CN105006500B - 横向ⅳ族元素量子阱光电探测器及制备方法 - Google Patents

横向ⅳ族元素量子阱光电探测器及制备方法 Download PDF

Info

Publication number
CN105006500B
CN105006500B CN201510340409.2A CN201510340409A CN105006500B CN 105006500 B CN105006500 B CN 105006500B CN 201510340409 A CN201510340409 A CN 201510340409A CN 105006500 B CN105006500 B CN 105006500B
Authority
CN
China
Prior art keywords
gesn
quantum well
monocrystalline
sigesn
sqw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510340409.2A
Other languages
English (en)
Other versions
CN105006500A (zh
Inventor
韩根全
张春福
周久人
汪银花
张进城
郝跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201510340409.2A priority Critical patent/CN105006500B/zh
Publication of CN105006500A publication Critical patent/CN105006500A/zh
Application granted granted Critical
Publication of CN105006500B publication Critical patent/CN105006500B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • H01L31/035254Superlattices; Multiple quantum well structures including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table, e.g. Si-SiGe superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • H01L31/035263Doping superlattices, e.g. nipi superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种横向Ⅳ族量子阱光电探测器,主要解决现有红外光电探测器材料毒性大,成本高的问题。其包括:衬底(1)、下电极(2)、吸收区(3)和上电极(4)。所述量子阱(31)采用Sn组分为大于等于0小于等于0.3的GeSn应变单晶材料,所述势垒层(32)采用Sn组分为大于等于0小于等于0.3、Ge组分为大于等于0小于等于1的单晶材料;该量子阱(31)与势垒层(32)横向交叠排列构成吸收区,位于下、上电极之间;本发明通过SiGeSn单晶材料在外延过程中体积改变而在GeSn量子阱材料中产生横向张应变,从而改变GeSn材料带隙,提高了探测器的光谱响应范围,可用于制备大规模集成电路。

Description

横向Ⅳ族元素量子阱光电探测器及制备方法
技术领域
本发明属于微电子器件技术领域,特别涉及一种光电探测器,可用于宽带通信,医疗,监测及自动影像等。
背景技术
光电探测器通常工作在低温环境,现今的制冷红外IR传感系统所用的材料有HgCdTe(MCT)、InSb、PtSi和掺杂Si,对于IR传感器的应用,量子阱红外探测器还是相对较新的技术。HgCdTe是研究最广泛的用半导体合金系统的一种红外探测器,到目前为止,基于HgCdTe焦平面探测器的热像仪仍是红外焦平面热成像技术的主流发展方向之一。HgxCd1- xTe探测器是目前性能最好的中红外探测器,通过调节材料中Hg的组分可以实现带隙0-0.8eV的连续可调。然而无论III-V族或者II-VI族材料,本身都会引起环境污染、成本非常高与Si基技术不兼容等问题。因此,IV族材料体系硅基兼容、无毒环保成为了另一主流发展方向。
Ge,IV族半导体材料,在1.3-1.55μm波段范围内有很高的吸收效率,且可直接在Si衬底上外延生长高质量Ge薄膜,因此Ge被认为近红外探测器的理想备选材料。室温下,Ge直接带隙为0.80eV,因此Ge探测器吸收边在1.55μm左右,不能覆盖中红外波段。可通过引入Sn原子来改变Ge基探测器的吸收边。GeSn合金具有比Ge更小的直接带隙,因此吸收边可以进一步红移。量子阱结构是一种夹层超晶格,其探测机理与传统探测器截然不同,它是靠一个量子阱结构中光子和电子之间的量子力学相互作用来完成探测的。
从理论上说增加Sn的组分可以使GeSn材料的带隙减小到零,但由于Sn在Ge中的固溶度很低小于1%,因此制备高质量、无缺陷的高Sn组分的GeSn很困难。现在用低温外延生长的方法也只能制备出Sn组分为20~25%的GeSn材料[ECS Transactions,41(7),pp.231,2011;Photonics Research,1(2).pp.69,2013]。并且随着Sn组分的增加,Sn原子会偏析或者分凝,材料质量和热稳定型都会变差,因此单纯依靠提高Sn的组分实现较大范围带隙的调节比较困难。
发明内容
本发明的目的在于针对上述已有技术的不足,根据GeSn材料特性,提供一种横向Ⅳ族元素量子阱光电探测器,以减小光电探测器原材料毒性,增大探测器的吸收谱波长范围。
理论研究和实验证明在GeSn材料中引入张应变可以导致材料直接带隙减小,并有利于材料从间接带隙结构向直接带隙转变,根据此原理本发明的技术方案是这样实现的:
一.本发明的横向Ⅳ族元素量子阱光电探测器,自下而上包括:衬底、下电极、吸收区和上电极,其特征在于:
吸收区由GeSn量子阱和SiGeSn势垒层横向交叠排列组成;
所述量子阱采用Sn组分为大于等于0小于等于0.3的GeSn应变单晶材料;
所述势垒层采用Sn组分为大于等于0小于等于0.3、Ge组分为大于等于0小于等于1的单晶材料。
二.本发明制作上述横向Ⅳ族元素量子阱光电探测器的方法,包括如下步骤:
1)利用分子束外延工艺,在衬底上依次生长Sn组分为0~0.3的n型GeSn单晶和弛豫本征GeSn单晶,其中n型GeSn单晶的掺杂元素为磷,掺杂浓度为1018cm-3,即下电极;
2)利用刻蚀工艺,将弛豫本征GeSn单晶刻成横向量子阱,形成GeSn量子阱与间隙在横向的交叠排列;
3)利用分子束外延工艺,在横向量子阱的间隙中生长Ge组分为0~1、Sn组分0~0.3的SiGeSn单晶材料;
4)利用离子注入,在材料为GeSn/SiGeSn单晶的量子阱顶部中注入剂量为1015cm-2,能量为20KeV的硼元素,形成P型电极,未被注入的SiGeSn单晶材料区域形成势垒层,形成GeSn量子阱与SiGeSn势垒层的横向交叠排列结构。
本发明具有如下优点:
1、利用应变,提高了发光有源区材料带隙调节效果
本发明采用GeSn单晶材料形成量子阱,当SiGeSn晶格常数比GeSn小时,在GeSn量子阱中引入横向即X方向张应变,从而改变了GeSn量子阱材料带隙,在不改变GeSn量子阱材料组分的情况下,可以有效调节器件吸收波长范围,同时,还可以通过减小GeSn量子阱和SiGeSn势垒的厚度比来增加GeSn量子阱吸收区的应变,从而增强吸收区材料带隙调节效果。
2、采用材料价格低廉、无毒环保
本发明中所采用的材料均为IV族材料,同现有的III-V族材料和II-VI材料相比,IV族材料无毒环保、价格低廉。同时,目前半导体制造工业中的大部分生产设备是针对Si材料设计的,若采用III-V族材料和II-VI材料,则由于与Si工艺不兼容性,不容易实现Si基集成。而使用IV族材料,易制备出Si基集成的GeSn光电探测器。
附图说明
图1为本发明横向Ⅳ族元素量子阱光电探测器的三维结构图;
图2为本发明横向Ⅳ族元素量子阱光电探测器的截面结构图;
图3为本发明横向Ⅳ族元素量子阱光电探测器的制作流程示意图。
具体实施方式
为了使本发明的目的及优点更加清楚明白,以下结合附图和实施例对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
1.参照图1和图2,本发明的横向Ⅳ族元素量子阱光电探测器自下而上包括:衬底1、下电极2、吸收区3和上电极4,其中下电极2为n型掺杂的GeSn单晶材料,上电极4为p型掺杂的GeSn和SiGeSn单晶材料,吸收区3由GeSn量子阱31和SiGeSn势垒层32横向交叠排列组成。量子阱31采用Sn组分为大于等于0小于等于0.3的GeSn应变单晶材料,其通式为Ge1- xSnx,0≤x≤0.30;势垒层32采用Sn组分为大于等于0小于等于0.3、Ge组分为大于等于0小于等于1的SiGeSn单晶材料,其通式为Si1-y-zGeySnz,0≤y≤1,0≤z≤0.30;各层从下至上分别为:衬底1、下电极2、吸收区3、上电极4,吸收区由上述量子阱31与势垒层32横向交叠排列组成。
由于SiGeSn势垒层32的晶格常数比GeSn量子阱31的晶格常数小,使得在GeSn量子阱31沿X方向产生的张应变,减小了GeSn量子阱的带隙,提高器件吸收谱波长范围。
参照图3,本发明制作横向Ⅳ族元素量子阱光电探测器的方法,给出如下三种实施例。
实施例1:制作量子阱的Sn组分为0.3的,势垒层的Ge组分为0,Si组分为0.7的横向Ⅳ族元素量子阱光电探测器。
步骤1:在Si衬底1上,利用分子束外延工艺,以固体磷、锗和锡作为蒸发源,用10- 4pa的压强,在180℃环境下,依次生长n型GeSn单晶和弛豫本征GeSn单晶,其中Sn组分均为0.3,Ge组分为0.7,所生长的n型GeSn单晶即为下电极2,如图3a。
步骤2:利用刻蚀技术,采用氯基离子基团,在光刻胶掩蔽作用下,将本征GeSn单晶刻成横向量子阱31,如图3b。
步骤3:利用分子束外延工艺,以固体硅、锗和锡作为蒸发源,用10-4pa的压强,在180℃环境下,在GeSn量子阱之间间隙中生长Si组分为0.7,Ge组分为0,Sn组分为0.3的SiGeSn单晶材料,如图3c。
由于Si、Ge、Sn三者的晶格常数关系为:aSi<aGe<aSn,所以该SiGeSn单晶材料的晶格常数a1比GeSn单晶材料的晶格常数a2小,即a1<a2;在外延生长过程中,由于Y、Z方向的压应变导致了SiGeSn单晶材料体积的变化,从而会在GeSn量子阱31中形成沿X方向的张应变,形成GeSn应变单晶材料量子阱,从而减小GeSn带隙,使器件吸收边红移。
步骤4:利用离子注入,在材料为GeSn/SiGeSn单晶的量子阱顶部中注入剂量为1015cm-2,能量为20KeV的硼元素,形成上电极4,未被注入的SiGeSn单晶材料区域为势垒层32,形成GeSn量子阱31与SiGeSn势垒层32的横向交叠排列结构,如图3d。
实施例2:制作量子阱的Sn组分为0.15的,势垒层的Ge组分为0.5,Si组分为0.35的横向Ⅳ族元素量子阱光电探测器。
步骤一:依次外延弛豫n型GeSn单晶和本征GeSn单晶
在SOI衬底1上,以固体磷、锗和锡作为蒸发源,在温度为190℃,压强为10-4pa的环境下,外延Sn组分为0.15,Ge组分为0.85的n型GeSn单晶和弛豫本征GeSn单晶,如图3a。
步骤二:刻蚀量子阱
用氯基离子基团作为刻蚀剂,在光刻胶掩蔽作用下,对步骤一外延的弛豫本征GeSn单晶进行纵向刻蚀,形成GeSn单晶材料量子阱2,如图3b。
步骤三:外延SiGeSn单晶材料
利用分子束外延工艺,以固体硅、锗和锡作为蒸发源,在温度为190℃,压强为10- 4pa的环境下,在GeSn量子阱之间的间隙中生长Si组分为0.35,Ge组分为0.5,Sn组分为0.15的SiGeSn单晶材料,如图3c。该SiGeSn单晶材料的晶格常数a1比GeSn单晶材料的晶格常数a2小,即a1<a2
在外延生长过程中,由于SiGeSn材料体积改变,会在GeSn量子阱2中形成沿X方向的张应变,形成GeSn应变单晶材料量子阱,从而减小GeSn带隙,使器件吸收边向红移。
步骤四:离子注入形成电极和势垒层
利用离子注入,在材料为GeSn/SiGeSn单晶的量子阱顶部注入剂量为1015cm-2,能量为20KeV的硼元素,形成上电极4,未被注入的SiGeSn单晶材料区域形成势垒层32,形成GeSn量子阱31与SiGeSn势垒层32的横向交叠排列结构,如图3d。
实施例3:制作量子阱的Sn组分为0,势垒层的Ge组分为1,Si组分为0的横向Ⅳ族元素量子阱光电探测器。
步骤A:采用分子束外延工艺在Ge衬底1上,以固体磷、锗和锡作为蒸发源,在温度为200℃,压强为10-4pa的环境下,依次外延Sn组分为0,Ge组分为1的n型GeSn单晶和弛豫本征GeSn单晶,如图3a。
步骤B:利用氯基离子基团为刻蚀剂,在光刻胶掩蔽作用下,将本征GeSn单晶刻成横向量子阱,如图3b。
步骤C:利用分子束外延工艺,在GeSn量子阱之间间隙中生长Si组分为0,Ge组分为1,Sn组分为0的SiGeSn单晶材料,如图3c。其外延的工艺条件如下:
蒸发源:固体硅、锗和锡;
温度:200℃;
压强:10-4pa。
该SiGeSn单晶材料的晶格常数a1比GeSn单晶材料的晶格常数a2小,即a1<a2;在外延生长过程中,由于SiGeSn材料体积改变,会在GeSn量子阱2中形成沿X方向的张应变,形成GeSn应变单晶材料量子阱,从而减小GeSn带隙,使器件吸收边向红移。
步骤D:利用离子注入方法,在材料为GeSn/SiGeSn单晶的量子阱顶部注入剂量为1015cm-2,能量为20KeV的硼元素,形成上电极4,未被注入的SiGeSn单晶材料区域为势垒层32,形成GeSn量子阱31与SiGeSn势垒层32的横向交叠排列结构,如图3d。

Claims (4)

1.一种横向Ⅳ族元素量子阱光电探测器的制作方法,包括如下步骤:
1)利用分子束外延工艺,在衬底(1)上依次生长Sn组分为0~0.3的n型GeSn单晶和弛豫本征GeSn单晶,其中n型GeSn单晶的掺杂元素为磷,掺杂浓度为1018cm-3,即下电极(2);
2)利用刻蚀工艺,将弛豫本征GeSn单晶刻成横向量子阱(31),形成GeSn量子阱与间隙在横向的交叠排列;
3)利用分子束外延工艺,在横向量子阱的间隙中生长Ge组分为0~1、Sn组分0~0.3的SiGeSn单晶材料;
4)利用离子注入,在材料为GeSn/SiGeSn单晶的量子阱顶部中注入剂量为1015cm-2,能量为20KeV的B元素,形成P型电极(4),未被注入的SiGeSn单晶材料区域形成势垒层(32),形成GeSn量子阱(31)与SiGeSn势垒层(32)的横向交叠排列结构。
2.权利要求1所述的横向Ⅳ族元素量子阱光电探测器的制作方法:其中所述步骤1)的分子束外延工艺,是以固体B、Ge和Sn作为蒸发源,设工作温度为180~200℃,在10-4pa的压强下外延n型GeSn单晶和弛豫本征GeSn单晶。
3.如权利要求1所述的横向Ⅳ族元素量子阱光电探测器的制作方法:其中所述步骤2)的刻蚀工艺,是利用氯基离子基团,在光刻胶掩蔽作用下刻蚀GeSn。
4.如权利要求1所述的横向Ⅳ族元素量子阱光电探测器的制作方法:其中所述步骤3)的分子束外延工艺是,以固体Si、Ge和Sn作为蒸发源,设工作温度为180~200℃,在10-4pa的压强下外延SiGeSn层。
CN201510340409.2A 2015-06-18 2015-06-18 横向ⅳ族元素量子阱光电探测器及制备方法 Active CN105006500B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510340409.2A CN105006500B (zh) 2015-06-18 2015-06-18 横向ⅳ族元素量子阱光电探测器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510340409.2A CN105006500B (zh) 2015-06-18 2015-06-18 横向ⅳ族元素量子阱光电探测器及制备方法

Publications (2)

Publication Number Publication Date
CN105006500A CN105006500A (zh) 2015-10-28
CN105006500B true CN105006500B (zh) 2017-01-25

Family

ID=54379097

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510340409.2A Active CN105006500B (zh) 2015-06-18 2015-06-18 横向ⅳ族元素量子阱光电探测器及制备方法

Country Status (1)

