CN104300013B - 带有应变源的GeSn红外探测器 - Google Patents

带有应变源的GeSn红外探测器 Download PDF

Info

Publication number
CN104300013B
CN104300013B CN201410185529.5A CN201410185529A CN104300013B CN 104300013 B CN104300013 B CN 104300013B CN 201410185529 A CN201410185529 A CN 201410185529A CN 104300013 B CN104300013 B CN 104300013B
Authority
CN
China
Prior art keywords
array
gesn
type
light absorption
metal contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410185529.5A
Other languages
English (en)
Other versions
CN104300013A (zh
Inventor
刘艳
韩根全
张庆芳
王轶博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201410185529.5A priority Critical patent/CN104300013B/zh
Publication of CN104300013A publication Critical patent/CN104300013A/zh
Application granted granted Critical
Publication of CN104300013B publication Critical patent/CN104300013B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0312Inorganic materials including, apart from doping materials or other impurities, only AIVBIV compounds, e.g. SiC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明提供一种带有应变源的GeSn红外探测器,其结构为:在n+型衬底101上面为n型GeSn弛豫层102,弛豫层上面的SiGe应变源阵列104生长在GeSn光吸收阵列103的光吸收单元的周围区域,GeSn光吸收阵列的顶部为p+型GeSn金属接触阵列105,应变源阵列的顶部为p+型SiGe金属接触阵列106,第一电极107环绕在探测器的光照区金属接触阵列之上,第二电极108在n+型衬底之上。其中应变源阵列104的材料的晶格常数比光吸收阵列103的材料小,形成对光吸收区的应变,该应变在xy平面内为双轴张应变,在z方向为单轴压应变。这种应变有利于GeSn沟道Γ点下移,使直接带隙Eg Γ宽度减小,从而展宽探测器的光响应范围。

