CN109675542A - 利用pn结自供电的半导体光电催化器件 - Google Patents

利用pn结自供电的半导体光电催化器件 Download PDF

Info

Publication number
CN109675542A
CN109675542A CN201811446777.5A CN201811446777A CN109675542A CN 109675542 A CN109675542 A CN 109675542A CN 201811446777 A CN201811446777 A CN 201811446777A CN 109675542 A CN109675542 A CN 109675542A
Authority
CN
China
Prior art keywords
area
self
grizzly bar
junction
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811446777.5A
Other languages
English (en)
Other versions
CN109675542B (zh
Inventor
母一宁
曹喆
杨继凯
肖楠
王帅
刘春阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Jiehuan Photoelectric Technology Co Ltd
Changchun University of Science and Technology
Original Assignee
Changchun Jiehuan Photoelectric Technology Co Ltd
Changchun University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Jiehuan Photoelectric Technology Co Ltd, Changchun University of Science and Technology filed Critical Changchun Jiehuan Photoelectric Technology Co Ltd
Priority to CN201811446777.5A priority Critical patent/CN109675542B/zh
Publication of CN109675542A publication Critical patent/CN109675542A/zh
Application granted granted Critical
Publication of CN109675542B publication Critical patent/CN109675542B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Nanotechnology (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

利用PN结自供电的半导体光电催化器件属于光电催化技术领域。现有技术为了提高半导体光电催化器件的催化效率,致使结构复杂。本发明之利用PN结自供电的半导体光电催化器件其特征在于,在PN+硅片的P区分布若干栅条,自P区至N+区掺杂浓度由稀变浓,栅条以下的P区厚度为50~120μm;栅条的顶面和侧面覆盖有半导体纳米线光电催化层。本发明能够用来催化净化水体,同时能够利用光照实现自供电,催化效率得到提高,器件结构得到简化。

Description

利用PN结自供电的半导体光电催化器件
技术领域
本发明涉及一种利用PN结自供电的半导体光电催化器件,能够用来催化净化水体,同时能够利用光照实现自供电,提高催化效率,属于光电催化技术领域。
背景技术
半导体光电催化技术始于1972年问世的TiO2(二氧化钛)催化污水的净化。该技术将TiO2薄膜作为电极,在光照的条件下发生光解水反应,以此发挥催化作用。之后,半导体能带理论被用于解释TiO2光催化机制,当入射的光子能量大于TiO2半导体禁带宽度时,位于价带的电子会跃迁到导带,电子成为具有还原性的高活性电子,同时在价带上产生带正电的具有氧化性的空穴。不过,在电子和空穴会向表面迁移的过程中,一部分电子和空穴会发生体内复合,并且,载流子复合率较高,导致TiO2光催化效率降低。人们发现ZnO、WO3、CdS、ZnS等也都可以作为半导体光催化材料使用,但是,载流子复合率同样较高,而且往往高于TiO2。现有技术通过TiO2改性来降低载流子复合率,提高量子效率。改性措施包括减小晶粒粒度、选择合适的晶型、沉积贵金属、使半导体复合、电化学与光催化相结合等。实验结果表明,电化学与光催化相结合,也就是光电催化能够显著提升反应中的量子效率,进而提高催化效率。
以TiO2为例,实现光电催化先要制作TiO2光电阳极,如悬浮态光电阳极、固定化膜光电阳极以及透明固定化膜光电阳极等,由外部电路加偏置电压,以使电子更加容易离开TiO2表面,从而提高催化效率。如制作TiO2固定化膜光电阳极,引线接外部电源,加10~1000mV的偏置偏压,用于降解苯酚,催化效率能够提高20%以上。然而,制作薄膜光电阳极,外接电源提供偏置电压,这使得光电催化器件结构变得复杂,还需要额外耗费能量,再有就是薄膜状态的催化材料的催化面积有限,而且容易失活。
发明内容
为了在提高催化效率的前提下,简化半导体光电催化器件的结构,绿色节能,进一步加大催化面积,延长光电催化材料的寿命,我们发明了一种利用PN结自供电的半导体光电催化器件。
本发明之利用PN结自供电的半导体光电催化器件,其特征在于,如图1、图2所示,在P-N+硅片的P-区分布若干栅条1,自P-区至N+区掺杂浓度由稀变浓,栅条1以下的P-区厚度为50~120μm;栅条1的顶面和侧面覆盖有半导体纳米线光电催化层2。
本发明其技术效果在于,将本发明之半导体光电催化器件置于待催化净化水体中,如图2所示,当有光自栅条1一侧照射该半导体光电催化器件时,与水体接触的半导体纳米线光电催化层2发挥其光电催化作用,由此实现水体净化;栅条1顶面和两个侧面覆盖了半导体纳米线光电催化层2,这一特点已使催化材料与水体的接触面积增大,相比于现有薄膜状态的催化材料,纳米线光电催化层与水体的接触面积进一步大幅增加,而且不易失活寿命长。同时,光线还照射到P-N+结,上稀下浓渐变掺杂的P-N+硅片有助于快速产生电动势,并且,这个P-N+硅片的空间电荷区大部分位于P-区域,再借助水体形成回路,为半导体纳米线光电催化层2供电,降低在紫外光照射过程中,半导体纳米线光电催化层2中产生的光生电子和空穴的复合率,提高催化效率。可见,本发明之半导体光电催化器件无需另接电源,结构简单。
附图说明
图1是用于制作本发明之半导体光电催化器件的P-N+硅片结构示意图。图2是本发明之半导体光电催化器件结构示意图,该图同时作为摘要附图;该图还是本发明之半导体光电催化器件工作状态示意图。
具体实施方式
本发明之利用PN结自供电的半导体光电催化器件如图1、图2所示,在P-N+硅片的P-区分布若干栅条1,自P-区至N+区掺杂浓度由稀变浓。P-N+硅片厚600μm,栅条1以下的P-区厚度为50~120μm,如100μm,N+区厚度为130~250μm,如200μm,栅条1的高为300~350μm,如300μm,宽为110~120μm,如114μm,栅条1间距为180~190μm,如185μm。栅条1的顶面和侧面覆盖有半导体纳米线光电催化层2。所述半导体纳米线为TiO2、ZnO、WO3、CdS或者ZnS纳米线;所述半导体纳米线光电催化层2的厚度为1~2μm。栅条1之间的P-区表面有一层SiO2膜层3,以利于紫外光入射P-N+结。
以TiO2为例,通过对本发明之利用PN结自供电的半导体光电催化器件的制作过程的说明,进一步说明其结构特征。在P-N+硅片的P-区一侧刻蚀一组栅条1。将该组栅条1浸泡在钛酸四丁酯的异丙醇溶液和无水乙醇中,在栅条1的顶面和侧面生成Si-Ti(OH)4,经退火处理后转变为Si-TiO2,此时在栅条1的顶面和侧面形成具有锐钛矿结构的TiO2籽晶层。将此时的该组栅条置于钛酸四丁酯、盐酸和水的混合液中,经过结晶生长过程,在栅条1的顶面和侧面形成一层TiO2纳米线,这就是所述半导体纳米线光电催化层2。在上述过程中不可避免会在栅条1之间的P-区表面也形成一层TiO2纳米线,于是采用等离子干法刻蚀将该层TiO2纳米线去除。最后经过稀硫酸浸泡,在栅条1之间的P-区表面生成SiO2膜层3。

Claims (4)

1.一种利用PN结自供电的半导体光电催化器件,其特征在于,在P-N+硅片的P-区分布若干栅条(1),自P-区至N+区掺杂浓度由稀变浓,栅条(1)以下的P-区厚度为50~120μm;栅条(1)的顶面和侧面覆盖有半导体纳米线光电催化层(2)。
2.根据权利要求1所述的利用PN结自供电的半导体光电催化器件,其特征在于,N+区厚度为130~250μm,栅条(1)的高为300~350μm,宽为110~120μm,栅条(1)间距为180~190μm。
3.根据权利要求1所述的利用PN结自供电的半导体光电催化器件,其特征在于,所述半导体纳米线为TiO2、ZnO、WO3、CdS或者ZnS纳米线;所述半导体纳米线光电催化层(2)的厚度为1~2μm。
4.根据权利要求1所述的利用PN结自供电的半导体光电催化器件,其特征在于,栅条(1)之间的P-区表面有一层SiO2膜层(3)。
CN201811446777.5A 2018-11-29 2018-11-29 利用pn结自供电的半导体光电催化器件 Expired - Fee Related CN109675542B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811446777.5A CN109675542B (zh) 2018-11-29 2018-11-29 利用pn结自供电的半导体光电催化器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811446777.5A CN109675542B (zh) 2018-11-29 2018-11-29 利用pn结自供电的半导体光电催化器件

Publications (2)

Publication Number Publication Date
CN109675542A true CN109675542A (zh) 2019-04-26
CN109675542B CN109675542B (zh) 2021-11-26

Family

ID=66185048

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811446777.5A Expired - Fee Related CN109675542B (zh) 2018-11-29 2018-11-29 利用pn结自供电的半导体光电催化器件

Country Status (1)

Country Link
CN (1) CN109675542B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101814531A (zh) * 2009-02-19 2010-08-25 中国科学院微电子研究所 利用半导体pn结结电容构成的电容器及其制作方法
CN104120443A (zh) * 2014-06-20 2014-10-29 中国科学院广州能源研究所 一种复合结构的可见光层状阵列电极及其制备方法
CN104334773A (zh) * 2013-04-26 2015-02-04 松下电器产业株式会社 光半导体电极以及使用具备光半导体电极的光电化学单元对水进行光分解的方法
CN106019432A (zh) * 2016-07-12 2016-10-12 中国科学院半导体研究所 全半导体中红外可调频吸收器
CN106207200A (zh) * 2016-08-19 2016-12-07 北京大学 一种异质外延的氮化物微生物燃料电池阴极及电池和方法
CN207458972U (zh) * 2017-09-21 2018-06-05 暨南大学 一种新型的异质结太阳电池
CN108376725A (zh) * 2018-02-06 2018-08-07 吉林大学 一种基于GaSb/InSb/InP异质PIN结构的光伏型红外探测器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101814531A (zh) * 2009-02-19 2010-08-25 中国科学院微电子研究所 利用半导体pn结结电容构成的电容器及其制作方法
CN104334773A (zh) * 2013-04-26 2015-02-04 松下电器产业株式会社 光半导体电极以及使用具备光半导体电极的光电化学单元对水进行光分解的方法
US20150083605A1 (en) * 2013-04-26 2015-03-26 Panasonic Corporation Semiconductor photoelectrode and method for splitting water photoelectrochemically using photoelectrochemical cell comprising the same
CN104120443A (zh) * 2014-06-20 2014-10-29 中国科学院广州能源研究所 一种复合结构的可见光层状阵列电极及其制备方法
CN106019432A (zh) * 2016-07-12 2016-10-12 中国科学院半导体研究所 全半导体中红外可调频吸收器
CN106207200A (zh) * 2016-08-19 2016-12-07 北京大学 一种异质外延的氮化物微生物燃料电池阴极及电池和方法
CN207458972U (zh) * 2017-09-21 2018-06-05 暨南大学 一种新型的异质结太阳电池
CN108376725A (zh) * 2018-02-06 2018-08-07 吉林大学 一种基于GaSb/InSb/InP异质PIN结构的光伏型红外探测器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
贺格平: "《半导体材料》", 31 October 2018 *

Also Published As

Publication number Publication date
CN109675542B (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
JP5743039B2 (ja) 光半導体電極、およびそれを具備する光電気化学セルを用いて水を光分解する方法
WO2021098149A1 (zh) 表面等离激元增强型InGaN/GaN多量子阱光电极及其制备方法
CN101922015B (zh) 一种InGaN半导体光电极的制作方法
Cheng et al. Fabrication of SnO2-TiO2 core-shell nanopillar-array films for enhanced photocatalytic activity
Atabaev Plasmon-enhanced solar water splitting with metal oxide nanostructures: a brief overview of recent trends
CN103354283A (zh) 金纳米粒子修饰树枝状二氧化钛纳米棒阵列电极及其制备方法和光电解水制氢应用
CN108550963A (zh) 一种利用极化调控提高InGaN/GaN材料多量子阱太阳能光电化学电池效率的方法
Zou et al. Fabrication, optoelectronic and photocatalytic properties of some composite oxide nanostructures
CN107326394B (zh) 一种制备具有核壳结构氮化碳修饰二氧化钛光阳极的方法
CN109132997A (zh) 生长在Ti衬底上的(In)GaN纳米柱及其制备方法与应用
Cai et al. Plasmonic Au-decorated hierarchical p-NiO/n-ZnO heterostructure arrays for enhanced photoelectrochemical water splitting
CN108193230B (zh) 一种钽衬底上生长InxGa1-xN纳米线的光电极及其制备方法
Huang et al. CdS-based semiconductor photocatalysts for hydrogen production from water splitting under solar light
JP2014227563A (ja) 二酸化炭素還元用光化学電極、二酸化炭素還元装置、及び二酸化炭素の還元方法
CN109675542A (zh) 利用pn结自供电的半导体光电催化器件
KR20160087160A (ko) GaN 기반 다공성 피라미드 광전극 및 그 제조방법
CN105132981B (zh) 等离子体纳米金嵌入无序光子氧化锌纳米线光阳极材料的制备方法
CN113964224A (zh) 一种半导体紫外探测器芯片的外延结构及其制备方法、半导体紫外探测器芯片
Chen et al. Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting
WO2019230343A1 (ja) 半導体光電極
TWI385118B (zh) Heterogeneous surface nanowire structure and its manufacturing method
JP6446064B2 (ja) 可視光応答型光触媒
Bian et al. Combined Applications of Photocurrent Spectroscopy, Photoluminescence Spectroscopy and UV-Vis Spectroscopy for Nano-Semiconductor Based Photoelectric Devices
CN109467159B (zh) 具有wsa位敏结构的自供电半导体光电催化器件
KR102671981B1 (ko) 양면형 광전기화학 광전극 소자 및 그를 포함하는 수소 발생 장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20211126