Country Link
CN (1) CN105006500B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105506554B (zh) * 2015-12-29 2018-11-30 电子科技大学 一种可见光/红外波段纳米光学吸收涂层及其制备方法
CN105759468B (zh) * 2016-03-04 2018-11-20 西安电子科技大学 基于斯塔克效应的soup结构光电调制器及制作方法
CN105895727B (zh) * 2016-04-22 2017-07-28 西安电子科技大学 基于弛豫GeSn材料的光电探测器
CN107785452B (zh) * 2016-08-25 2019-05-07 西安电子科技大学 双本征Ge阻挡层GeSn合金PIN光电探测器
CN106229396A (zh) * 2016-08-29 2016-12-14 中国科学院半导体研究所 一种iii族氮化物生物探针及其制备方法
CN107219448B (zh) * 2017-06-07 2019-03-26 西安电子科技大学 基于特征时常数的势垒层内陷阱分布表征方法
CN107658364A (zh) * 2017-08-11 2018-02-02 西安科锐盛创新科技有限公司 一种横向PiN结构GeSn光电探测器及其制备方法
CN107703430B (zh) * 2017-09-11 2019-02-22 西安电子科技大学 表面态陷阱对器件输出特性影响的测量方法
CN107703431B (zh) * 2017-09-11 2019-02-22 西安电子科技大学 基于频率可变脉冲技术的器件表面态陷阱测量方法
CN107731943B (zh) * 2017-10-12 2019-03-01 宝应电工厂 一种铜铟镓基光电探测器
CN110767766B (zh) * 2018-07-26 2022-09-09 上海新微技术研发中心有限公司 应变平衡GeSn红外光电探测器及其制造方法
CN109166942B (zh) * 2018-08-30 2019-09-27 郑州轻工业学院 带有磁应变源的自调式GeSn红外探测器及其制备方法
CN109494277B (zh) * 2018-12-04 2022-03-01 陕西理工大学 一种长波红外探测器及其制作方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101145590A (zh) * 2006-09-13 2008-03-19 中国科学院半导体研究所 一种量子点材料结构及其生长方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5548128A (en) * 1994-12-14 1996-08-20 The United States Of America As Represented By The Secretary Of The Air Force Direct-gap germanium-tin multiple-quantum-well electro-optical devices on silicon or germanium substrates
US6897471B1 (en) * 2003-11-28 2005-05-24 The United States Of America As Represented By The Secretary Of The Air Force Strain-engineered direct-gap Ge/SnxGe1-x heterodiode and multi-quantum-well photodetectors, laser, emitters and modulators grown on SnySizGe1-y-z-buffered silicon

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101145590A (zh) * 2006-09-13 2008-03-19 中国科学院半导体研究所 一种量子点材料结构及其生长方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Electronic properties calculation of Ge 1-x-ySi xSn y ternary alloy and nanostructure;Pairot Moontragoon et al;《Journal of Nno-Crystalline Solids》;20120128;第358卷;全文 *

Also Published As

Publication number Publication date
CN105006500A (zh) 2015-10-28

Similar Documents

Publication Publication Date Title
CN105006500B (zh) 横向ⅳ族元素量子阱光电探测器及制备方法
LaPierre et al. A review of III–V nanowire infrared photodetectors and sensors
JP6093401B2 (ja) 太陽電池内のトンネル接合の高濃度ドープ層
CN103875079B (zh) 光伏器件
US7288825B2 (en) Low-noise semiconductor photodetectors
Dharmadasa et al. Scientific complications and controversies noted in the field of CdS/CdTe thin film solar cells and the way forward for further development
CN104300013B (zh) 带有应变源的GeSn红外探测器
CN105874613A (zh) 超晶格材料和应用
US20090045395A1 (en) Strained-Layer Superlattice Focal Plane Array Having a Planar Structure
DE112010002206B4 (de) Bauelemente zur umwandlung von photonen von stärker verspanntem silicium in elektronen und verfahren zur herstellung eines solchen bauelements
CN101292366A (zh) 由溶液加工制得的纳米晶体太阳能电池
CN107644921B (zh) 一种新型雪崩二极管光电探测器及其制备方法
EP2985800A1 (en) Image sensor and electronic device including the same
CN107785452B (zh) 双本征Ge阻挡层GeSn合金PIN光电探测器
US20110214736A1 (en) Photodiode, image sensor and solar cell
Miao et al. Review of Ge (GeSn) and InGaAs avalanche diodes operating in the SWIR spectral region
CN104900729A (zh) 横向GeSn/SiGeSn量子阱光电发光器件及其制备方法
CN107946388A (zh) 一种高温工作的红外探测器材料及其制备方法
Ashley et al. Higher-operating-temperature high-performance infrared focal plane arrays
Chen et al. Short-wavelength infrared focal plane array based on type-II InAs/GaSb superlattice
CN100541832C (zh) 光伏型多量子阱红外探测器
CN113299788B (zh) 光伏型碲镉汞红外探测器及其制备方法
Bahir et al. Characterization of a new planar process for implementation of p-on-n HgCdTe heterostructure infrared photodiodes
Chen et al. Study on optimizing the performance of infrared detectors using material chip technology
Li et al. Ultrahigh Sensitive Phototransistor Based on MoSe $ _ {\text {2}} $/Ge Mixed-Dimensional Heterojunction for Visible to Short-Wave Infrared Broadband Photodetection

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant