343816A CN 114709289 A CN114709289 A CN 114709289A
Authority
CN
China
Prior art keywords
gan
layer
ingan
top surface
epitaxial wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210343816.9A
Other languages
English (en)
Inventor
单恒升
李明慧
李诚科
刘胜威
梅云俭
宋一凡
马淑芳
许并社
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN202210343816.9A priority Critical patent/CN114709289A/zh
Publication of CN114709289A publication Critical patent/CN114709289A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • H01L31/03048Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/68Crystals with laminate structure, e.g. "superlattices"
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • H01L31/035263Doping superlattices, e.g. nipi superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Metallurgy (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种太阳能电池外延片及其制备方法,外延片包括从下至上依次设置的衬底、GaN成核层、GaN本征层、N型GaN层、InGaN/GaN超晶格层、U型GaN层、InGaN/GaN量子阱层、P型GaN层。本发明采用了衬底、超晶格层和高In组分的InGaN/GaN量子阱层结构,降低了位错密度,提高了光吸收率,获得结晶质量较高的外延片。与具有传统外延片的太阳能电池相比,采用高In组分的外延片制得的太阳能电池载流子收集增多,表面复合减少,在一定程度上提高了InGaN/GaN太阳能电池的光电转换效率。

Description

一种太阳能电池外延片及其制备方法
技术领域
本发明涉及太阳能电池技术领域,特别涉及一种太阳能电池外延片及其制备方法。
背景技术
在第三代半导体中,Ⅲ-Ⅴ族半导体GaN拥有一定的代表性。GaN的禁带宽度较宽,达3.4eV。它的熔点较高,达1700℃,电离度高约0.43~0.5。不仅如此,GaN还拥有高的导热系数、击穿电场与导热率,其还具备抗辐射能力强,硬度高等优点,在光电子学和微电子学领域内有巨大的应用价值。
目前,进行了很多关于InGaN外延片的研究,这些研究主要集中在InGaN多量子阱的生长过程和随后的器件性能,包括侧向外延生长的使用,多量子阱周期数的优化,不同衬底的使用,不同GaN晶体取向上的生长等。这些方法揭示了InGaN层的材料质量、结构完整性和相应的光伏特性之间的关系。
然而,现有的太阳能电池整体存在光电转换效率较低的问题。
发明内容
本发明实施例提供了一种太阳能电池外延片及其制备方法,用以解决现有技术中太阳能电池存在的光电转换效率较低的问题。
一方面,本发明实施例提供了一种太阳能电池外延片,包括:
衬底;
GaN成核层,设置在衬底的顶面上;
GaN本征层,设置在GaN成核层的顶面上;
N型GaN层,设置在GaN本征层的顶面上;
InGaN/GaN超晶格层,设置在N型GaN层的顶面上,InGaN/GaN超晶格层包括多层第一InGaN层和第一GaN层,第一InGaN层和第一GaN层周期排列;
U型GaN层,设置在InGaN/GaN超晶格层的顶面上;
InGaN/GaN量子阱层,设置在U型GaN层的顶面上,InGaN/GaN量子阱层包括多层第二InGaN层和第二GaN层,第二InGaN层和第二GaN层周期排列,其中第二InGaN层中In的组分为0.30-0.32;
P型GaN层,设置在InGaN/GaN量子阱层的顶面上。
另一方面,本发明实施例还提供了一种太阳能电池外延片的制备方法,包括:
准备衬底;
在衬底的顶面上设置GaN成核层;
在GaN成核层的顶面上设置GaN本征层;
在GaN本征层的顶面上设置N型GaN层;
在N型GaN层的顶面上设置InGaN/GaN超晶格层,InGaN/GaN超晶格层包括多层第一InGaN层和第一GaN层,第一InGaN层和第一GaN层周期排列;
在InGaN/GaN超晶格层的顶面上设置U型GaN层;
在U型GaN层的顶面上设置InGaN/GaN量子阱层,InGaN/GaN量子阱层包括多层第二InGaN层和第二GaN层,第二InGaN层和第二GaN层周期排列,其中第二InGaN层中In的组分为0.30-0.32;
在InGaN/GaN量子阱层的顶面上设置P型GaN层。
本发明中的一种太阳能电池外延片及其制备方法,具有以下优点:
采用了图案化的衬底、超晶格层和高In组分的InGaN/GaN量子阱层结构,降低了位错密度,提高了光吸收率,获得结晶质量较高的外延片。与具有传统外延片的太阳能电池相比,采用高In组分的外延片制得的太阳能电池载流子收集增多,表面复合减少,在一定程度上提高了InGaN/GaN太阳能电池的光电转换效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种太阳能电池外延片的结构示意图;
图2为本发明实施例提供的一种太阳能电池外延片在常温下的PL图;
图3为本发明实施例提供的一种太阳能电池外延片及传统外延片的卫星峰对比图;
图4为本发明实施例提供的一种太阳能电池外延片及传统外延片的摇摆曲线对比图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明实施例提供的一种太阳能电池外延片的结构示意图。本发明实施例提供了一种太阳能电池外延片,包括:
衬底;
GaN成核层,设置在衬底的顶面上;
GaN本征层,设置在GaN成核层的顶面上;
N型GaN层,设置在GaN本征层的顶面上;
InGaN/GaN超晶格层,设置在N型GaN层的顶面上,InGaN/GaN超晶格层包括多层第一InGaN层和第一GaN层,第一InGaN层和第一GaN层周期排列;
U型GaN层,设置在InGaN/GaN超晶格层的顶面上;
InGaN/GaN量子阱层,设置在U型GaN层的顶面上,InGaN/GaN量子阱层包括多层第二InGaN层和第二GaN层,第二InGaN层和第二GaN层周期排列,其中第二InGaN层中In的组分为0.30-0.32;
P型GaN层,设置在InGaN/GaN量子阱层的顶面上。
示例性地,衬底为图案化的Al2O3衬底。N型GaN层中采用Si掺杂,掺杂浓度为0.8×1018cm-3-1.2×1018cm-3。InGaN/GaN超晶格层的周期数为12,其中第一InGaN层中In的组分为0.04。InGaN/GaN量子阱层的周期数为12。P型GaN层中采用Mg掺杂,掺杂浓度为0.8×1020cm-3-1.2×1020cm-3
本发明实施例还提供了一种太阳能电池外延片的制备方法,该方法包括:
S100、准备衬底。
示例性地,在准备衬底时,采用MOCVD(Metal-organic Chemical VaporDeposition,金属化学气相沉积)设备,将衬底在980-1020℃的氢气氛围下加热10分钟。
S110、在衬底的顶面上设置GaN成核层。
示例性地,在形成GaN成核层之前,先将温度降至630-670℃,然后在衬底上生长厚度为77-83nm的GaN成核层。
S120、在GaN成核层的顶面上设置GaN本征层。
示例性地,在形成GaN本征层之前,先将温度升至960-1000℃,然后在GaN成核层上生长厚度为195-205nm的GaN本征层。
S130、在GaN本征层的顶面上设置N型GaN层。
示例性地,在形成N型GaN层之前,先将温度升至1050-1090℃,然后在GaN本征层上生长厚度为2.4-2.6μm的GaN层,并在该GaN层中掺杂Si,掺杂浓度为0.8×1018cm-3-1.2×1018cm-3
S140、在N型GaN层的顶面上设置InGaN/GaN超晶格层,InGaN/GaN超晶格层包括多层第一InGaN层和第一GaN层,第一InGaN层和第一GaN层周期排列。
示例性地,在形成InGaN/GaN超晶格层之前,先将温度降至820-860℃,然后在N型GaN层上生长周期数为12的InGaN/GaN超晶格层,其中的每层第一InGaN层的厚度为2.5nm,每层第一GaN层的厚度为4nm,在第一InGaN层中In的组分为0.04,Ga的组分为0.96。
S150、在InGaN/GaN超晶格层的顶面上设置U型GaN层。
示例性地,在形成U型GaN层之前,先将温度升至1080-1120℃,然后在生长厚度为77-83nm的U型GaN层。该U型GaN层可作为缓冲层,用于调整InGaN/GaN超晶格层和InGaN/GaN量子阱层之间的应变,同时又可降低杂质散射。
S160、在U型GaN层的顶面上设置InGaN/GaN量子阱层,InGaN/GaN量子阱层包括多层第二InGaN层和第二GaN层,第二InGaN层和第二GaN层周期排列,其中第二InGaN层中In的组分为0.30-0.32。
示例性地,在InGaN/GaN量子阱层中,每层第二InGaN层的厚度为2.8-3.2nm,每层第二GaN层的厚度为8.8-9.2nm,在第二InGaN层中In的组分为0.30-0.32,Ga的组分为0.68-0.70。
S170、在InGaN/GaN量子阱层的顶面上设置P型GaN层。
示例性地,在形成P型GaN层之前,先将温度降至730-760℃,然后在生长厚度为38-42nm的GaN层,并在该GaN层中掺杂Mg,掺杂浓度为0.8×1020cm-3-1.2×1020cm-3,即制备得到外延片。
作为对比,本发明采用上述方法制备得到样品A和样品B,样品A完全按照上述流程和数据制备得到,而样品B则将InGaN/GaN量子阱层中的In组分改为0.25-0.27,其他流程和数据均与样品A相同。
对上述样品A和样品B分析得到的PL(Photoluminescence,光致发光光谱)图、卫星峰图以及摇摆曲线分别如图2、3、和4所示。由PL图计算可知样品A的InGaN/GaN量子阱层中In组分与以上设计的量子阱层中的In组分相符,从卫星峰图可以看出,样品A相比于样品B具有更多阶的卫星峰,因此样品A具有更好的质量。从摇摆曲线图可以看出,无论是(002)面还是(102)面的摇摆曲线,相比于样品B,样品A都更窄,具有更小的半高宽,晶体质量更好。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (10)

1.一种太阳能电池外延片,其特征在于,包括:
衬底;
GaN成核层,设置在所述衬底的顶面上;
GaN本征层,设置在所述GaN成核层的顶面上;
N型GaN层,设置在所述GaN本征层的顶面上;
InGaN/GaN超晶格层,设置在所述N型GaN层的顶面上,所述InGaN/GaN超晶格层包括多层第一InGaN层和第一GaN层,所述第一InGaN层和第一GaN层周期排列;
U型GaN层,设置在所述InGaN/GaN超晶格层的顶面上;
InGaN/GaN量子阱层,设置在所述U型GaN层的顶面上,所述InGaN/GaN量子阱层包括多层第二InGaN层和第二GaN层,所述第二InGaN层和第二GaN层周期排列,其中所述第二InGaN层中In的组分为0.30-0.32;
P型GaN层,设置在所述InGaN/GaN量子阱层的顶面上。
2.根据权利要求1所述的一种太阳能电池外延片,其特征在于,所述衬底为图案化的Al2O3衬底。
3.根据权利要求1所述的一种太阳能电池外延片,其特征在于,所述N型GaN层中采用Si掺杂,掺杂浓度为0.8×1018cm-3-1.2×1018cm-3
4.根据权利要求1所述的一种太阳能电池外延片,其特征在于,所述InGaN/GaN超晶格层的周期数为12,其中所述第一InGaN层中In的组分为0.04。
5.根据权利要求1所述的一种太阳能电池外延片,其特征在于,所述InGaN/GaN量子阱层的周期数为12。
6.根据权利要求1所述的一种太阳能电池外延片,其特征在于,所述P型GaN层中采用Mg掺杂,掺杂浓度为0.8×1020cm-3-1.2×1020cm-3
7.一种太阳能电池外延片的制备方法,其特征在于,包括:
准备衬底;
在所述衬底的顶面上设置GaN成核层;
在所述GaN成核层的顶面上设置GaN本征层;
在所述GaN本征层的顶面上设置N型GaN层;
在所述N型GaN层的顶面上设置InGaN/GaN超晶格层,所述InGaN/GaN超晶格层包括多层第一InGaN层和第一GaN层,所述第一InGaN层和第一GaN层周期排列;
在所述InGaN/GaN超晶格层的顶面上设置U型GaN层;
在所述U型GaN层的顶面上设置InGaN/GaN量子阱层,所述InGaN/GaN量子阱层包括多层第二InGaN层和第二GaN层,所述第二InGaN层和第二GaN层周期排列,其中所述第二InGaN层中In的组分为0.30-0.32;
在所述InGaN/GaN量子阱层的顶面上设置P型GaN层。
8.根据权利要求7所述的一种太阳能电池外延片的制备方法,其特征在于,所述准备衬底,包括:
采用MOCVD设备,将所述衬底在氢气氛围下加热。
9.根据权利要求7所述的一种太阳能电池外延片的制备方法,其特征在于,所述在所述GaN本征层的顶面上设置N型GaN层,包括:
在所述GaN本征层的顶面上设置GaN层;
在所述GaN层中掺杂Si,掺杂浓度为0.8×1018cm-3-1.2×1018cm-3
10.根据权利要求7所述的一种太阳能电池外延片的制备方法,其特征在于,所述在所述InGaN/GaN量子阱层的顶面上设置P型GaN层,包括:
在所述InGaN/GaN量子阱层的顶面上设置GaN层;
在所述GaN层中掺杂Mg,掺杂浓度为0.8×1020cm-3-1.2×1020cm-3
CN202210343816.9A 2022-03-31 2022-03-31 一种太阳能电池外延片及其制备方法 Pending CN114709289A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210343816.9A CN114709289A (zh) 2022-03-31 2022-03-31 一种太阳能电池外延片及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210343816.9A CN114709289A (zh) 2022-03-31 2022-03-31 一种太阳能电池外延片及其制备方法

Publications (1)

Publication Number Publication Date
CN114709289A true CN114709289A (zh) 2022-07-05

Family

ID=82172915

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210343816.9A Pending CN114709289A (zh) 2022-03-31 2022-03-31 一种太阳能电池外延片及其制备方法

Country Status (1)

Country Link
CN (1) CN114709289A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104393088A (zh) * 2014-10-29 2015-03-04 中国科学院半导体研究所 InGaN/AlInGaN多量子阱太阳能电池结构
CN104617174A (zh) * 2015-01-12 2015-05-13 西安神光皓瑞光电科技有限公司 一种光电器件的插入层结构
CN113851546A (zh) * 2021-09-22 2021-12-28 陕西科技大学 一种绿光氮化物激光电池外延片及其制备方法
CN113964217A (zh) * 2021-09-22 2022-01-21 陕西科技大学 一种InGaN/GaN多量子阱蓝色激光电池外延片及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104393088A (zh) * 2014-10-29 2015-03-04 中国科学院半导体研究所 InGaN/AlInGaN多量子阱太阳能电池结构
CN104617174A (zh) * 2015-01-12 2015-05-13 西安神光皓瑞光电科技有限公司 一种光电器件的插入层结构
CN113851546A (zh) * 2021-09-22 2021-12-28 陕西科技大学 一种绿光氮化物激光电池外延片及其制备方法
CN113964217A (zh) * 2021-09-22 2022-01-21 陕西科技大学 一种InGaN/GaN多量子阱蓝色激光电池外延片及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
K. Y. LAI等: "Effect of indium fluctuation on the photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells", 《APPLIED PHYSICS LETTERS》, vol. 96, 22 February 2010 (2010-02-22), pages 1 - 3 *
R. DAHAL等: "InGaN/GaN multiple quantum well solar cells with long operating wavelengths", 《APPLIED PHYSICS LETTERS》, vol. 94, 10 February 2009 (2009-02-10), pages 1 - 3 *

Similar Documents

Publication Publication Date Title
US10367107B2 (en) Multijunction photovoltaic device having an Si barrier between cells
US6982208B2 (en) Method for producing high throughput strained-Si channel MOSFETS
US8802187B2 (en) Solar cell and process for producing the same
US8344242B2 (en) Multi-junction solar cells
JP5818853B2 (ja) n型窒化アルミニウム単結晶基板を用いた縦型窒化物半導体デバイス
WO2012043124A1 (ja) 光電変換装置の製造方法
JP4998923B2 (ja) シリコンベースの高効率太陽電池およびその製造方法
CN113964217A (zh) 一种InGaN/GaN多量子阱蓝色激光电池外延片及其制备方法
US8529698B2 (en) Ingan columnar nano-heterostructures for solar cells
Jani et al. Design, growth, fabrication and characterization of high-band gap InGaN/GaN solar cells
JP6335784B2 (ja) 可変バンドギャップ太陽電池
CN114709289A (zh) 一种太阳能电池外延片及其制备方法
CN113851546A (zh) 一种绿光氮化物激光电池外延片及其制备方法
US20070155141A1 (en) Semiconductor device and method for fabricating the same
Yusof et al. Analysis using a two-layer model of the transport properties of InGaN epilayers grown on GaN template substrate
CN109411575B (zh) 一种发光二极管外延片及其制备方法
JP2009081269A (ja) 縦型窒化物半導体デバイス及びその製造方法
Bradley et al. Control of defects in the heteroepitaxial growth of GaAs on silicon
Danielson et al. MOCVD Deposition of Group V Doped CdTe in Sublimated CdTe and CdSeTe Devices
US20170141254A1 (en) Passivated contact formation using ion implantation
Kim et al. Epitaxial Ge solar cells directly grown on Si (001) by MOCVD using isobutylgermane
CN114899263B (zh) 一种InGaN/GaN超晶格结构太阳能电池外延结构及其制备方法
KR102523706B1 (ko) 실리콘 양자우물 구조를 갖는 터널 산화막 실리콘 태양전지 및 이의 제조 방법
JP6004429B2 (ja) 単結晶SiGe層の製造方法及びそれを用いた太陽電池
Jordan Growth Optimization And Process Development Of Indium Gallium Nitride/Gallium Nitride Solar Cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination