WO2019196292A1 - 一种氮化物薄膜太阳能电池 - Google Patents

一种氮化物薄膜太阳能电池 Download PDF

Info

Publication number
WO2019196292A1
WO2019196292A1 PCT/CN2018/100501 CN2018100501W WO2019196292A1 WO 2019196292 A1 WO2019196292 A1 WO 2019196292A1 CN 2018100501 W CN2018100501 W CN 2018100501W WO 2019196292 A1 WO2019196292 A1 WO 2019196292A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
nitride
solar cell
undoped
thin film
Prior art date
Application number
PCT/CN2018/100501
Other languages
English (en)
French (fr)
Inventor
马亮
Original Assignee
北京创昱科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京创昱科技有限公司 filed Critical 北京创昱科技有限公司
Publication of WO2019196292A1 publication Critical patent/WO2019196292A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the invention belongs to the field of optical materials, and in particular relates to a nitride thin film solar cell.
  • Solar energy is a clean, easy-to-access renewable energy source that has received widespread attention, attention and favor throughout the world.
  • Solar cells are the main means for humans to use solar energy, and their basic structure is a semiconductor optoelectronic device with a p-n junction.
  • common solar cells can be divided into silicon (monocrystalline silicon, polycrystalline silicon and amorphous silicon), gallium arsenide, copper indium gallium selenide (CIGS), cadmium telluride, cadmium sulfide, perovskite, organic matter. And so on. No matter which material is used, higher conversion efficiency has always been an important performance target for the development of the solar cell industry.
  • nitride semiconductor materials typified by indium gallium nitride (In x Ga 1-x N, 0 ⁇ x ⁇ 1) and indium aluminum nitride (In y Al 1-y N, 0 ⁇ y ⁇ 1 )
  • the forbidden band width is almost perfectly matched to the solar spectrum, or it completely covers the energy range of the solar spectrum radiation, and has received attention.
  • the forbidden band width of In x Ga 1-x N is 0.64 to 3.4 eV
  • the forbidden band width of In y Al 1-y N is 0.64 to 6.2 eV
  • the energy range of the ground solar spectrum is 0.4 to 4 eV.
  • the nitride alloy material has great advantages in preparing a multi-junction series battery. As long as the ratio of the metal elements in the alloy is changed, the band gap can be adjusted to absorb photons of different wavelength bands. This provides greater freedom in designing and growing tandem cells, facilitating optimal absorption band combinations.
  • Theoretical calculations show that the conversion efficiency of solar cells with double junctions (1.1 eV and 1.7 eV, respectively) made of In x Ga 1-x N can reach 50%; if multi-junction solar cells are made, the efficiency is up to More than 70%.
  • the fabrication of solar cells using nitride alloy materials also includes the following advantages: 1 high absorption coefficient, for example, the absorption coefficient of In x Ga 1-x N is as high as 10 5 cm -1 , one to two higher than Si and GaAs materials. Magnitude. With this capability, it will be possible to make thinner, lighter batteries, so that it can be used in emerging applications such as electric vehicles, mobile energy, photovoltaic building integration (BIPV), and wearable devices. 2
  • the use of nitride alloy materials can make the multi-junction series cell growth process simpler and lower cost. Specifically, device growth can be accomplished in the same growth apparatus, and the preparation of the multijunction cell can be achieved by changing the alloy composition.
  • nitride material has high hardness, good chemical and thermal stability, strong radiation resistance, and is very suitable for use in harsh environments such as strong radiation and high temperature. Therefore, nitride solar cells have obvious advantages in the application of harsh environments such as aerospace and aerospace, such as drones, spacecraft, and special robots.
  • the Chinese invention patent CN100499179C discloses a single-junction indium gallium nitride solar cell structure and a fabrication method thereof, which uses a pn junction structure of a single component In x Ga 1-x N alloy, and aims to provide an efficient and resistant Radiant thin film solar cells.
  • the composition is GaN, AlN, InN, any In x Ga y Al 1-xy N (0 ⁇ x, y ⁇ 1) , 0 ⁇ x + y ⁇ 1) bulk material of the alloy component.
  • the In x Ga 1-x N alloy is generally epitaxial on the epitaxial layer of the GaN thin film; on the other hand, the existing epitaxial technology needs to be further improved, such as the organometallic chemical vapor deposition (MOCVD) method in the preparation of high In composition.
  • MOCVD organometallic chemical vapor deposition
  • the alloy material When the alloy material is prone to precipitation of "indium droplets" in which indium is accumulated, it is difficult to prepare a nitride film having a high In composition.
  • the preparation of high In composition nitride films is critical.
  • the absorption coefficient of the In x Ga 1-x N alloy material is very high, the In x Ga 1-x N alloy can absorb most of the sunlight under a few hundred nanometers of thickness, but because of InN and GaN The intergranular mismatch is as high as 11%, and when the In composition is 20%, the critical thickness of In x Ga 1-x N is only 10.7 nm. If the In composition is continuously increased, the critical thickness of In x Ga 1-x N drops sharply.
  • an object of the present invention is to provide a nitride thin film solar cell.
  • a second object of the present invention is to provide a method of preparing the nitride thin film solar cell.
  • a nitride thin film solar cell comprising a substrate, an undoped layer, a Bragg mirror, an n-type doped layer, an undoped multiple quantum well layer, a p-type doped layer; from bottom to top on the substrate Arranging the undoped layer, the Bragg mirror, the n-type doped layer, the undoped multiple quantum well layer and the p-type doped layer in sequence, the edge region of the n-type doped layer is a mesa, and is disposed on the mesa There is an n-type ohmic electrode; a p-type ohmic electrode is disposed on the p-type doped layer.
  • the substrate may be one of sapphire, silicon carbide, silicon, gallium nitride, aluminum nitride, or zinc oxide, as conventionally selected in the art.
  • the undoped layer is nitride Al x In y Ga 1-xy N, where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1 and x+y ⁇ 1.
  • the undoped layer may be a multilayer structure composed of nitrides Al x In y Ga 1-xy N, where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and x+y ⁇ 1.
  • the undoped layer further comprises a nucleation layer formed on the substrate, the undoped layer being grown on the nucleation layer, the nucleation layer being a nitride Al m In n Ga 1-mn N, where 0 ⁇ m ⁇ 1 , 0 ⁇ n ⁇ 1 , and m + n ⁇ 1.
  • the Bragg mirror comprises a periodic structure in which a high refractive index nitride In xh Ga yh Al 1-xh-yh N layer and a low refractive index nitride layer In xl Ga yl Al 1-xl-yl N are alternately arranged, wherein, 0 ⁇ xh ⁇ 1, 0 ⁇ yh ⁇ 1, and 0 ⁇ xh+yh ⁇ 1; and/or: 0 ⁇ xl ⁇ 1, 0 ⁇ yl ⁇ 1 and 0 ⁇ xl+yl ⁇ 1.
  • the high refractive index nitride layer has a higher refractive index than the low refractive index nitride layer.
  • the high refractive index nitride In xh Ga yh Al 1-xh-yh N layer has a thickness ranging from 1 to 500 nm, and the low refractive index nitride In xl Ga yl Al 1-xl
  • the thickness of the -yl N layer is from 1 to 500 nm.
  • the Bragg mirror comprises 3 to 100 pairs of high refractive index nitride In xh Ga yh Al 1-xh-yh N layer and low refractive index nitride layer In xl Ga yl Al 1-xl-yl N alternately arranged Periodic structure.
  • the n-type doped layer is composed of nitride Al xn In yn Ga 1-xn-yn N, wherein 0 ⁇ xn ⁇ 1, 0 ⁇ yn ⁇ 1, xn+yn ⁇ 1, the n-type doping
  • the element doped in the layer is at least one of Si, Sn, S, Se or Te.
  • the p-type doped layer is composed of nitride Al xp In yp Ga 1-xp-yp N, wherein 0 ⁇ xp ⁇ 1, 0 ⁇ yp ⁇ 1, xp+yp ⁇ 1, the p-type doping
  • the element doped in the layer is at least one of Be, Mg, Zn, Cd or C.
  • the undoped multiple quantum well layer comprises 1 to 300 pairs of In xw Ga yw Al 1-xw-yw N/In xb Ga yb Al 1-xb-yb N periodic structures, each periodic structure is composed of quantum a well layer In xw Ga yw Al 1-xw-yw N and a quantum barrier layer In xb Ga yb Al 1-xb-yb N composition, wherein 0 ⁇ xw ⁇ 1, 0 ⁇ yw ⁇ 1, and 0 ⁇ xw+yw ⁇ 1, and/or: 0 ⁇ xb ⁇ 1, 0 ⁇ yb ⁇ 1, and 0 ⁇ xb + ⁇ 1, xw > xb.
  • the p-type doped layer and the p-type ohmic electrode are covered with an anti-reflection layer.
  • the anti-reflective layer comprises from 1 to 30 sets of alternating SiO 2 and Ta 2 O 5 films.
  • the thicknesses of the SiO 2 and Ta 2 O 5 films are independently from 1 nm to 150 nm.
  • the method for preparing a nitride thin film solar cell is that the Bragg mirror structure is grown in situ in a growth device for performing a battery function thin film layer (ie, a pn junction) including an n-type doped layer, and a non-doped layer. Doped multi-quantum well layer and p-type doped layer.
  • the undoped layer, the Bragg mirror structure and the battery functional film layer are grown in situ in the same vapor deposition apparatus.
  • the Bragg mirror (DBR) structure has a characteristic that the high reflectance band is adjustable. Adjusting the position of the high reflectance band by adjusting the nitride composition, thickness and period number of the high and low refractive index layers in the DBR structure, so that the high reflectance band and the spectral response curve of the battery can be consistent and coordinated; that is, The high reflectance band is adjusted to a position in which the solar cell is in a high quantum efficiency band. In this way, the efficiency of the device can be maximized.
  • the DBR structure has a selectivity of reflected wavelength.
  • the DBR structure has a high reflectance (>95%) for the high reflectance band and a lower average reflectance ( ⁇ 20%) for the other bands.
  • This feature plays an important role in forming the thin film solar cell of the present invention in series with other thin film solar cells to form a multi-junction solar cell: the remaining band of sunlight transmitted through the DBR is absorbed by other thin film solar cells.
  • the DBR structure of the present invention grows in situ during the growth process of the battery functional film layer (ie, pn junction), that is, a process for fabricating a pn junction.
  • the DBR structure is made in the process. It is precisely because the material system used in the DBR structure is the same as that used in the battery p-n junction, the fabrication of the DBR structure and the p-n junction can be done in situ on the same device. In this way, the process of making a reflective layer on the back side of the solar cell can be omitted, or the process of fabricating the back electrode can be simplified.
  • Figure 1 is a graph showing the reflectance of a typical DBR structure at different wavelengths.
  • FIG. 2 is a schematic cross-sectional view of a nitride thin film solar cell having a DBR structure.
  • FIG 3 is a schematic diagram of an optical path of sunlight passing through an undoped multiple quantum well layer and a DBR layer.
  • 1 substrate; 2: nucleation layer; 3: undoped layer; 4: DBR layer; 5: n-type doped layer; 6: undoped multiple quantum well layer; 7: p-type doping Layer; 8: n-type ohmic electrode; 9: p-type ohmic electrode; 10: anti-reflective layer; 11: mesa on the n-type doped layer.
  • the high reflectance band corresponds to a wavelength range in which the reflectance is greater than 95%, for example, as shown in FIG. 1, a typical DBR structure (period of 21 groups of AlN/GaN) is high.
  • the reflectance band is approximately in the range of 455 to 485 nm.
  • a specific embodiment of the present invention is a nitride thin film solar cell, comprising:
  • the sapphire substrate Prior to the growth of the epitaxial film, the sapphire substrate was subjected to grinding, polishing, and cleaning processes, and the surface condition reached the requirement of growth of the nitride epitaxial layer.
  • DBR Bragg mirror
  • the undoped layer further includes a nucleation layer 2 formed on a sapphire substrate, and an undoped layer 3 formed on the nucleation layer 2, the nucleation layer 2 being a low temperature GaN layer having a thickness of 25 nm.
  • the nucleation layer 2 is grown by a metal organic chemical vapor deposition apparatus (MOCVD) apparatus.
  • MOCVD metal organic chemical vapor deposition apparatus
  • the growth temperature of the low temperature GaN layer is 550 ° C
  • the growth pressure is 500 Torr
  • the undoped layer 3 is a high temperature GaN layer having a thickness of 1.5 ⁇ m, which is undoped.
  • the growth apparatus of the layer was MOCVD, and the high temperature GaN layer had a growth temperature of 1080 ° C and a growth pressure of 200 Torr.
  • the DBR layer 4 comprises 35 pairs of Ga 0.66 Al 0.34 N/GaN periodic structures, each period consisting of a high refractive index nitride layer GaN and a low refractive index nitride layer Ga 0.66 Al 0.34 N, and the GaN layer and Ga 0.66
  • the thickness of the Al 0.34 N layer was 41 nm and 43 nm, respectively.
  • the high reflectance band of the DBR layer 4 is 370-410 nm.
  • the growth temperature and pressure of the GaN layer were 1050 ° C and 200 Torr, respectively; the growth temperature and pressure of the Ga 0.66 Al 0.36 N layer were 1080 ° C and 200 Torr, respectively.
  • the DBR layer 4 is formed on the undoped layer 3.
  • the n-type doped layer 5 is composed of high-temperature GaN having a thickness of 2 ⁇ m, growth temperature and pressure are 1090 ° C and 200 Torr, respectively, and the element doped in the n-type doped layer 5 is Si, and the doping concentration is 1 ⁇ 10 19 /cm -3 , the two sides of the n-type doped layer 5 are each formed into a mesa by a dry etching method.
  • the mesa is a stepped sinking mesa
  • the upper mesa 11 is lower than the upper surface of the n-type doping layer 5.
  • the n-doped layer 5 is formed on the DBR layer 4.
  • the undoped multiple quantum well layer 6 includes 30 pairs of In 0.2 Ga 0.8 N/GaN periodic structures each composed of a 3 nm thick quantum well layer In 0.2 Ga 0.8 N and a 4 nm thick quantum barrier layer GaN. Under the above structural parameters, the high quantum efficiency band of the spectral response curve of the battery corresponding to the undoped multiple quantum well layer 6 is 370-410 nm.
  • the growth temperature and pressure of the quantum well layer In 0.2 Ga 0.8 N were 760 ° C and 200 Torr; the growth temperature and pressure of the quantum barrier layer GaN were 880 ° C and 200 Torr.
  • the undoped multiple quantum well layer 6 is formed on the n-type doped layer 5.
  • the p-type doped layer 7 is composed of a layer of GaN with a thickness of 60 nm and p-type doping, and the element doped in the p-type doped layer 7 is Mg, and the doping concentration ranges from 1 ⁇ 10 19 . /cm -3 to 1 ⁇ 10 20 /cm -3 .
  • the p-type GaN layer had a growth temperature and a pressure of 950 ° C and 200 Torr.
  • the p-type GaN layer is formed on the undoped multiple quantum well layer 6.
  • the n-type ohmic electrode 8 is a dot-shaped electrode composed of two metal films of Al and Au, and the n-type ohmic electrode can be fabricated by using a physical vapor deposition device or an electroplating device. In this embodiment, the n-type ohmic electrode uses an electron beam. The evaporation apparatus was fabricated, and the thicknesses of the Al and Au layers were 30 nm and 300 nm, respectively. The n-type ohmic electrode 8 is formed on the mesa 11 on the n-type doped layer;
  • the p-type ohmic electrode 9 is composed of a dot-shaped finger electrode composed of a two-layer metal film of Pd and Au.
  • the p-type ohmic electrode is fabricated by a physical vapor deposition device or an electroplating device. This embodiment is p-type ohmic.
  • the electrodes were fabricated using an electron beam evaporation apparatus, and the thicknesses of the Pd and Au layers were 25 nm and 300 nm, respectively.
  • the p-type ohmic electrode 9 is formed on the p-type doping layer 7;
  • the anti-reflection layer 10 comprises three sets of SiO 2 and Ta 2 O 5 films which are alternately arranged, and the thicknesses of the bottom six layers are: 65 nm (SiO 2 ), 97 nm (Ta 2 O 5 ), 12 nm (SiO 2 ). , 109 nm (Ta 2 O 5 ), 9 nm (SiO 2 ), 58 nm (Ta 2 O 5 ), the SiO 2 and Ta 2 O 5 films can be fabricated by physical vapor deposition equipment, SiO 2 and Ta 2 in this embodiment. The O 5 films were all fabricated using ion beam deposition equipment.
  • the anti-reflection layer 10 is formed on the p-type doping layer 7 and the p-type ohmic electrode 9.
  • the solar light transmission process of this structure is shown in Fig. 3.
  • the photons are selectively partially absorbed. Thereafter, the photons passing through the undoped multiple quantum well layer 6 enter the DBR layer, and the photons of the band matched with the 6-band (high quantum efficiency) of the undoped multiple quantum well layer are almost all reflected back, and the other wavelength photons are transmitted through the DBR. Layer, go to the next layer. It can be seen that by setting the DBR reflective layer, the absorption efficiency of sunlight is effectively improved, thereby improving the conversion efficiency of the device.
  • the nitride thin film solar cell with the Bragg reflector (DBR) of the present invention can effectively reflect the sunlight transmitted through the absorption layer, and the reflectance of the high reflectance band can be up to 98. %the above. In this way, the incident solar photons can be fully utilized, and the solar transmission loss caused by the insufficient thickness of the absorption layer is greatly reduced, thereby improving the conversion efficiency of the device.
  • DBR Bragg reflector
  • FIG. 2 another specific embodiment of the present invention is a nitride thin film solar cell, comprising:
  • the 4H-SiC substrate Prior to the growth of the epitaxial film, the 4H-SiC substrate was subjected to grinding, polishing, and cleaning processes, and the surface condition reached the requirements for the growth of the nitride epitaxial layer.
  • An undoped layer 3 is a high-temperature GaN layer having a thickness of 1.5 ⁇ m, and the high-temperature GaN layer is prepared by a metal organic chemical vapor deposition apparatus (MOCVD) apparatus, and the high temperature GaN layer has a growth temperature of 1080. °C, the growth pressure is 200 Torr.
  • MOCVD metal organic chemical vapor deposition apparatus
  • the undoped layer further comprises a nucleation layer 2, the nucleation layer 2 is a low temperature AlN layer having a thickness of 20 nm, and the nucleation layer 2 is formed on the substrate 1, the undoped layer 3
  • the growth apparatus of the low-temperature AlN layer is an MOCVD apparatus, and the growth temperature of the AlN layer is 700 ° C, and the growth pressure is 400 Torr.
  • a DBR layer 4 comprising 100 pairs of Al 0.83 In 0.17 N/GaN periodic structures, each period consisting of a high refractive index nitride layer GaN and a low refractive index nitride layer Al 0.83 In 0.17 N, and The thickness of the GaN layer and the Al 0.83 In 0.17 N layer were 46 nm and 50 nm, respectively. Under the above structural parameters, the high reflectance band of the DBR layer 4 is 430 to 470 nm.
  • the growth temperature and pressure of the GaN layer were 950 ° C and 200 Torr, respectively; the growth temperature and pressure of the Al 0.83 In 0.17 N layer were 850 ° C and 200 Torr, respectively.
  • the DBR layer 4 is formed on the undoped layer 3;
  • An n-type doped layer 5 composed of high-temperature GaN having a thickness of 2 ⁇ m, growth temperature and pressure of 1090 ° C and 200 Torr, respectively, and elements doped in the n-type doped layer 5 As Si, and the doping concentration is 1 ⁇ 10 19 /cm -3 , the two sides of the n-type doped layer 5 are each formed into a stepped sinking surface by dry etching, on the n-type doped layer The mesa 11 is lower than the upper surface of the n-doped layer 5.
  • the n-doped layer 5 is formed on the DBR layer 4.
  • An undoped multiple quantum well layer 6 comprising 20 pairs of In 0.25 Ga 0.75 N/GaN periodic structures, each period consisting of a 3 nm thick quantum well layer In 0.25 Ga 0.75 N and 5 nm
  • a thick quantum barrier layer consists of GaN.
  • the high quantum efficiency band of the spectral response curve of the battery corresponding to the undoped multiple quantum well layer 6 is 430-470 nm.
  • the growth temperature and pressure of the quantum well layer In 0.25 Ga 0.75 N were 730 ° C and 200 Torr; the growth temperature and pressure of the quantum barrier layer GaN were 880 ° C and 200 Torr.
  • the undoped multiple quantum well layer 6 is formed on the n-type doped layer 5.
  • the p-type doped layer 7 is composed of a layer of 55 nm thick, p-type doped GaN, and the doped element in the p-type doped layer 7 is Mg, doped
  • the concentration range is: 1 ⁇ 10 19 /cm -3 to 1 ⁇ 10 20 /cm -3 .
  • the p-type GaN layer had a growth temperature and a pressure of 950 ° C and 200 Torr.
  • the p-type GaN layer is formed on the undoped multiple quantum well layer 6.
  • An n-type ohmic electrode 8 is a dot-shaped electrode composed of a two-layer metal film of Al and Au, which is fabricated by an electron beam evaporation apparatus, and the thicknesses of the Al and Au layers are 30 nm and 300 nm, respectively.
  • the n-type ohmic electrode 8 is formed on the mesa 11 on the n-type doped layer;
  • a p-type ohmic electrode 9 the p-type ohmic electrode 9 having a doped electrode formed of a two-layer metal film of Ni and Au, which is fabricated by an electron beam evaporation device, and the thicknesses of the Ni and Au layers are respectively It is 40 nm and 300 nm.
  • the p-type ohmic electrode 9 is formed on the p-type doping layer 7;
  • An anti-reflective layer 10 comprising three sets of alternating SiO 2 and Ta 2 O 5 films, the thickness of the bottom six layers being 65 nm (SiO 2 ) and 97 nm (Ta 2 O 5 respectively). ), 12nm (SiO 2), 109nm (Ta 2 O 5), 9nm (SiO 2), 58nm (Ta 2 O 5), said SiO 2 and Ta 2 O 5 films are produced by ion beam deposition apparatus.
  • the anti-reflection layer 10 is formed on the p-type doping layer 7 and the p-type ohmic electrode 9.
  • the nitride thin film solar cell with the Bragg reflector (DBR) of the present invention can effectively reflect the sunlight transmitted through the absorption layer, and the reflectance of the high reflectance band can be up to 98. %the above.
  • DBR Bragg reflector
  • a nitride thin film solar cell comprising:
  • DBR Bragg mirror
  • the undoped layer 3 further includes a nucleation layer 2 formed on a sapphire substrate, the nucleation layer 2 is a low temperature Al 0.1 Ga 0.9 N layer having a thickness of 25 nm, and the nucleation layer may also be Al 0.1 Ga 0.85.
  • the undoped layer 3 is a high-temperature GaN layer having a thickness of 1.5 ⁇ m, and the undoped layer may also be a film layer of Al 0.03 Ga 0.91 In 0.06 N or Ga 0.92 In 0.08 N, and the growth device of the undoped layer is MOCVD.
  • the high temperature GaN layer has a growth temperature of 850 to 1080 ° C and a growth pressure of 200 Torr.
  • the DBR layer 4 comprises 60 pairs of Ga 0.66 Al 0.34 N/GaN periodic structures, each period consisting of a high refractive index nitride layer GaN and a low refractive index nitride layer Ga 0.66 Al 0.34 N, and the GaN layer and Ga 0.66
  • the thickness of the Al 0.34 N layer was 41 nm and 44 nm, respectively.
  • the high reflectance band of the DBR layer 4 is 380 to 420 nm.
  • the growth temperature and pressure of the GaN layer were 1050 ° C and 200 Torr, respectively; the growth temperature and pressure of the Ga 0.66 Al 0.36 N layer were 1080 ° C and 200 Torr, respectively.
  • the DBR layer 4 is formed on the undoped layer 3;
  • the n-type doped layer 5 is composed of high-temperature GaN having a thickness of 2 ⁇ m, growth temperature and pressure are 1090 ° C and 200 Torr, respectively, and the element doped in the n-type doped layer 5 is Si, and the doping concentration is 1 ⁇ 10 19 /cm -3 , the two sides of the n-type doped layer 5 are each formed into a stepped sinking surface by a dry etching method, so that the mesa is lower than the upper surface of the n-type doped layer 5.
  • the n-doped layer 5 is formed on the DBR layer 4.
  • the undoped multiple quantum well layer 6 includes 80 pairs of In 0.21 Ga 0.79 N/Al 0.1 Ga 0.9 N periodic structures, each period consisting of a 2 nm thick quantum well layer In 0.21 Ga 0.79 N and a 4 nm thick quantum barrier layer. Al 0.1 Ga 0.9 N composition. Under the above structural parameters, the high quantum efficiency band of the battery spectral response curve corresponding to the undoped multiple quantum well layer 6 is 380-420 nm.
  • the growth temperature and pressure of the quantum well layer In 0.21 Ga 0.79 N were 755 ° C and 200 Torr; the growth temperature and pressure of the quantum barrier layer Al 0.1 Ga 0.9 N were 880 ° C and 200 Torr.
  • the undoped multiple quantum well layer 6 is formed on the n-type doped layer 5.
  • the p-type doped layer 7 is composed of a layer of GaN with a thickness of 60 nm and p-type doping, and the element doped in the p-type doped layer 7 is Mg, and the doping concentration ranges from 1 ⁇ 10 19 . /cm -3 to 1 ⁇ 10 20 /cm -3 .
  • the p-type GaN layer had a growth temperature and a pressure of 950 ° C and 200 Torr.
  • the p-type GaN layer is formed on the undoped multiple quantum well layer 6.
  • the n-type ohmic electrode 8 is a dot-shaped electrode composed of two metal films of Al and Au.
  • the n-type ohmic electrode of the present embodiment is fabricated by an electron beam evaporation device, and the thicknesses of the Al and Au layers are 30 nm and 300 nm, respectively.
  • the n-type ohmic electrode 8 is formed on the mesa 11 on the n-type doped layer;
  • the p-type ohmic electrode 9 has a dot-shaped finger electrode composed of a two-layer metal film of Pd and Au.
  • the p-type ohmic electrode of the present embodiment is fabricated by an electron beam evaporation device, and the thicknesses of the Pd and Au layers are respectively It is 25 nm and 300 nm.
  • the p-type ohmic electrode 9 is formed on the p-type doping layer 7;
  • the anti-reflective layer 10 comprises 10 sets of SiO 2 and Ta 2 O 5 films alternately arranged, and the thicknesses of the bottom six layers are: 65 nm (SiO 2 ), 95 nm (Ta 2 O 5 ), 12 nm (SiO 2 ). ), 105 nm (Ta 2 O 5 ), 8 nm (SiO 2 ), 55 nm (Ta 2 O 5 ), and the SiO 2 and Ta 2 O 5 films were each fabricated using an ion beam deposition apparatus.
  • the anti-reflection layer 10 is formed on the p-type doping layer 7 and the p-type ohmic electrode 9.
  • the nitride thin film solar cell with the Bragg reflector (DBR) of the present invention can effectively reflect the sunlight transmitted through the absorption layer, and the reflectance of the high reflectance band can be up to 98. %the above.
  • DBR Bragg reflector
  • a nitride thin film solar cell having a distributed Bragg reflector (DBR) comprising:
  • DBR Bragg mirror
  • the undoped layer further includes a nucleation layer 2 formed on a sapphire substrate, the nucleation layer 2 is a low temperature Al 0.1 Ga 0.9 N layer having a thickness of 25 nm, and the nucleation layer 2 is grown by metal organic chemical vapor deposition.
  • the low temperature Al 0.1 Ga 0.9 N layer has a growth temperature of 550 ° C and a growth pressure of 500 Torr
  • the undoped layer 3 uses a high temperature GaN layer having a thickness of 1.5 ⁇ m
  • the undoped layer growth device is MOCVD.
  • the high temperature GaN layer has a growth temperature of 1080 ° C and a growth pressure of 200 Torr.
  • the DBR layer 4 comprises 60 pairs of In 0.05 Ga 0.1 Al 0.85 N/In 0.05 Ga 0.9 Al 0.05 N periodic structure, each period consisting of a high refractive index nitride layer In 0.05 Ga 0.9 Al 0.05 N and a low refractive index nitride.
  • the layer In 0.05 Ga 0.1 Al 0.85 N composition, and the thickness of In 0.05 Ga 0.9 Al 0.05 N layer and In 0.05 Ga 0.1 Al 0.85 N were 45 nm and 47 nm, respectively.
  • the high reflectance band of the DBR layer 4 is 410 to 450 nm.
  • the growth temperature and pressure of the N layer were 850 ° C and 200 Torr, respectively; the growth temperature and pressure of the In 0.05 Ga 0.1 Al 0.85 N layer were 880 ° C and 200 Torr, respectively.
  • the DBR layer 4 is formed on the undoped layer 3.
  • the n-type doped layer 5 is composed of high-temperature GaN having a thickness of 2 ⁇ m, and the n-type doped layer 5 may also be a layer of Al 0.05 Ga 0.95 N or Al 0.05 In 0.05 Ga 0.9 N, and the growth temperature and pressure are respectively 850. ⁇ 1090° C. and 200 Torr, and the element doped in the n-type doping layer 5 is Si, and the doping concentration is 1 ⁇ 10 19 /cm ⁇ 3 , and the n-type doping layer 5 is performed by a dry etching method.
  • the two sides are each formed into a stepped sinking surface so that the mesa is lower than the upper surface of the n-doped layer 5.
  • the n-doped layer 5 is formed on the DBR layer 4.
  • the undoped multiple quantum well layer 6 includes 35 pairs of In 0.23 Ga 0.77 N/GaN periodic structures each composed of a 2 nm thick quantum well layer In 0.23 Ga 0.77 N and a 4 nm thick quantum barrier layer GaN. Under the above structural parameters, the high quantum efficiency band of the spectral response curve of the battery corresponding to the undoped multiple quantum well layer 6 is 410-450 nm.
  • the growth temperature and pressure of the quantum well layer In 0.23 Ga 0.77 N were 740 ° C and 200 Torr; the growth temperature and pressure of the quantum barrier layer GaN were 880 ° C and 200 Torr.
  • the undoped multiple quantum well layer 6 is formed on the n-type doped layer 5.
  • the p-type doped layer 7 is composed of a p-type doped GaN having a thickness of 60 nm, and the p-type doped layer 7 may also be a film layer of Al 0.1 Ga 0.9 N, Al 0.1 In 0.05 Ga 0.85 N, and The element doped in the p-type doping layer 7 is Mg, and the doping concentration ranges from 1 ⁇ 10 19 /cm -3 to 1 ⁇ 10 20 /cm -3 .
  • the p-type GaN layer has a growth temperature and a pressure of 850 to 950 ° C and 200 Torr.
  • the p-type GaN layer is formed on the undoped multiple quantum well layer 6.
  • the n-type ohmic electrode 8 is a dot-shaped electrode composed of two metal films of Al and Au.
  • the n-type ohmic electrode of the present embodiment is fabricated by an electron beam evaporation device, and the thicknesses of the Al and Au layers are 30 nm and 300 nm, respectively.
  • the n-type ohmic electrode 8 is formed on the mesa 11 on the n-type doped layer;
  • the p-type ohmic electrode 9 has a dot-shaped finger electrode composed of a two-layer metal film of Pd and Au.
  • the p-type ohmic electrode of the present embodiment is fabricated by an electron beam evaporation device, and the thicknesses of the Pd and Au layers are respectively It is 25 nm and 300 nm.
  • the p-type ohmic electrode 9 is formed on the p-type doping layer 7;
  • the anti-reflective layer 10 is composed of 10 sets of SiO 2 and Ta 2 O 5 thin films alternately, and the thickness of the bottom six layers is 65 nm (SiO 2 ), 95 nm (Ta 2 O 5 ), and 12 nm (SiO 2 ). 105 nm (Ta 2 O 5 ), 8 nm (SiO 2 ), 55 nm (Ta 2 O 5 ), and the SiO 2 and Ta 2 O 5 films were each fabricated using an ion beam deposition apparatus.
  • the anti-reflection layer 10 is formed on the p-type doping layer 7 and the p-type ohmic electrode 9.
  • the nitride thin film solar cell with the Bragg reflector (DBR) of the present invention can effectively reflect the sunlight transmitted through the absorption layer, and the reflectance of the high reflectance band can be up to 98. %the above.
  • DBR Bragg reflector

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

氮化物薄膜太阳能电池,包括:衬底,在衬底上从下向上依次设置的非掺杂层、布拉格反射镜、n型掺杂层、非掺杂多量子阱层和p型掺杂层;n型掺杂层的边缘区域为台面,在台面上设置有n型欧姆电极,p型掺杂层上设置有p型欧姆电极,该布拉格反射镜具有高反射率波段可调的特性。

Description

一种氮化物薄膜太阳能电池
交叉引用
本申请引用于2018年04月10日提交的专利名称为“一种氮化物薄膜太阳能电池”的第201810316588X号中国专利申请,其通过引用被全部并入本申请。
技术领域
本发明属于光学材料领域,具体涉及一种氮化物薄膜太阳能电池。
背景技术
太阳能是一种清洁的、方便获取的可再生能源,在全世界范围内受了到广泛关注、重视和青睐。太阳能电池是人类利用太阳能的主要手段,其基本结构是具有p-n结的半导体光电器件。按照制作材料的不同,常见的太阳能电池可分为硅(单晶硅、多晶硅和非晶硅)、砷化镓、铜铟镓硒(CIGS)、碲化镉、硫化镉、钙钛矿、有机物等种类。无论使用哪种材料,更高的转换效率一直是太阳能电池产业发展的重要性能目标。
近年来,以铟镓氮(In xGa 1-xN,0≤x≤1)、铟铝氮(In yAl 1-yN,0≤y≤1)为代表的氮化物半导体材料因其禁带宽度与太阳能光谱几乎完美的匹配,或者完全覆盖太阳光谱辐射的能量范围,而受到人们的关注。具体地,In xGa 1-xN的禁带宽度为0.64~3.4eV,In yAl 1-yN的禁带宽度为0.64~6.2eV,而地面太阳光谱的能量范围为0.4~4eV。因此,氮化物合金材料在制备多结串联电池上具有很大优势,只要改变合金中金属元素的配比,即可调节带隙吸收不同波段的光子。这就给设计和生长串联电池提供了更大的自由度,有利于实现最佳的吸收波段组合。理论计算表明,用In xGa 1-xN制作的双结(禁带宽度分别为1.1eV和1.7eV)太阳能电池的转换效率可达50%;如果制成多结太阳能电池,效率最高可达70%以上。
此外,使用氮化物合金材料制作太阳能电池还包括如下优势:①高吸收系数,例如,In xGa 1-xN的吸收系数高达10 5cm -1,比Si、GaAs材料要高出一至两个数量级。利用该项性能将有可能制备更薄、更轻的电池,如此 便可以在新兴的电动汽车、移动能源、光伏建筑一体化(BIPV)、可穿戴设备等应用方向大显身手。②使用氮化物合金材料可以使多结串联电池生长工艺更简单,成本更低。具体地,可在同一生长设备中完成器件生长,并通过改变合金组分来实现多结电池的制备。③氮化物材料硬度高,化学性质和热稳定性很好,抗辐射能力强,非常适合应用于强辐射、高温等恶劣环境中。因此,氮化物太阳能电池在航空、航天等作业环境严酷的应用方向(如无人机、空间飞行器、特种机器人等)具有十分明显的优势。
例如,中国发明专利CN100499179C公开了一种单结铟镓氮太阳能电池结构及制作方法,该结构使用了单一组分In xGa 1-xN合金的p-n结结构,旨在提供一种高效、抗辐射的薄膜太阳能电池。
但是,就目前的材料生长技术而言,较高厚度、高In组分氮化物薄膜材料的生长还具有很大的挑战性。原因主要来自两个方面,一方面是因为目前无法制备自支撑的氮化物衬底,即组分为GaN、AlN、InN、任意In xGa yAl 1-x-yN(0≤x,y≤1,0≤x+y≤1)合金组分的体材料。In xGa 1-xN合金一般是外延在GaN薄膜外延层之上的;另一方面是因为现有的外延技术有待进一步改进,比如有机金属化学气相沉积(MOCVD)方法在制备高In组分合金材料时容易出现铟聚集的“铟滴”析出,所以难以制备高In组分的氮化物薄膜。然而,对于可见和红外波段的太阳能量吸收,高In组分氮化物薄膜的制备至关重要。此外,尽管In xGa 1-xN合金材料的吸收系数非常高,使得In xGa 1-xN合金在几百纳米厚度条件下就可以吸收大部分的太阳光,但是,由于InN和GaN之间的晶格失配高达11%,当In组分为20%时,In xGa 1-xN的临界厚度只有10.7nm。如果继续增加In组分,In xGa 1-xN的临界厚度会急剧下降。
发明内容
针对本领域存在的不足之处,本发明的目的是提出一种氮化物薄膜太阳能电池。
本发明的第二个目的是提出一种所述氮化物薄膜太阳能电池的制备方法。
本发明上述的目的通过以下技术方案来实现:
一种氮化物薄膜太阳能电池,包括衬底、非掺杂层、布拉格反射镜、 n型掺杂层、非掺杂多量子阱层、p型掺杂层;在所述衬底上从下向上依次设置所述非掺杂层、布拉格反射镜、n型掺杂层、非掺杂多量子阱层和p型掺杂层,所述n型掺杂层的边缘区域为台面,在台面上设置有n型欧姆电极;在所述p型掺杂层上设置有p型欧姆电极。
按照本领域常规选择,所述衬底可以为蓝宝石、碳化硅、硅、氮化镓、氮化铝、氧化锌中的一种。
其中,所述非掺杂层为氮化物Al xIn yGa 1-x-yN,其中0≤x≤1,0≤y≤1且x+y≤1。
优选地,所述非掺杂层可以为氮化物Al xIn yGa 1-x-yN构成的多层结构,其中0≤x≤1,0≤y≤1且x+y≤1。
可选地,所述非掺杂层还包括成核层,所述成核层制作在衬底上,所述非掺杂层在成核层上生长而得,所述成核层为氮化物Al mIn nGa 1-m-nN,其中0≤m≤1,0≤n≤1,且m+n≤1。
其中,所述布拉格反射镜包括高折射率氮化物In xhGa yhAl 1-xh-yhN层和低折射率氮化物层In xlGa ylAl 1-xl-ylN交替设置的周期性结构,其中,0≤xh≤1,0≤yh≤1,且0≤xh+yh≤1;和/或:0≤xl≤1,0≤yl≤1且0≤xl+yl≤1。
所述高折射率氮化物层的折射率高于所述低折射率氮化物层的折射率。
优选地,布拉格反射镜中,所述高折射率氮化物In xhGa yhAl 1-xh-yhN层的厚度范围为1~500nm,所述低折射率氮化物In xlGa ylAl 1-xl-ylN层的厚度为1~500nm。
优选地,所述布拉格反射镜包括3~100对高折射率氮化物In xhGa yhAl 1-xh-yhN层和低折射率氮化物层In xlGa ylAl 1-xl-ylN交替设置的周期性结构。
其中,所述n型掺杂层由氮化物Al xnIn ynGa 1-xn-ynN构成,其中0≤xn≤1,0≤yn≤1,xn+yn≤1,所述n型掺杂层中掺杂的元素为Si、Sn、S、Se或Te中的至少一种。
其中,所述p型掺杂层由氮化物Al xpIn ypGa 1-xp-ypN构成,其中0≤xp≤1,0≤yp≤1,xp+yp≤1,所述p型掺杂层中掺杂的元素为Be、Mg、 Zn、Cd或C中的至少一种。
其中,所述非掺杂多量子阱层包括1~300对In xwGa ywAl 1-xw-ywN/In xbGa ybAl 1-xb-ybN周期性结构,每个周期性结构由量子阱层In xwGa ywAl 1-xw-ywN和量子垒层In xbGa ybAl 1-xb-ybN组成,其中,0≤xw≤1,0≤yw≤1,且0≤xw+yw≤1,和/或:0≤xb≤1,0≤yb≤1,且0≤xb+yb≤1,xw>xb。
其中,在所述p型掺杂层和p型欧姆电极上覆盖有抗反射层。
优选地,所述抗反射层包括1~30组交替的SiO 2和Ta 2O 5薄膜。
有限地,所述SiO 2和Ta 2O 5薄膜的厚度互相独立地为1nm~150nm。
所述氮化物薄膜太阳能电池的制备方法为,所述布拉格反射镜结构在进行电池功能薄膜层的生长设备中原位生长,所述电池功能薄膜层(即p-n结)包括n型掺杂层、非掺杂多量子阱层及p型掺杂层。
优选地,所述非掺杂层、布拉格反射镜结构和电池功能薄膜层在同一个气相沉积设备内原位生长制备。
本发明的有益效果在于:
本发明提出的氮化物薄膜太阳能电池中,布拉格反射镜(DBR)结构具有高反射率波段可调的特性。通过调整DBR结构中高、低折射率层的氮化物组分、厚度和周期数来调节高反射率波段的位置,这样便可实现高反射率波段与电池光谱响应曲线的一致、协调;亦即,将高反射率波段调整到与太阳能电池处于高量子效率波段一致的位置。如此,可使器件的效率实现最大化。
此外,DBR结构具有反射波长的选择性。具体地,DBR结构仅对高反射率波段具有高反射率(>95%),而对其它波段的平均反射率较低(<20%)。该特点对于将本发明所述薄膜太阳能电池与其它薄膜太阳能电池串联组成多结太阳能电池具有重要作用:经过DBR透射的其余波段太阳光被其它薄膜太阳能电池所吸收。
相比其它种类太阳电池在背面或背电极处设置反射层的技术方案,本发明所述DBR结构在进行电池功能薄膜层(即p-n结)的生长过程中原位生长,即在制作p-n结的工艺过程中制作DBR结构。正是因为DBR结构所使用的材料体系与电池p-n结所使用的材料体系相同,所以制作DBR 结构和p-n结可以在相同的设备上原位完成。如此,就可以省略在太阳能电池背面制作反射层的工艺过程,或者简化制作背电极的工艺过程。
附图说明
图1为一种典型DBR结构在不同波长下的反射率曲线图。
图2为具有DBR结构氮化物薄膜太阳能电池的截面示意图。
图3为太阳光经过非掺杂多量子阱层、DBR层的光路示意图。
图中,1:衬底;2:成核层;3:非掺杂层;4:DBR层;5:n型掺杂层;6:非掺杂多量子阱层;7:p型掺杂层;8:n型欧姆电极;9:p型欧姆电极;10:抗反射层;11:n型掺杂层上的台面。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。
在本发明的描述中,需要说明的是,术语“纵向”、“横向”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,高反射率波段对应于反射率大于95%的波长范围,例如图1所示,一种典型DBR结构(21组AlN/GaN的周期结构)的高反射率波段大约处在455~485nm的波段范围。
实施例1
如图2所示,本发明的一种具体实施例为一种氮化物薄膜太阳能电池,包括:
一衬底1,所述衬底1为600μm厚,边长为100mm的正方形蓝宝石衬底,衬底的正面为c面(001)方向。在进行外延薄膜的生长之前,蓝宝石衬底进行了研磨、抛光、清洗工艺处理,表面状况达到了氮化物外延层生长的要求。衬底以上从下向上依次设置的非掺杂层、布拉格反射镜(DBR)、n型掺杂层、非掺杂多量子阱层和p型掺杂层,上述各层在同一个气相沉积设备内生长。
非掺杂层还包括成核层2,成核层2制作在蓝宝石衬底上,非掺杂层 3制作在成核层2上,所述成核层2采用厚度为25nm的低温GaN层,成核层2生长采用金属有机化学气相沉积设备(MOCVD)设备,低温GaN层的生长温度为550℃,生长压强为500Torr,非掺杂层3采用厚度为1.5μm的高温GaN层,非掺杂层的生长设备为MOCVD,该高温GaN层的生长温度为1080℃,生长压强为200Torr。
所述DBR层4包括35对Ga 0.66Al 0.34N/GaN周期性结构,每个周期由高折射率氮化物层GaN和低折射率氮化物层Ga 0.66Al 0.34N组成,且GaN层与Ga 0.66Al 0.34N层的厚度分别为41nm和43nm。在上述结构参数条件下,所述DBR层4的高反射率波段为370~410nm。GaN层的生长温度和压强分别为1050℃和200Torr;Ga 0.66Al 0.36N层的生长温度和压强分别为1080℃和200Torr。所述DBR层4制作在非掺杂层3上。
所述n型掺杂层5由厚度为2μm的高温GaN构成,生长温度和压强分别为1090℃和200Torr,并且所述n型掺杂层5中掺杂的元素为Si,且掺杂浓度为1×10 19/cm -3,采用干法刻蚀方法把n型掺杂层5的两侧各制作成一台面,本实施例中台面为一台阶状下沉的台面,该n型掺杂层上的台面11低于n型掺杂层5的上表面。所述n型掺杂层5制作在DBR层4上。
所述非掺杂多量子阱层6包括30对In 0.2Ga 0.8N/GaN周期性结构,每个周期由3nm厚的量子阱层In 0.2Ga 0.8N和4nm厚的量子垒层GaN组成。在上述结构参数条件下,所述非掺杂多量子阱层6对应的电池光谱响应曲线的高量子效率波段为370~410nm。量子阱层In 0.2Ga 0.8N的生长温度和压强为760℃和200Torr;量子垒层GaN的生长温度和压强为880℃和200Torr。所述非掺杂多量子阱层6制作在n型掺杂层5上。
所述p型掺杂层7由一层厚度为60nm、p型掺杂的GaN构成,并且所述p型掺杂层7中掺杂的元素为Mg,掺杂浓度范围为:1×10 19/cm -3至1×10 20/cm -3。所述p型GaN层的生长温度和压强为950℃和200Torr。所述p型GaN层制作在非掺杂多量子阱层6上。
所述n型欧姆电极8是由Al和Au两层金属薄膜组成的圆点形电极,所述n型欧姆电极可以采用物理气相沉积设备或电镀设备制作,本实施例n型欧姆电极采用电子束蒸发设备制作,且Al和Au层的厚度分别为30nm 和300nm。所述n型欧姆电极8制作在n型掺杂层上的台面11上;
所述p型欧姆电极9的组成结构为Pd和Au两层金属薄膜构成的带圆点的指形电极,所述p型欧姆电极采用物理气相沉积设备或电镀设备制作,本实施例p型欧姆电极采用电子束蒸发设备制作,且Pd和Au层的厚度分别为25nm和300nm。所述p型欧姆电极9制作在p型掺杂层7上;
所述抗反射层10包括三组交替设置的SiO 2和Ta 2O 5薄膜,自下而上六层的厚度分别为:65nm(SiO 2)、97nm(Ta 2O 5)、12nm(SiO 2)、109nm(Ta 2O 5)、9nm(SiO 2)、58nm(Ta 2O 5),所述SiO 2和Ta 2O 5薄膜可以采用物理气相沉积设备制作,本实施例SiO 2和Ta 2O 5薄膜均采用离子束沉积设备制作。所述抗反射层10制作在p型掺杂层7和p型欧姆电极9上。
本结构的太阳光传输过程如图3所示,当太阳光进入到器件内部,经过非掺杂多量子阱层6时,光子被选择性地部分吸收。之后,透过非掺杂多量子阱层6的光子进入DBR层,和非掺杂多量子阱层6波段(量子效率高)匹配的波段的光子几乎全部被反射回来,其它波段光子透过DBR层,进入下一层。可见,通过设置DBR反射层有效地提高了太阳光的吸收效率,进而提高了器件的转换效率。
相比已有的氮化物薄膜太阳能电池方案,本发明具有布拉格反射镜(DBR)的氮化物薄膜太阳能电池能够有效反射透过吸收层的太阳光,其高反射率波段的反射率最高可达98%以上。如此便可以充分利用入射太阳光光子,大大减少由于吸收层厚度不足造成的太阳光透射损失,进而提高器件的转换效率。
实施例2
结构如图2所示,本发明的又一种具体实施例为一种氮化物薄膜太阳能电池,包括:
一衬底1,所述衬底1为600μm厚,边长为100mm的正方形4H-SiC衬底,衬底的正面为c面(001)方向。在进行外延薄膜的生长之前,4H-SiC衬底进行了研磨、抛光、清洗工艺处理,表面状况达到了氮化物外延层生长的要求。
一非掺杂层3,所述非掺杂层3采用厚度为1.5μm的高温GaN层,该高温GaN层采用金属有机化学气相沉积设备(MOCVD)设备制备,该高 温GaN层的生长温度为1080℃,生长压强为200Torr。
优选地,所述非掺杂层还包括成核层2,所述成核层2采用厚度为20nm的低温AlN层,所述成核层2制作在衬底1上,所述非掺杂层3制作在成核层2上,该低温AlN层的生长设备采用MOCVD设备,AlN层的生长温度为700℃,生长压强为400Torr。
一DBR层4,所述DBR层4包括100对Al 0.83In 0.17N/GaN周期性结构,每个周期由高折射率氮化物层GaN和低折射率氮化物层Al 0.83In 0.17N组成,且GaN层与Al 0.83In 0.17N层的厚度分别为46nm和50nm。在上述结构参数条件下,所述DBR层4的高反射率波段为430~470nm。GaN层的生长温度和压强分别为950℃和200Torr;Al 0.83In 0.17N层的生长温度和压强分别为850℃和200Torr。所述DBR层4制作在非掺杂层3上;
一n型掺杂层5,所述n型掺杂层5由厚度为2μm的高温GaN构成,生长温度和压强分别为1090℃和200Torr,并且所述n型掺杂层5中掺杂的元素为Si,且掺杂浓度为1×10 19/cm -3,采用干法刻蚀方法把n型掺杂层5的两侧各制作成一台阶状下沉的台面,该n型掺杂层上的台面11低于n型掺杂层5的上表面。所述n型掺杂层5制作在DBR层4上。
一非掺杂多量子阱层6,所述非掺杂多量子阱层包括20对In 0.25Ga 0.75N/GaN周期性结构,每个周期由3nm厚的量子阱层In 0.25Ga 0.75N和5nm厚的量子垒层GaN组成。在上述结构参数条件下,所述非掺杂多量子阱层6对应的电池光谱响应曲线的高量子效率波段为430~470nm。量子阱层In 0.25Ga 0.75N的生长温度和压强为730℃和200Torr;量子垒层GaN的生长温度和压强为880℃和200Torr。所述非掺杂多量子阱层6制作在n型掺杂层5上。
一p型掺杂层7,所述p型掺杂层7由一层厚度为55nm、p型掺杂的GaN构成,并且所述p型掺杂层7中掺杂的元素为Mg,掺杂浓度范围为:1×10 19/cm -3至1×10 20/cm -3。所述p型GaN层的生长温度和压强为950℃和200Torr。所述p型GaN层制作在非掺杂多量子阱层6上。
一n型欧姆电极8,所述n型欧姆电极8是由Al和Au两层金属薄膜组成的圆点形电极,采用电子束蒸发设备制作,且Al和Au层的厚度分别为30nm和300nm。所述n型欧姆电极8制作在n型掺杂层上的台面11 上;
一p型欧姆电极9,所述p型欧姆电极9的组成结构为Ni和Au两层金属薄膜构成的带圆点的指形电极,采用电子束蒸发设备制作,且Ni和Au层的厚度分别为40nm和300nm。所述p型欧姆电极9制作在p型掺杂层7上;
一抗反射层10,所述抗反射层10包括三组交替设置的SiO 2和Ta 2O 5薄膜,自下而上六层的厚度分别为:65nm(SiO 2)、97nm(Ta 2O 5)、12nm(SiO 2)、109nm(Ta 2O 5)、9nm(SiO 2)、58nm(Ta 2O 5),所述SiO 2和Ta 2O 5薄膜均采用离子束沉积设备制作。所述抗反射层10制作在p型掺杂层7和p型欧姆电极9上。
相比已有的氮化物薄膜太阳能电池方案,本发明具有布拉格反射镜(DBR)的氮化物薄膜太阳能电池能够有效反射透过吸收层的太阳光,其高反射率波段的反射率最高可达98%以上。
实施例3
一种氮化物薄膜太阳能电池,包括:
一衬底1,所述衬底1为600μm厚,边长为100mm的正方形蓝宝石衬底,衬底的正面为c面(001)方向。衬底以上从下向上依次设置的非掺杂层、布拉格反射镜(DBR)、n型掺杂层、非掺杂多量子阱层和p型掺杂层在同一个气相沉积设备内生长。
非掺杂层3还包括成核层2,成核层2制作在蓝宝石衬底上,成核层2为厚度为25nm的低温Al 0.1Ga 0.9N层,成核层也可以采用Al 0.1Ga 0.85In 0.05N、Ga 0.85In 0.15N等膜层,成核层2生长采用金属有机化学气相沉积设备(MOCVD)设备,低温Al 0.1Ga 0.9N层的生长温度为500~7000℃,生长压强为500Torr,非掺杂层3采用厚度为1.5μm的高温GaN层,非掺杂层也可以采用Al 0.03Ga 0.91In 0.06N、Ga 0.92In 0.08N等膜层,非掺杂层的生长设备为MOCVD,该高温GaN层的生长温度为850~1080℃,生长压强为200Torr。
所述DBR层4包括60对Ga 0.66Al 0.34N/GaN周期性结构,每个周期由高折射率氮化物层GaN和低折射率氮化物层Ga 0.66Al 0.34N组成,且GaN层与Ga 0.66Al 0.34N层的厚度分别为41nm和44nm。在上述结构参数条件下, 所述DBR层4的高反射率波段为380~420nm。GaN层的生长温度和压强分别为1050℃和200Torr;Ga 0.66Al 0.36N层的生长温度和压强分别为1080℃和200Torr。所述DBR层4制作在非掺杂层3上;
所述n型掺杂层5由厚度为2μm的高温GaN构成,生长温度和压强分别为1090℃和200Torr,并且所述n型掺杂层5中掺杂的元素为Si,且掺杂浓度为1×10 19/cm -3,采用干法刻蚀方法把n型掺杂层5的两侧各制作成一台阶状下沉的台面,使台面低于n型掺杂层5的上表面。所述n型掺杂层5制作在DBR层4上。
所述非掺杂多量子阱层6包括80对In 0.21Ga 0.79N/Al 0.1Ga 0.9N周期性结构,每个周期由2nm厚的量子阱层In 0.21Ga 0.79N和4nm厚的量子垒层Al 0.1Ga 0.9N组成。在上述结构参数条件下,所述非掺杂多量子阱层6对应的电池光谱响应曲线的高量子效率波段为380~420nm。量子阱层In 0.21Ga 0.79N的生长温度和压强为755℃和200Torr;量子垒层Al 0.1Ga 0.9N的生长温度和压强为880℃和200Torr。所述非掺杂多量子阱层6制作在n型掺杂层5上。
所述p型掺杂层7由一层厚度为60nm、p型掺杂的GaN构成,并且所述p型掺杂层7中掺杂的元素为Mg,掺杂浓度范围为:1×10 19/cm -3至1×10 20/cm -3。所述p型GaN层的生长温度和压强为950℃和200Torr。所述p型GaN层制作在非掺杂多量子阱层6上。
所述n型欧姆电极8是由Al和Au两层金属薄膜组成的圆点形电极,本实施例n型欧姆电极采用电子束蒸发设备制作,且Al和Au层的厚度分别为30nm和300nm。所述n型欧姆电极8制作在n型掺杂层上的台面11上;
所述p型欧姆电极9的组成结构为Pd和Au两层金属薄膜构成的带圆点的指形电极,本实施例p型欧姆电极采用电子束蒸发设备制作,且Pd和Au层的厚度分别为25nm和300nm。所述p型欧姆电极9制作在p型掺杂层7上;
所述抗反射层10包括10组交替设置的SiO 2和Ta 2O 5薄膜,自下而上六层的厚度分别为:65nm(SiO 2)、95nm(Ta 2O 5)、12nm(SiO 2)、105nm(Ta 2O 5)、8nm(SiO 2)、55nm(Ta 2O 5),所述SiO 2和Ta 2O 5薄膜均采 用离子束沉积设备制作。所述抗反射层10制作在p型掺杂层7和p型欧姆电极9上。
相比已有的氮化物薄膜太阳能电池方案,本发明具有布拉格反射镜(DBR)的氮化物薄膜太阳能电池能够有效反射透过吸收层的太阳光,其高反射率波段的反射率最高可达98%以上。
实施例4
一种具有分布式布拉格反射镜(DBR)的氮化物薄膜太阳能电池,包括:
一衬底1,所述衬底1为600μm厚,边长为100mm的正方形蓝宝石衬底,衬底的正面为c面(001)方向。衬底以上从下向上依次设置的非掺杂层、布拉格反射镜(DBR)、n型掺杂层、非掺杂多量子阱层和p型掺杂层在同一个气相沉积设备内生长。
非掺杂层还包括成核层2,成核层2制作在蓝宝石衬底上,成核层2为厚度为25nm的低温Al 0.1Ga 0.9N层,成核层2生长采用金属有机化学气相沉积设备(MOCVD)设备,低温Al 0.1Ga 0.9N层的生长温度为550℃,生长压强为500Torr,非掺杂层3采用厚度为1.5μm的高温GaN层,非掺杂层的生长设备为MOCVD,该高温GaN层的生长温度为1080℃,生长压强为200Torr。
所述DBR层4包括60对In 0.05Ga 0.1Al 0.85N/In 0.05Ga 0.9Al 0.05N周期性结构,每个周期由高折射率氮化物层In 0.05Ga 0.9Al 0.05N和低折射率氮化物层In 0.05Ga 0.1Al 0.85N组成,且In 0.05Ga 0.9Al 0.05N层与In 0.05Ga 0.1Al 0.85N的厚度分别为45nm和47nm。在上述结构参数条件下,所述DBR层4的高反射率波段为410~450nm。In 0.05Ga 0.9Al 0.05N层的生长温度和压强分别为850℃和200Torr;In 0.05Ga 0.1Al 0.85N层的生长温度和压强分别为880℃和200Torr。所述DBR层4制作在非掺杂层3上。
所述n型掺杂层5由厚度为2μm的高温GaN构成,n型掺杂层5也可以采用Al 0.05Ga 0.95N、Al 0.05In 0.05Ga 0.9N等膜层,生长温度和压强分别为850~1090℃和200Torr,并且所述n型掺杂层5中掺杂的元素为Si,且掺杂浓度为1×10 19/cm -3,采用干法刻蚀方法把n型掺杂层5的两侧各制作成一台阶状下沉的台面,使台面低于n型掺杂层5的上表面。所述n型掺 杂层5制作在DBR层4上。
所述非掺杂多量子阱层6包括35对In 0.23Ga 0.77N/GaN周期性结构,每个周期由2nm厚的量子阱层In 0.23Ga 0.77N和4nm厚的量子垒层GaN组成。在上述结构参数条件下,所述非掺杂多量子阱层6对应的电池光谱响应曲线的高量子效率波段为410~450nm。量子阱层In 0.23Ga 0.77N的生长温度和压强为740℃和200Torr;量子垒层GaN的生长温度和压强为880℃和200Torr。所述非掺杂多量子阱层6制作在n型掺杂层5上。
所述p型掺杂层7由一层厚度为60nm的p型掺杂的GaN构成,p型掺杂层7也可以采用Al 0.1Ga 0.9N、Al 0.1In 0.05Ga 0.85N等膜层,并且所述p型掺杂层7中掺杂的元素为Mg,掺杂浓度范围为:1×10 19/cm -3至1×10 20/cm -3。所述p型GaN层的生长温度和压强为850~950℃和200Torr。所述p型GaN层制作在非掺杂多量子阱层6上。
所述n型欧姆电极8是由Al和Au两层金属薄膜组成的圆点形电极,本实施例n型欧姆电极采用电子束蒸发设备制作,且Al和Au层的厚度分别为30nm和300nm。所述n型欧姆电极8制作在n型掺杂层上的台面11上;
所述p型欧姆电极9的组成结构为Pd和Au两层金属薄膜构成的带圆点的指形电极,本实施例p型欧姆电极采用电子束蒸发设备制作,且Pd和Au层的厚度分别为25nm和300nm。所述p型欧姆电极9制作在p型掺杂层7上;
所述抗反射层10由10组SiO 2和Ta 2O 5薄膜交替构成,自下而上六层的厚度分别为:65nm(SiO 2)、95nm(Ta 2O 5)、12nm(SiO 2)、105nm(Ta 2O 5)、8nm(SiO 2)、55nm(Ta 2O 5),所述SiO 2和Ta 2O 5薄膜均采用离子束沉积设备制作。所述抗反射层10制作在p型掺杂层7和p型欧姆电极9上。
相比已有的氮化物薄膜太阳能电池方案,本发明具有布拉格反射镜(DBR)的氮化物薄膜太阳能电池能够有效反射透过吸收层的太阳光,其高反射率波段的反射率最高可达98%以上。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干 改进和替换,这些改进和替换也应视为本发明的保护范围。

