CN108376725A - 一种基于GaSb/InSb/InP异质PIN结构的光伏型红外探测器 - Google Patents

一种基于GaSb/InSb/InP异质PIN结构的光伏型红外探测器 Download PDF

Info

Publication number
CN108376725A
CN108376725A CN201810115166.6A CN201810115166A CN108376725A CN 108376725 A CN108376725 A CN 108376725A CN 201810115166 A CN201810115166 A CN 201810115166A CN 108376725 A CN108376725 A CN 108376725A
Authority
CN
China
Prior art keywords
insb
gasb
type
inp
heavy doping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810115166.6A
Other languages
English (en)
Inventor
张宝林
徐佳新
徐德前
庄仕伟
张源涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201810115166.6A priority Critical patent/CN108376725A/zh
Publication of CN108376725A publication Critical patent/CN108376725A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

一种基于GaSb/InSb/InP异质PIN结构的光伏型红外探测器,属于红外探测技术领域。该探测器由下至上依次由背电极、重掺杂的N+型InP衬底、重掺杂的N+型InP电子传输层、未掺杂的窄禁带InSb有源区、重掺杂的P+型GaSb空穴传输层以及栅条形上电极)组成。本发明采用低压金属有机物化学气相外延技术,在重掺杂的N+型InP衬底制备相应结构,并利用磁控溅射技术制备上电极和背电极,得到的器件具有探测率高、响应速度快、工作温度高、制备工艺简单等特点,在室温条件下,归一化探测率D*为2.4×1010cm Hz1/ 2W‑1,可应用于航天、军事、工业、民用等领域。

Description

一种基于GaSb/InSb/InP异质PIN结构的光伏型红外探测器
技术领域
本发明属于红外探测技术领域,具体涉及一种基于GaSb/InSb/InP异质PIN结构的光伏型红外探测器。
背景技术
红外技术是研究红外辐射的产生、传播、转化、测量及其应用的技术科学,其中的红外探测技术作为红外技术的重要分支,是一种利用目标与背景之间的红外辐射差异,所形成的热点或图像来获取目标和背景信息的技术。红外探测技术的核心部分是红外探测器,其功能在于将红外辐射转换为电信号,从而能够进一步分析、处理目标信息。红外探测技术以其独特的优势,在跟踪探测领域有着传统电子雷达不可比拟的优势,因此在国家安全及军事领域中有着重要的地位。同时,红外波段也是重要的通信波段,掌握和应用先进的红外探测技术,对提高国防信息化建设和民用设施信息化建设同样是至关重要的。
相比于传统的制冷型红外探测器,非制冷型红外探测器无需制冷设备,因此体积小、重量轻、成本低,同时具有低功耗、可便携、连续工作时间长等优势,在军用和民用领域得到迅速的推广。由于传统光伏型探测器受到窄带隙材料的限制,室温下难以制备高探测率的器件,因此非制冷型红外技术以热释电探测器、热电堆探测器、光机械结构等热红外探测器件为主。但是,热红外探测器的探测率不及光伏型探测器,在空间探测、目标追踪等对探测率要求苛刻的领域,还不能实用化。同时,热红外探测器的响应速度较慢,难以满足军事领域、信息通讯领域的应用要求。因此,研制具有高探测率、高响应速度的光伏型非制冷红外探测器对推动国防军事以及民用基础设施建设都有着重要意义。
目前,在光伏型非制冷红外探测器的研究方面,以锑化物为基础的超晶格材料因其优秀的性能引起了广泛关注,成为近年来研究的热点。新墨西哥大学Carl等人在GaSb衬底上外延生长的InAs/GaSb超晶格探测器,在室温下归一化探测率达到8.5×109cm Hz1/2/W,十分接近实用化水平。以色列SCD公司的Glozman等人成功研制出以InAlSb材料制成的红外焦平面阵列,像元个数640×512,25℃时的噪声等效温差(NETD)仅为20mK,且在110K的温度下能够清晰成像。2013年,该公司进一步推出采用InSb/InAsSb超晶格材料制成的红外焦平面阵列,并将工作温度提升至193K时仍能清晰成像[8]
中国科学院半导体研究所的王国伟等人制备了截止波长达到8.72μm的InAs/GaSbⅡ型超晶格红外探测器件,在温度为77K的条件下探测率达到8.1×1010cm Hz1/2/W。中国科学院上海技术物理研究所完成了128×128像元的红外焦平面阵列的制备,77K温度下,黑体辐射测试的峰值探测率高达8.1×1010cmHz1/2/W。
发明内容
本发明的目的是制备一种在室温条件下具有较高探测率、较高响应速度的、工作波段为3~5μm的基于GaSb/InSb/InP异质PIN结构的光伏型红外探测器。
本发明所述的一种基于GaSb/InSb/InP异质PIN结构的光伏型非制冷红外探测器,由下至上依次由背电极1、重掺杂的N+型InP衬底2、重掺杂的N+型InP电子传输层3、未掺杂的窄禁带InSb有源区4、重掺杂的P+型GaSb空穴传输层5以及栅条形上电极6组成。
前面所述的重掺杂的N+型InP衬底2的施主掺杂浓度为1×1018~2×1018cm-3,厚度为3.5~5.0μm;重掺杂的N+型InP电子传输层3的施主掺杂浓度为5×1018~8×1018cm-3,厚度为0.2~0.5μm;未掺杂的窄禁带InSb有源区4的厚度为0.5~2μm;重掺杂的P+型GaSb空穴传输层5的受主掺杂浓度为9×1017~1.2×1018cm-3,厚度为0.2~0.5μm。
前面所述的P+型受主掺杂剂为Be、Mg、C或Zn;N+型施主掺杂剂为Se、Te或Sn。
前面所述的栅条形上电极和背电极的材料是Al、Cu、Au、Ag或Pt,是在器件的上表面和下表面通过蒸发工艺制备的;背电极的金属层厚度为200~300nm,栅条形上电极的金属层厚度为200~300nm,栅条形上电极覆盖面积占电池上表面面积的8~15%。
本发明采用GaSb/InSb/InP异质PIN结构,未掺杂的窄禁带InSb材料作为有源区,起到了吸收红外辐射并转换为电流的作用。由于InSb材料的禁带宽度窄,因此俄歇复合率很高,极大地缩短了载流子的寿命,引入了较大的暗电流,从而在很大程度上限制了探测器的性能。为了抑制俄歇复合效应所引入的噪声,采用两种禁带宽度较大的材料GaSb与InP,作为载流子的传输层,能够有效的将俄歇复合限制在有源区内,从而降低探测器的暗电流。同时,GaSb材料与InP材料在与InSb材料接触形成异质结时,分别在导带与价带中引入了0.52eV以及0.98eV的带阶,从而形成了有效的电子势垒及空穴势垒,限制了InSb外延层中载流子的扩散运动,从而可以抑制扩散效应所引发的噪声电流。此外,在工作时,红外探测器处在相应的反偏压的条件下,非故意掺杂的InSb有源区满足全耗尽条件,其自由载流子的浓度相比于热平衡时将大大降低,从而降低了发生俄歇复合的载流子的数量,同样削弱了俄歇复合效应引发的暗电流。在这几种机制的作用下,探测器的归一化探测率可以达到2.4×1010cm Hz1/2/W。
由于光伏型红外探测器利用的是半导体材料的光生伏特效应,工作机理决定了其响应时间较短的特性,同时InSb材料具有很高的电子迁移率,探测器的响应时间可达到纳秒级。
附图说明
图1:本发明的GaSb/InSb/InP异质PIN红外探测器的结构示意图;
图2:本发明的GaSb/InSb/InP异质PIN红外探测器热平衡时的能带结构示意图(上图),及反偏压条件下的能带结构图(下图);
图3:本发明的GaSb/InSb/InP异质PIN红外探测器在2~8μm波段的光谱响应曲线;
图4:本发明的GaSb/InSb/InP异质PIN红外探测器在正偏压及反偏压条件下的暗电流。
如图1所示,本发明所述的GaSb/InSb/InP异质PIN红外探测器,由下至上依次包括背电极1、重掺的N+型InP衬底2、重掺杂的N+型InP3电子传输层、未掺杂的窄禁带InSb有源区4、重掺杂的P+型GaSb5空穴传输层以及栅条形上电极6。
如图2所示,本发明所述的GaSb/InSb/InP异质PIN红外探测器的能带结构。其中上图为热平衡条件下的能带结构,下图为0.3V反偏压下的能带结构。
InSb材料的禁带宽度为0.18eV,对应的截止波长为6.89μm,起到了吸收红外辐射的作用。GaSb材料与InP材料的禁带宽度分别为0.7eV和1.34eV,在与InSb材料接触形成异质结时,分别在导带、价带引入了0.52eV以及0.98eV的带阶,从而分别形成了电子势垒及空穴势垒,限制了InSb外延层中载流子的扩散运动,从而能够抑制探测器的暗电流。
通过控制GaSb材料以及InP材料的掺杂浓度,使三种材料在热平衡条件下的费米能级基本持平,因此热平衡条件下即使GaSb与InP材料均为重型掺杂,但是能带并不会弯曲。
反偏压条件下,反偏压主要集中在InSb有源区,使得InSb材料的能带发生倾斜,光生载流子在空间电荷区的高强度电场下迅速分离,并漂移度过空间电荷区,通过到达电极,形成响应时间很短的光生电流。
如图3所示,本发明所述的GaSb/InSb/InP异质PIN红外探测器在入射光波长为0.5~8μm波段的光谱响应曲线。由于InSb材料的禁带宽度较窄,为0.18eV,对应的截止波长可以达到6.89μm。吸收峰值发生在3.5μm处,其响应率达到了1.67A/W。
如图4所示,本发明的GaSb/InSb/InP异质PIN红外探测器在正偏压及反偏压条件下的暗电流。GaSb材料与InP材料形成的电子势垒与空穴势垒,限制了InSb外延层中载流子的扩散运动,因此在正偏压下,少子扩散产生的电流密度依然很低。同时,采用两种禁带宽度较大的GaSb材料与InP材料作为载流子的传输层,将俄歇复合效应的影响限制在了InSb有源区内,当施加反偏压于器件两端时,空间电荷区逐渐扩展,有源区内的自由载流子数量随反偏电压的增大而迅速下降,因此俄歇复合率迅速下降,暗电流也随之迅速降低。
具体实施方式
实施例1:
以掺Te的N+型InP抛光单晶片为衬底,净施主浓度为1×1018cm-3,晶向为(100)偏(111)2°,制备结构为背电极/重掺的N+型InP衬底/重掺杂的N+型InP电子传输层/未掺杂的InSb有源区/重掺杂的P+型GaSb空穴传输层/栅条形上电极的红外探测器。
多层材料结构的生长在低压金属有机化学气相沉积(MOCVD)系统中进行。生长所用Ga、In、Sb和P源分别为三甲基镓(TMGa)、三甲基铟(TMIn)、三乙基锑(TESb)、体积比浓度为10%的磷烷(PH3),金属有机源均置于高精度控温冷阱中,源温分别为:TMGa:-10℃;TMIn:16℃;TMSb:-10℃。
材料掺杂所用N+型掺杂源为二乙基碲(DETe);P+型掺杂源为二乙基锌(DEZn),置于高精度控温冷阱中,冷阱温度0℃。
GaSb/InSb/InP双异质红外探测器各层材料的详细生长参数列于表1。按照表1给出的生长条件,在掺Te的N+型InP衬底上依次外延生长重掺杂的N+型InP电子传输层/非故意掺杂的InSb有源区/重掺杂的P+型GaSb空穴传输层。生长获得的GaSb/InSb/InP异质PIN外延片各层的基本材料参数列于表2。
表1:GaSb/InSb/InP双异质红外探测器各层材料的生长参数
表2:GaSb/InSb/InP双异质红外探测器各层材料的基本材料参数
材料基本参数 N+型InP衬底 N+型InP InSb有源区 P+型GaSb
厚度μm 350 0.4 1.0 0.4
载流子浓度cm-3 1.0×1018 7.5×1017 1×1016 1.0×1018
禁带宽度eV 1.34 1.34 0.18 0.70
电极的制备工艺流程如下:
1.清洗:用去离子水清洗烧杯,烘箱烘干,把前面采用MOCVD技术制备的GaSb/InSb/InP双异质结外延片放入;加CCl4,超声清洗10分钟,废液倒出,重复一次;加丙酮,超声清洗10分钟,废液倒出,重复一次;加酒精,超声清洗10分钟,废液倒出,重复一次;取出外延片用氮气吹干;
2.烘烤:将上述的GaSb/InSb/InP双异质结外延片在80℃烘箱烘烤20分钟;
3.蒸镀上电极:在上述GaSb/InSb/InP双异质结外延片上表面电子束蒸发Al(200nm)上电极,并采用标准的光刻技术将上电极做成栅条型,上电极面积占上表面面积的10%。
4.减薄:细砂研磨至250μm,用金刚砂抛光;
5.蒸镀背电极:在上述GaSb/InSb/InP双异质结外延片N+型InP衬底背面电子束蒸发Al(200nm)背电极。