Description

带有应变源的GeSn红外探测器
技术领域
本发明涉及红外探测技术领域,具体涉及一种GeSn红外探测器。
背景技术
红外技术发展的先导是红外探测器的发展,一个国家红外探测器的发展水平代表着其红外技术的发展水平。红外探测器在军事、国防、消防、医疗、气候监测、资源勘探、天文观测等很多方面有着重要的应用。二战使红外探测技术得到了迅速的发展。先后出现了InSb、HgCdTe、掺杂Si、PtSi等材料的红外探测器。但是InSb和PtSi都没有波长可调性。虽然掺杂Si有很宽的光谱带宽,但是也不具备波长可调性,而且必须工作在很低的温度。碲镉汞(Hg x Cd1-x Te)长波长红外探测器是目前性能最好的红外探测器,通过调节Hg的组分x可以实现带隙0-0.8eV的连续可调。但是由于碲镉汞本身的性质导致其对环境极不友好,加之其不能满足Si基大规模集成这一当代光通信光互联的技术要求。而利用外延生长的IV族材料体系无毒、廉价、且易实现大规模的硅基集正好可以弥补碲镉汞方面的不足。
在过去的十几年中,由于Ge在1.3-1.55um波段范围内有很高的吸收效率,且可以直接在Si基长出高质量Ge薄膜,使得高性能Ge被认为近红外探测器的最佳备选材料。但是Ge为间接带隙半导体E gl =0.67eV、E =0.80eV,由于E 为0.8eV使得Ge探测器效率在1550nm以上的波段骤然下降,而不能覆盖L(1565-1625nm)波段和U(1625-1675nm)波段通讯窗口,即使引入张应变,Ge探测器也不能完全覆盖L(1565-1625nm)波段通讯窗口[Optical Society of America, 19(7), pp.6401, 2011]。理论计算显示第IV族GeSn材料是另一备选材料,因为它能带的可调性,通过调节GeSn中Sn的组分和改变GeSn结构的应变情况,可以实现对GeSn能带E 的连续调节。
对于弛豫的GeSn材料,若Sn的组分为2%就能覆盖所有通讯窗口,在C与L波段光吸收比Ge探测器增加近10倍[Semicond. Sci. Technol., 24(11), pp.115006, 2009],当Sn的组分达到6.5%~11%的时候,GeSn就会变成直接带隙(E <E gl )(Journal of Applied Physics, 113,073707, 2013以及其中的参考文献)。但由于Sn在Ge中的固溶度很低(< 1%),因此制备高质量、无缺陷的GeSn很难。现在用外延生长的方法可制备出Sn组分达到20%的GeSn材料[ECS Transactions, 41(7), pp.231, 2011; ECS Transactions, 50(9), pp.885, 2012]。因此通过改变Sn的组分可以改变GeSn半导体的带隙。但是随着Sn组分的增加,材料质量和热稳定型都会变差,因此单纯依靠提高Sn的组分实现较大范围带隙的调节比较困难。理论计算显示,在GeSn中引入双轴张应变有利于从间接带隙到直接带隙的转变,即在Sn组分比较低时带隙就可以有较大的改变。因此通过Sn的组分及张应变的控制可以较大范围的调制GeSn带隙宽度E
为实现张应变GeSn,有人在晶格常数比较大的衬底材料上生长GeSn外延层,衬底材料可以是III-V族材料,比如InGaAs或者Sn组分更高的GeSn。本发明采用此新结构引入双轴张应变。
发明内容
本发明的目的是提出一种带有应变源的GeSn红外探测器的结构。其中应变源材料的晶格常数比光吸收区域材料的小,对光吸收阵列GeSn材料形成沿z方向的单轴压应变,在xy平面内形成双轴张应变。这种应变状态有利于GeSn材料带隙E的变化,从而实现GeSn红外探测器波长的可调。
本发明用以实现上述目的的技术方案如下:
一种带有应变源的GeSn红外探测器,其包括:
一n+型衬底101,采用Si材料;
一弛豫层102,位于n+型衬底101之上;
一光吸收阵列103,为单晶GeSn材料,分布于弛豫层102之上,每个光吸收单元为方形柱;
一应变源阵列104,为单晶SiGe材料,每个应变源单元为矩形柱,四个应变源单元分布于一个光吸收单元的四面,连接相邻的光吸收单元;
一p+型GeSn金属接触阵列105,为单晶p+型GeSn,对应位于光吸收阵列上;
一p+型SiGe金属接触阵列106,为单晶p+型SiGe,对应位于应变源阵列上;
一探测第一电极107,环绕在探测器的光照区金属接触阵列105和106顶端,将p+型金属接触阵列连接起来;
一探测第二电极108,位于n+型衬底之上;
其关键是,应变源阵列材料的晶格常数比光吸收阵列材料的晶格常数小,从而形成对光吸收区材料的应变,使光吸收区GeSn的带隙E 变小。
本发明的优点分析如下:
由于本发明的光吸收阵列材料为单晶GeSn,应变源阵列材料为单晶SiGe,通过改变GeSn中Sn的组分和SiGe中Ge的组分,使得应变源材料的晶格常数比光吸收区域材料的晶格常数小,从而对光吸收阵列GeSn材料形成沿z轴方向的单轴压应变,沿xy平面的双轴张应变,这种应变状态有利于GeSn材料带隙E 的减小,从而实现能带可调。
附图说明
图1 为GeSn红外探测器的立体模式图。
图2 为GeSn红外探测器的YZ面剖面图。
图3为GeSn红外探测器制备的第一步。
图4为GeSn红外探测器制备的第二步。
图5为GeSn红外探测器制备的第三步。
图6为GeSn红外探测器制备的第四步。
图7为GeSn红外探测器制备的第五步。
图8为GeSn红外探测器制备的第六步。
图9为GeSn红外探测器制备的第七步。
具体实施方式
为了更为清晰地了解本发明的技术实质,以下结合附图和实施例详细说明本发明的结构和工艺实现:
其中,光吸收阵列为单晶GeSn材料,应变源阵列为单晶SiGe材料分布在光吸收单元周围,GeSn金属接触阵列、SiGe金属接触阵列分别位于光吸收阵列与应变源阵列之上,第一电极环绕在金属接触阵列顶端,第二电极在衬底之上。
参见图1和图2所示的带有应变源的GeSn红外探测器,其具有n+型Si衬底101、弛豫层102、光吸收阵列103、应变源阵列104、GeSn金属接触阵列105、SiGe金属接触阵列106、第一电极107、第二电极108。
   其中,光吸收阵列103、弛豫层102、金属接触矩阵105,采用单晶GeSn材料,材料通式为Ge1-x Sn x (0≤x≤0.25),如可采用Ge0.947Sn0.053,
   应变源阵列104、金属接触阵列106,采用单晶SiGe材料,材料通式为Si1-y Ge y (0≤y≤0.4),如可采用Si0.7Ge0.3
它们的结构位置关系为:弛豫层102位于n+型衬底101之上;单晶GeSn材料的光吸收阵列103,分布于弛豫层102之上,每个光吸收单元为方形柱;单晶SiGe材料的应变源阵列104的每个应变源单元为矩形柱,四个应变源单元分布于一个光吸收单元的四面,连接相邻的光吸收单元;单晶p+型GeSn金属接触阵列105对应位于光吸收阵列上;单晶p+型SiGe金属接触阵列106对应位于应变源阵列上;探测第一电极107,环绕在探测器的光照区金属接触阵列105和106的顶端,将p+型金属接触阵列连接起来;探测第二电极108,位于n+型衬底之上。
参见图3-图9,为带有应变源的GeSn红外探测器10的制备过程:
第一步如图3所示,在n+型Si 衬底101上,利用外延生长的技术,依次生长一层弛豫的n型Ge1-x Sn x (0< x <0.25)材料,形成弛豫层102,一层Ge1-x Sn x 材料,作为制备光吸收阵列103的基础。
第二步如图4所示,利用光刻和刻蚀使Ge1-x Sn x 材料成为阵列形式,每个单元为正方形柱,形成光吸收阵列103。
第三步如图5所示,利用外延生长技术,在GeSn材料的光吸收阵列103周围,生长Si1-y Ge y (0≤y≤0.4)材料填满第二部刻掉GeSn材料的位置,作为制备应变源阵列104的基础。
第四步如图6所示,利用原位掺杂技术对GeSn材料光吸收阵列103及Si1-x Ge x 材料的顶端特定深度进行p型掺杂,形成p型重掺杂层, 得到p+型GeSn材料的金属接触阵列105和p+型SiGe材料的金属接触阵列106。
第五步如图7所示,利用光刻和刻蚀,在探测器边缘刻蚀掉部分GeSn及SiGe,形成暴露衬底的台阶。
第6步如图8所示,利用光刻和刻蚀,将GeSn光吸收阵列103的每个单元的对角线上的Si1-x Ge x 刻蚀掉,形成阵列形式的SiGe应变源阵列104,p+型SiGe金属接触阵列106。
第7步如图9所示,在探测器的光照区金属接触阵列105和106的顶端,形成环形第一金属电极107,将p+型金属接触阵列连接起来;同时在暴露衬底101的台阶之上粘上片状第二金属电极108。
以上,一个完整的探测器接制备完成。
虽然本发明已以实例公开如上,然其并非用以限定本发明,本发明的保护范围当视权利要求为准。
本发明并不局限于上述实施方式,如果对发明的各种改动或变形不脱离本发明的精神和范围,倘若这些改动和变形属于本发明的权利要求和等同技术范围之内,则本发明也意图包含这些改动和变形。