Claims (12)

  1. 一种氮化物薄膜太阳能电池,其特征在于,包括衬底、非掺杂层、布拉格反射镜、n型掺杂层、非掺杂多量子阱层、p型掺杂层;在所述衬底上从下向上依次设置所述非掺杂层、布拉格反射镜、n型掺杂层、非掺杂多量子阱层和p型掺杂层,所述n型掺杂层的边缘区域为台面,在台面上设置有n型欧姆电极;在所述p型掺杂层上设置有p型欧姆电极。
  2. 根据权利要求1所述的氮化物薄膜太阳能电池,其特征在于,所述非掺杂层为氮化物Al xIn yGa 1-x-yN,其中0≤x≤1,0≤y≤1,且x+y≤1。
  3. 根据权利要求2所述的氮化物薄膜太阳能电池,其特征在于,所述非掺杂层还包括成核层,所述成核层制作在衬底上,所述非掺杂层在成核层上生长而得,所述成核层为氮化物Al mIn nGa 1-m-nN,其中0≤m≤1,0≤n≤1,且m+n≤1。
  4. 根据权利要求1所述的氮化物薄膜太阳能电池,其特征在于,所述布拉格反射镜包括高折射率氮化物In xhGa yhAl 1-xh-yhN层和低折射率氮化物层In xlGa ylAl 1-xl-ylN交替设置的周期性结构,其中,0≤xh≤1,0≤yh≤1,且0≤xh+yh≤1;和/或:0≤xl≤1,0≤yl≤1且0≤xl+yl≤1。
  5. 根据权利要求4所述的氮化物薄膜太阳能电池,其特征在于,所述布拉格反射镜中,高折射率氮化物In xhGa yhAl 1-xh-yhN层的厚度为1~500nm,所述低折射率氮化物In xlGa ylAl 1-xl-ylN层的厚度为1~500nm。
  6. 根据权利要求4所述的氮化物薄膜太阳能电池,其特征在于,所述布拉格反射镜包括3~100对高折射率氮化物In xhGa yhAl 1-xh-yhN层和低折射率氮化物层In xlGa ylAl 1-xl-ylN交替设置的周期性结构。
  7. 根据权利要求1所述的氮化物薄膜太阳能电池,其特征在于,所述n型掺杂层由氮化物Al xnIn ynGa 1-xn-ynN构成,其中0≤xn≤1,0≤yn≤1且xn+yn≤1,所述n型掺杂层中掺杂的元素为Si、Sn、S、Se或Te中的至少一种。
  8. 根据权利要求1所述的氮化物薄膜太阳能电池,其特征在于,所述p型掺杂层由氮化物Al xpIn ypGa 1-xp-ypN构成,其中0≤xp≤1,0≤yp≤1且x+y≤1,所述p型掺杂层中掺杂的元素为Be、Mg、Zn、Cd或C中的至少一种。
  9. 根据权利要求1所述的氮化物薄膜太阳能电池,其特征在于,所述非掺杂多量子阱层包括1~300对In xwGa ywAl 1-xw-ywN/In xbGa ybAl 1-xb-ybN周期性结构,每个周期性结构由量子阱层In xwGa ywAl 1-xw-ywN和量子垒层In xbGa ybAl 1-xb-ybN组成,其中,0≤xw≤1,0≤yw≤1,且0≤xw+yw≤1,和/或:0≤xb≤1,0≤yb≤1,且0≤xb+yb≤1,xw>xb。
  10. 根据权利要求1~9任一项所述的氮化物薄膜太阳能电池,其特征在于,在所述p型掺杂层和p型欧姆电极上覆盖有抗反射层,所述抗反射层包括1~30组交替设置的SiO 2和Ta 2O 5薄膜。
  11. 权利要求1~10任一项所述的氮化物薄膜太阳能电池的制备方法,其特征在于,所述布拉格反射镜结构在进行电池功能薄膜层生长的设备中原位生长制备。
  12. 根据权利要求11所述的制备方法,其特征在于,所述非掺杂层、布拉格反射镜结构和电池功能薄膜层在同一个气相沉积设备内原位生长制备。
PCT/CN2018/100501 2018-04-10 2018-08-14 一种氮化物薄膜太阳能电池 WO2019196292A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810316588.XA CN110364586A (zh) 2018-04-10 2018-04-10 一种氮化物薄膜太阳能电池
CN201810316588.X 2018-04-10

Publications (1)

Publication Number Publication Date
WO2019196292A1 true WO2019196292A1 (zh) 2019-10-17

Family

ID=68163033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100501 WO2019196292A1 (zh) 2018-04-10 2018-08-14 一种氮化物薄膜太阳能电池

Country Status (2)

Country Link
CN (1) CN110364586A (zh)
WO (1) WO2019196292A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113690325B (zh) * 2021-06-30 2023-10-13 华灿光电(浙江)有限公司 太阳能电池及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1900745A (zh) * 2006-07-07 2007-01-24 南京大学 用于紫外探测器的高反射率分布布拉格反射镜结构和生长方法
CN104393088A (zh) * 2014-10-29 2015-03-04 中国科学院半导体研究所 InGaN/AlInGaN多量子阱太阳能电池结构
CN105826420A (zh) * 2016-05-12 2016-08-03 中山德华芯片技术有限公司 一种具有反射层的双面生长四结太阳能电池及其制备方法
WO2017208006A1 (en) * 2016-06-01 2017-12-07 Imperial Innovations Limited Multi-junction solar cell, its fabrication and its use
CN208062083U (zh) * 2018-04-10 2018-11-06 北京创昱科技有限公司 一种氮化物薄膜太阳能电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1900745A (zh) * 2006-07-07 2007-01-24 南京大学 用于紫外探测器的高反射率分布布拉格反射镜结构和生长方法
CN104393088A (zh) * 2014-10-29 2015-03-04 中国科学院半导体研究所 InGaN/AlInGaN多量子阱太阳能电池结构
CN105826420A (zh) * 2016-05-12 2016-08-03 中山德华芯片技术有限公司 一种具有反射层的双面生长四结太阳能电池及其制备方法
WO2017208006A1 (en) * 2016-06-01 2017-12-07 Imperial Innovations Limited Multi-junction solar cell, its fabrication and its use
CN208062083U (zh) * 2018-04-10 2018-11-06 北京创昱科技有限公司 一种氮化物薄膜太阳能电池

Also Published As

Publication number Publication date
CN110364586A (zh) 2019-10-22

Similar Documents

Publication Publication Date Title
US8907205B2 (en) Combined Pn junction and bulk photovoltaic device
US8912424B2 (en) Multi-junction photovoltaic device and fabrication method
US5626687A (en) Thermophotovoltaic in-situ mirror cell
KR101622091B1 (ko) 태양 전지 및 이의 제조 방법
US20130206219A1 (en) Cooperative photovoltaic networks and photovoltaic cell adaptations for use therein
TWI455338B (zh) 超晶格結構的太陽能電池
US20120305059A1 (en) Photon recycling in an optoelectronic device
US20130240829A1 (en) Quantum dot structure, method for forming quantum dot structure, wavelength conversion element, light-light conversion device, and photoelectric conversion device
JP2010512664A (ja) 酸化亜鉛多接合光電池及び光電子装置
JP2008182226A (ja) 多層膜−ナノワイヤ複合体、両面及びタンデム太陽電池
US10811551B2 (en) Tandem solar cell including metal disk array
JPS61502020A (ja) ソ−ラ−セルと光検出器
CN101901854A (zh) 一种InGaP/GaAs/InGaAs三结薄膜太阳能电池的制备方法
KR20120088719A (ko) 개선된 광전지
CN109755340A (zh) 一种正向晶格失配三结太阳电池
US11271128B2 (en) Multi-junction optoelectronic device
KR20210021250A (ko) 단일 격자 - 정합 희석 질화물 접합을 포함하는 가요성 박막 광전자 장치 및 그 제조 방법
JP2010267934A (ja) 太陽電池およびその製造方法
JP5548878B2 (ja) 多接合型光学素子
CN208062083U (zh) 一种氮化物薄膜太阳能电池
WO2019196292A1 (zh) 一种氮化物薄膜太阳能电池
CN118315450A (zh) 叠层光伏器件及生产方法
JP5669228B2 (ja) 多接合太陽電池およびその製造方法
CN104638060A (zh) 异质结热光伏电池的制备方法
CN110534612A (zh) 一种反向生长三结太阳电池的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/02/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18914620

Country of ref document: EP

Kind code of ref document: A1