Claims (4)

1.一种基于GaSb/InSb/InP异质PIN结构的光伏型红外探测器,其特征在于:由下至上依次由背电极(1)、重掺杂的N+型InP衬底(2)、重掺杂的N+型InP电子传输层(3)、未掺杂的窄禁带InSb有源区(4)、重掺杂的P+型GaSb空穴传输层(5)以及栅条形上电极(6)组成。
2.如权利要求1所述的一种基于GaSb/InSb/InP异质PIN结构的光伏型红外探测器,其特征在于:重掺杂的N+型InP衬底(2)的施主掺杂浓度为1×1018~2×1018cm-3,厚度为3.5~5.0μm;重掺杂的N+型InP电子传输层(3)的施主掺杂浓度为5×1018~8×1018cm-3,厚度为0.2~0.5μm;未掺杂的窄禁带InSb有源区(4)的厚度为0.5~2μm;重掺杂的P+型GaSb空穴传输层(5)的受主掺杂浓度为9×1017~1.2×1018cm-3,厚度为0.2~0.5μm。
3.如权利要求1所述的一种基于GaSb/InSb/InP异质PIN结构的光伏型红外探测器,其特征在于:P+型受主掺杂剂为Be、Mg、C或Zn;N+型施主掺杂剂为Se、Te或Sn。
4.如权利要求1所述的一种基于GaSb/InSb/InP异质PIN结构的光伏型红外探测器,其特征在于:栅条形上电极(6)和背电极(1)的材料是Al、Cu、Au、Ag或Pt,是在器件的上表面和下表面通过蒸发工艺制备的;背电极的厚度为200~300nm,栅条形上电极的厚度为200~300nm,栅条形上电极覆盖面积占电池上表面面积的8~15%。
CN201810115166.6A 2018-02-06 2018-02-06 一种基于GaSb/InSb/InP异质PIN结构的光伏型红外探测器 Pending CN108376725A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810115166.6A CN108376725A (zh) 2018-02-06 2018-02-06 一种基于GaSb/InSb/InP异质PIN结构的光伏型红外探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810115166.6A CN108376725A (zh) 2018-02-06 2018-02-06 一种基于GaSb/InSb/InP异质PIN结构的光伏型红外探测器

Publications (1)

Publication Number Publication Date
CN108376725A true CN108376725A (zh) 2018-08-07

Family

ID=63017315

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810115166.6A Pending CN108376725A (zh) 2018-02-06 2018-02-06 一种基于GaSb/InSb/InP异质PIN结构的光伏型红外探测器

Country Status (1)

Country Link
CN (1) CN108376725A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109675542A (zh) * 2018-11-29 2019-04-26 长春理工大学 利用pn结自供电的半导体光电催化器件
CN111129187A (zh) * 2018-10-30 2020-05-08 中国科学院苏州纳米技术与纳米仿生研究所 红外光探测器及其制作方法
CN113363342A (zh) * 2021-06-04 2021-09-07 中国科学技术大学 一种Ga-GaSb硅基近红外光电探测器及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0384969A (ja) * 1989-08-28 1991-04-10 Nec Corp 半導体発光素子
CN101641790A (zh) * 2007-03-23 2010-02-03 旭化成微电子株式会社 化合物半导体层叠体及其制造方法以及半导体器件
US20160380137A1 (en) * 2013-11-27 2016-12-29 Sumitomo Electric Industries, Ltd. Light-receiving device
CN106328786A (zh) * 2016-09-18 2017-01-11 Tcl集团股份有限公司 一种qled器件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0384969A (ja) * 1989-08-28 1991-04-10 Nec Corp 半導体発光素子
CN101641790A (zh) * 2007-03-23 2010-02-03 旭化成微电子株式会社 化合物半导体层叠体及其制造方法以及半导体器件
US20160380137A1 (en) * 2013-11-27 2016-12-29 Sumitomo Electric Industries, Ltd. Light-receiving device
CN106328786A (zh) * 2016-09-18 2017-01-11 Tcl集团股份有限公司 一种qled器件

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111129187A (zh) * 2018-10-30 2020-05-08 中国科学院苏州纳米技术与纳米仿生研究所 红外光探测器及其制作方法
CN109675542A (zh) * 2018-11-29 2019-04-26 长春理工大学 利用pn结自供电的半导体光电催化器件
CN109675542B (zh) * 2018-11-29 2021-11-26 长春理工大学 利用pn结自供电的半导体光电催化器件
CN113363342A (zh) * 2021-06-04 2021-09-07 中国科学技术大学 一种Ga-GaSb硅基近红外光电探测器及其制备方法
CN113363342B (zh) * 2021-06-04 2022-10-28 中国科学技术大学 一种Ga-GaSb硅基近红外光电探测器及其制备方法

Similar Documents

Publication Publication Date Title
LaPierre et al. A review of III–V nanowire infrared photodetectors and sensors
Ting et al. A high-performance long wavelength superlattice complementary barrier infrared detector
CN105720130B (zh) 基于量子阱带间跃迁的光电探测器
Rhiger Performance comparison of long-wavelength infrared type II superlattice devices with HgCdTe
Rogalski Comparison of the performance of quantum well and conventional bulk infrared photodetectors
CN108305911B (zh) 吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器
CN108376725A (zh) 一种基于GaSb/InSb/InP异质PIN结构的光伏型红外探测器
Reine HgCdTe photodiodes for IR detection: a review
CN108878576B (zh) 一种氧化镓基紫外探测器
Ting et al. Antimonide-based barrier infrared detectors
US10468548B2 (en) Oxide heterojunction for detection of infrared radiation
CN103258869A (zh) 基于氧化锌材料的紫外红外双色探测器及其制作方法
CN109244176B (zh) 一种微椭球式零串音碲镉汞红外焦平面探测器
Rogalski New trends in semiconductor infrared detectors
CN111900217B (zh) 一种中/长波红外双波段超晶格红外探测器及其制备方法
CN114220920A (zh) 一种量子点红外探测器及其制备方法
CN102201482A (zh) 量子阱红外探测器
CN104538484A (zh) 一种波长扩展型InGaAs雪崩光电二极管的外延结构
CN209447826U (zh) 一种低暗电流台面型雪崩单光子探测器
Knowles et al. Status of IR detectors for high operating temperature produced by MOVPE growth of MCT on GaAs substrates
Hackiewicz et al. MOCVD-grown HgCdTe photodiodes optimized for HOT conditions and a wide IR range
CN114038926A (zh) 一种高增益平面型雪崩单光子探测器及其制备方法
Wróbel et al. Performance limits of room-temperature InAsSb photodiodes
CN101859808A (zh) 量子阱红外探测器
CN111211196A (zh) 一种高灵敏度高线性度探测器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180807

WD01 Invention patent application deemed withdrawn after publication