Claims (3)

1.一种带有应变源的GeSn红外探测器,其特征在于,包括:
一n+型Si衬底(101);
一弛豫层(102),位于n+型Si衬底(101)之上;
一光吸收阵列(103),为单晶GeSn材料,分布于弛豫层(102)之上,每个光吸收单元为方形柱;
一应变源阵列(104),为单晶SiGe材料,每个应变源单元为矩形柱,四个应变源单元围绕分布于一个光吸收单元的四面,连接相邻的光吸收单元;
一p+型GeSn金属接触阵列(105),为单晶p+型GeSn,对应位于光吸收阵列上;
一p+型SiGe金属接触阵列(106),为单晶p+型SiGe,对应位于应变源阵列上;
一探测第一电极(107),环绕在探测器的光照区金属接触阵列顶端,将p+型金属接触阵列连接起来;
一探测第二电极(108),位于n+型衬底之上;
其中应变源阵列材料的晶格常数比光吸收阵列材料的晶格常数小;
所述光吸收阵列的单晶GeSn材料通式为Ge1-x Sn x ,其中0≤x≤0.25;
所述应变源阵列的单晶SiGe材料通式为Si1-y Ge y ,其中0≤y≤0.3。
2.如权利要求1所述的带有应变源的GeSn红外探测器,其特征在于,所述金属接触阵列(105和106)是利用原位掺杂技术对光吸收阵列(103)及应变源阵列(104)顶端一定深度进行p型掺杂,形成p型重掺杂层, 即p+型GeSn材料的金属接触阵列(105)和p+型SiGe材料的金属接触阵列(106)。
3. 如权利要求1或2所述的带有应变源的GeSn红外探测器,其特征在于,其中应变源通过半导体外延生长技术生长在光吸收单元周围区域。
CN201410185529.5A 2014-05-05 2014-05-05 带有应变源的GeSn红外探测器 Expired - Fee Related CN104300013B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410185529.5A CN104300013B (zh) 2014-05-05 2014-05-05 带有应变源的GeSn红外探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410185529.5A CN104300013B (zh) 2014-05-05 2014-05-05 带有应变源的GeSn红外探测器

Publications (2)

Publication Number Publication Date
CN104300013A CN104300013A (zh) 2015-01-21
CN104300013B true CN104300013B (zh) 2015-06-03

Family

ID=52319673

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410185529.5A Expired - Fee Related CN104300013B (zh) 2014-05-05 2014-05-05 带有应变源的GeSn红外探测器

Country Status (1)

Country Link
CN (1) CN104300013B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9647165B2 (en) * 2015-08-20 2017-05-09 GlobalFoundries, Inc. Germanium photodetector with SOI doping source
CN105514209A (zh) * 2015-12-17 2016-04-20 西安电子科技大学 基于GeSn红外探测器的红外夜视仪
CN106024922B (zh) * 2016-03-02 2017-10-24 西安电子科技大学 基于GeSn材料的光电晶体管及其制作方法
CN105895727B (zh) * 2016-04-22 2017-07-28 西安电子科技大学 基于弛豫GeSn材料的光电探测器
DE102016110041A1 (de) * 2016-05-31 2017-11-30 Osram Opto Semiconductors Gmbh Bauelement zum Detektieren von UV-Strahlung und Verfahren zur Herstellung eines Bauelements
CN108346713B (zh) * 2017-01-24 2020-01-31 中国科学院半导体研究所 可见-短波红外探测器及其制备方法
CN107871800B (zh) * 2017-02-24 2019-06-14 西藏民族大学 n+-GeSn/i-GeSn/p+-Ge结构光电探测器及其制备方法
CN109166942B (zh) * 2018-08-30 2019-09-27 郑州轻工业学院 带有磁应变源的自调式GeSn红外探测器及其制备方法
CN110896115B (zh) * 2018-09-12 2022-06-28 上海新微技术研发中心有限公司 光电晶体管、红外探测器和光电晶体管的制作方法
CN111211182A (zh) * 2018-11-19 2020-05-29 上海新微技术研发中心有限公司 一种波导型光电探测器及其制造方法
CN111312827B (zh) * 2018-11-27 2022-03-01 上海新微技术研发中心有限公司 一种单向载流子传输光电探测器及其制造方法
CN114613872B (zh) * 2022-03-04 2023-10-13 北京工业大学 一种全光谱探测场效应晶体管及制备方法
CN115274907B (zh) * 2022-07-30 2024-05-10 郑州轻工业大学 带有张应变薄膜的中红外GeSn发光器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8647937B2 (en) * 2012-06-26 2014-02-11 Globalfoundries Singapore Pte. Ltd. Deep depleted channel MOSFET with minimized dopant fluctuation and diffusion levels
CN102983171B (zh) * 2012-12-11 2015-10-28 哈尔滨工程大学 垂直无结环栅mosfet器件的结构及其制造方法
CN103311306A (zh) * 2013-06-26 2013-09-18 重庆大学 带有InAlP盖层的GeSn沟道金属氧化物半导体场效应晶体管
CN103730507B (zh) * 2013-12-31 2015-05-20 重庆大学 双轴张应变GeSn n沟道金属氧化物半导体场效应晶体管

Also Published As

Publication number Publication date
CN104300013A (zh) 2015-01-21

Similar Documents

Publication Publication Date Title
CN104300013B (zh) 带有应变源的GeSn红外探测器
LaPierre et al. A review of III–V nanowire infrared photodetectors and sensors
Belarbi et al. A comparative study of different buffer layers for CZTS solar cell using Scaps-1D simulation program
US20110120538A1 (en) Silicon germanium solar cell
CN105006500B (zh) 横向ⅳ族元素量子阱光电探测器及制备方法
US11257973B2 (en) Method for passing photovoltaic current between a subcell formed from a group II-VI semiconductor material and a subcell formed from a group IV semiconductor material
CN106409967B (zh) p‑i‑n—‑n型GaN单光子雪崩探测器
CN104300049A (zh) 带有应变源的GeSn量子阱红外发光器
CN102388466A (zh) 光伏电池
Weng et al. Recent development on the uncooled mid-infrared PbSe detectors with high detectivity
CN102534764A (zh) Ⅱ类超晶格窄光谱红外光电探测器材料的外延生长方法
Dong et al. Germanium-tin multiple quantum well on silicon avalanche photodiode for photodetection at two micron wavelength
CN103367520A (zh) InP基截止波长大范围可调的晶格匹配InGaAsBi探测器结构及其制备
US20110162697A1 (en) Tunnel homojunctions in group iv / group ii-vi multijunction solar cells
CN104409530B (zh) 应变SiGeSn鳍型光电探测器
CN108346713B (zh) 可见-短波红外探测器及其制备方法
CN105514209A (zh) 基于GeSn红外探测器的红外夜视仪
CN108376725A (zh) 一种基于GaSb/InSb/InP异质PIN结构的光伏型红外探测器
CN103383976B (zh) 石墨烯增强型InGaAs红外探测器
CN102214721B (zh) 一种iii族氮化物双异质结太阳能光伏电池
Cui et al. Investigation of active-region doping on InAs/GaSb long wave infrared detectors
US20140027774A1 (en) Laser Processed Photovoltaic Devices and Associated Methods
CN104900729A (zh) 横向GeSn/SiGeSn量子阱光电发光器件及其制备方法
Imamzai et al. Optimization of graded bandgap Cd1-xZnxTe thin film solar cells from numerical Analysis
Kabir et al. Effect of Energy Bandgap of the Amorphous Silicon Carbide(A-Sic: H) Layers On A-Si Multijuntion Solar Cells from Numerical Analysis

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150603

Termination date: 20180505