CN105506554B - 一种可见光/红外波段纳米光学吸收涂层及其制备方法 - Google Patents

一种可见光/红外波段纳米光学吸收涂层及其制备方法 Download PDF

Info

Publication number
CN105506554B
CN105506554B CN201511005884.0A CN201511005884A CN105506554B CN 105506554 B CN105506554 B CN 105506554B CN 201511005884 A CN201511005884 A CN 201511005884A CN 105506554 B CN105506554 B CN 105506554B
Authority
CN
China
Prior art keywords
visible light
metal substrate
source
infrared
absorber coatings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201511005884.0A
Other languages
English (en)
Other versions
CN105506554A (zh
Inventor
金立川
张怀武
方觉
张岱南
钟智勇
廖宇龙
白飞明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201511005884.0A priority Critical patent/CN105506554B/zh
Publication of CN105506554A publication Critical patent/CN105506554A/zh
Application granted granted Critical
Publication of CN105506554B publication Critical patent/CN105506554B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

一种可见光/红外波段纳米光学吸收涂层及其制备方法,属于材料技术领域。包括金属基板及生长于金属基板上的具有光电响应特性的半导体光学涂层薄膜,所述金属基板为可见光/红外高反射率金属基板,所述半导体光学涂层薄膜的厚度为10nm~180nm,采用磁控溅射法、热蒸发法或分子束外延法等真空物理气相沉积方式生长。本发明得到的半导体光学涂层薄膜厚度为10~180nm时截止波长即可覆盖400nm~1800nm的范围,其厚度远小于光学吸收波长的1/4;且具有制备工艺简单、超薄、易于大面积集成等优点,在光学镜片涂层、超薄光电探测器以及太阳能电池等领域有着广泛的应用前景。

Description

一种可见光/红外波段纳米光学吸收涂层及其制备方法
技术领域
本发明属于材料技术领域,具体涉及一种可见光/红外波段纳米光学吸收涂层及其制备方法。
背景技术
光学涂层由一种或多种电介质或金属薄膜构成,是各种光学器件的关键部分,在光学镜片涂层、超薄光电探测器以及太阳能电池等领域有广泛的应用前景。现有的纳米光学涂层主要是在硅片等硬质半导体基底上制备得到的,涂层为1/4波长厚度的半导体薄膜,才能实现截止波长覆盖可见光及近红外范围的应用。现有的纳米光学涂层厚度较厚,成本高,制备工艺也较复杂。
发明内容
本发明针对背景技术存在的缺陷,提出了一种可见光/红外波段纳米光学吸收涂层及其制备方法。本发明在高反射率的柔性金属基板上制备半导体光学涂层,制得的光学涂层薄膜厚度较薄,且在可见光/近红外波段内具有高减反的效果,可广泛应用于光学镜片涂层、超薄光电传感器、超薄太阳能电池等领域。
本发明的技术方案为:
一种可见光/红外波段纳米光学吸收涂层,包括金属基板及生长于金属基板上的具有光电响应特性的半导体光学涂层薄膜,所述金属基板为可见光/红外高反射率金属基板,所述半导体光学涂层薄膜的厚度为10nm~180nm。
进一步地,所述可见光/红外高反射率金属基板为可见光/红外高反射率柔性金属基板,具体为铝箔、铜箔、金箔等,其表面粗糙度为1nm以下。
进一步地,所述半导体光学涂层薄膜为锗锡合金薄膜等半导体合金薄膜,以及锗薄膜等半导体薄膜,具有良好的光电转换和光学吸收特性。
进一步地,所述半导体光学涂层薄膜采用真空物理气相沉积方式生长,具体为磁控溅射法、热蒸发法或分子束外延法等。
一种可见光/红外波段纳米光学吸收涂层的制备方法,包括以下步骤:
步骤1:选择可见光/红外高反射率柔性金属基板,分别采用乙醇、去离子水清洗,吹干;
步骤2:在步骤1清洗吹干后的可见光/红外高反射率柔性金属基板上制备10~180nm厚的锗锡合金薄膜;具体过程为:在10-8Torr以下的真空环境下,将可见光/红外高反射率柔性金属基板在200~400℃下处理30min~1h,以去除基板表面的附着气体,降温至室温;保持10-8Torr以下的真空环境,将锗源升温至1000~1200℃,锡源升温至1000~1200℃,金属基板升温至100~250℃;打开锗源、锡源和基片挡板,采用分子束外延法在金属基板表面生长锗锡合金薄膜。
进一步地,所述锗源和锡源以体积百分比计纯度不低于99.99%。
进一步地,所述锗源和锡源的升温速率为7℃/min,金属基板的升温速率为1℃/min。
进一步地,所述可见光/红外高反射率柔性金属基板为铝箔、铜箔、金箔等,其表面粗糙度为1nm以下。
本发明的有益效果为:本发明采用物理气相沉积分子束外延技术,在可见光/红外高反射率柔性金属基板(铝箔)上生长可见光/红外波段纳米光学吸收涂层(锗锡合金薄膜),得到的光学吸收涂层厚度为10~180nm时截止波长即可覆盖400nm~1800nm的范围,其厚度远小于光学吸收波长的1/4;且具有制备工艺简单、超薄、易于大面积集成等优点,在光学镜片涂层、超薄光电探测器以及太阳能电池等领域有着广泛的应用前景。
附图说明
图1为本发明实施例所述可见光/红外波段纳米光学吸收涂层的制备工艺流程图;
图2为本发明实施例1至8所述纳米光学吸收涂层的可见光-近红外波段的反射率测试结果图。
具体实施方式
下面结合附图和实施例,详述本发明的技术方案。
一种可见光/红外波段纳米光学吸收涂层,包括铝箔及生长于铝箔之上的具有光电响应特性的锗锡合金薄膜,所述锗锡合金薄膜的厚度为10nm~180nm。
一种可见光/红外波段纳米光学吸收涂层的制备方法,包括以下步骤:
步骤1:选择表面粗糙度小于1nm的铝箔作为所述纳米光学吸收涂层的基板,分别采用乙醇、去离子水清洗,吹干;
步骤2:在步骤1清洗吹干后的铝箔上制备10~180nm厚的锗锡合金薄膜;具体过程为:在10-8Torr以下的真空环境下,将铝箔在200~400℃下处理30min~1h,以去除铝箔基板表面的附着气体,降温至室温;保持10-8Torr以下的真空环境,将体积百分比计纯度不低于99.99%的锗源以7℃/min的升温速率升温至1000~1200℃,体积百分比计纯度不低于99.99%的锡源以7℃/min的升温速率升温至1000~1200℃,铝箔以1℃/min的升温速率升温至100~250℃;打开锗源、锡源和基片挡板,采用分子束外延法在金属基板表面生长锗锡合金薄膜。
实施例1
一种可见光/红外波段纳米光学吸收涂层的制备方法,包括以下步骤:
步骤1:选择表面粗糙度小于1nm的铝箔作为所述纳米光学吸收涂层的基板,分别在乙醇、去离子水中超声清洗20s,然后采用高纯氮气吹干铝箔;
步骤2:在步骤1清洗吹干后的铝箔的抛光面上制备锗锡合金薄膜;具体过程为:在10-9Torr的真空环境下,将铝箔在350℃下处理30min,以去除铝箔基板表面附着的气体,然后降温至室温;保持10-9Torr的真空环境,将体积百分比计纯度为99.999%的锗源以7℃/min的升温速率升温至1200℃,体积百分比计纯度为99.999%的锡源以7℃/min的升温速率升温至1050℃,铝箔以1℃/min的升温速率升温至160℃;打开锗源、锡源和基片挡板,采用分子束外延法在铝箔基板表面生长锗锡合金薄膜,生长时间为10min,生长过程中铝箔基板以0.5转/秒的速度匀速旋转;生长完成后,关闭锗锡源挡板,降温至室温后取出,在铝箔基板上制备得到10nm厚的锗锡合金薄膜,即得到本发明所述纳米光学吸收涂层。
实施例2
本实施例与实施例1的区别为:步骤2所述生长时间为20min,铝箔基板上得到的锗锡合金薄膜的厚度为20nm。其余步骤与实施例1相同。
实施例3
本实施例与实施例1的区别为:步骤2所述生长时间为30min,铝箔基板上得到的锗锡合金薄膜的厚度为30nm。其余步骤与实施例1相同。
实施例4
本实施例与实施例1的区别为:步骤2所述生长时间为40min,铝箔基板上得到的锗锡合金薄膜的厚度为40nm。其余步骤与实施例1相同。
实施例5
本实施例与实施例1的区别为:步骤2所述生长时间为50min,铝箔基板上得到的锗锡合金薄膜的厚度为50nm。其余步骤与实施例1相同。
实施例6
本实施例与实施例1的区别为:步骤2所述生长时间为60min,铝箔基板上得到的锗锡合金薄膜的厚度为60nm。其余步骤与实施例1相同。
实施例7
本实施例与实施例1的区别为:步骤2所述生长时间为100min,铝箔基板上得到的锗锡合金薄膜的厚度为100nm。其余步骤与实施例1相同。
实施例8
本实施例与实施例1的区别为:步骤2所述生长时间为3h,铝箔基板上得到的锗锡合金薄膜的厚度为180nm。其余步骤与实施例1相同。
图2为本发明实施例1至8所述纳米光学吸收涂层通过可见光-近红外波段分光光度计测试的反射率曲线,测试时以纯铝箔作为基准。由图2可知,随着生长时间的增加,锗锡合金薄膜的厚度增加,较高波长波段内的光学反射率逐渐降低,吸收率升高,表明本发明实施例得到的纳米锗锡涂层起到了显著的可见光/红外波段的减反、增强吸收的作用。对于某一个特定厚度涂层的样品,存在一个光学吸收截止波长,截止波长以上波段内反射率随波长增加而增加,实施例中随着生长时间的增加,锗锡薄膜厚度增加,截止波长也随之增加,最大可达到1800nm。
本发明在铝箔上生长锗锡合金薄膜得到可见光/红外波段纳米光学吸收涂层,由于锗锡合金在可见光/近红外波段下有良好的光子吸收率,铝箔是具有高光学反射率的基板材料,在铝箔基板上生长的锗锡薄膜由于两种材料界面间的多次反射和透射带来的相移加上明显的光学衰减,光子在薄膜中会产生强烈的干涉,进而改变材料在可见光/红外波段的反射特性;本发明纳米锗锡涂层具有显著的可见光/红外波段的减反、增强吸收的作用。

Claims (6)

1.一种可见光/红外波段纳米光学吸收涂层,由金属基板及生长于金属基板上的半导体光学涂层薄膜构成,所述金属基板为可见光/红外高反射率金属基板,所述半导体光学涂层薄膜的厚度为10nm~60nm;
所述可见光/红外高反射率金属基板的表面粗糙度为1nm以下;
所述可见光/红外波段纳米光学吸收涂层的制备方法,包括以下步骤:
步骤1:选择可见光/红外高反射率柔性金属基板,分别采用乙醇、去离子水清洗,吹干;
步骤2:在步骤1清洗吹干后的可见光/红外高反射率柔性金属基板上制备10~60nm厚的锗锡合金薄膜;具体过程为:在10-8Torr以下的真空环境下,将可见光/红外高反射率柔性金属基板在200~400℃下处理30min~1h,以去除基板表面的附着气体,降温至室温;保持10-8Torr以下的真空环境,将锗源升温至1000~1200℃,锡源升温至1000~1200℃,金属基板升温至100~250℃;打开锗源、锡源和基片挡板,采用分子束外延法在金属基板表面生长锗锡合金薄膜;
所述锗源和锡源的升温速率为7℃/min,金属基板的升温速率为1℃/min。
2.根据权利要求1所述的可见光/红外波段纳米光学吸收涂层,其特征在于,所述可见光/红外高反射率金属基板为铝箔、铜箔或金箔。
3.一种可见光/红外波段纳米光学吸收涂层的制备方法,包括以下步骤:
步骤1:选择可见光/红外高反射率柔性金属基板,分别采用乙醇、去离子水清洗,吹干;
步骤2:在步骤1清洗吹干后的可见光/红外高反射率柔性金属基板上制备10~60nm厚的锗锡合金薄膜;具体过程为:在10-8Torr以下的真空环境下,将可见光/红外高反射率柔性金属基板在200~400℃下处理30min~1h,以去除基板表面的附着气体,降温至室温;保持10-8Torr以下的真空环境,将锗源升温至1000~1200℃,锡源升温至1000~1200℃,金属基板升温至100~250℃;打开锗源、锡源和基片挡板,采用分子束外延法在金属基板表面生长锗锡合金薄膜。
4.根据权利要求3所述的可见光/红外波段纳米光学吸收涂层的制备方法,其特征在于,所述锗源和锡源以体积百分比计纯度不低于99.99%。
5.根据权利要求3所述的可见光/红外波段纳米光学吸收涂层的制备方法,其特征在于,所述锗源和锡源的升温速率为7℃/min,金属基板的升温速率为1℃/min。
6.根据权利要求3所述的可见光/红外波段纳米光学吸收涂层的制备方法,其特征在于,所述可见光/红外高反射率柔性金属基板为铝箔、铜箔或金箔,表面粗糙度为1nm以下。
CN201511005884.0A 2015-12-29 2015-12-29 一种可见光/红外波段纳米光学吸收涂层及其制备方法 Active CN105506554B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201511005884.0A CN105506554B (zh) 2015-12-29 2015-12-29 一种可见光/红外波段纳米光学吸收涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201511005884.0A CN105506554B (zh) 2015-12-29 2015-12-29 一种可见光/红外波段纳米光学吸收涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN105506554A CN105506554A (zh) 2016-04-20
CN105506554B true CN105506554B (zh) 2018-11-30

Family

ID=55714845

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201511005884.0A Active CN105506554B (zh) 2015-12-29 2015-12-29 一种可见光/红外波段纳米光学吸收涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN105506554B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106784064A (zh) * 2016-12-02 2017-05-31 电子科技大学 一种GeBi合金薄膜及其制备方法
CN111653630B (zh) * 2020-04-29 2021-08-24 西北工业大学 一种双色焦平面探测器的制作方法及双色图像获取方法
CN113324662A (zh) * 2021-05-17 2021-08-31 深圳先进技术研究院 非制冷红外探测器及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104976803A (zh) * 2014-04-11 2015-10-14 太浩科技有限公司 一种太阳光谱选择性吸收涂层及其制备方法
CN105006500A (zh) * 2015-06-18 2015-10-28 西安电子科技大学 横向ⅳ族元素量子阱光电探测器及制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103574948A (zh) * 2012-08-07 2014-02-12 益科博能源科技(上海)有限公司 太阳能选择性吸收涂层

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104976803A (zh) * 2014-04-11 2015-10-14 太浩科技有限公司 一种太阳光谱选择性吸收涂层及其制备方法
CN105006500A (zh) * 2015-06-18 2015-10-28 西安电子科技大学 横向ⅳ族元素量子阱光电探测器及制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Nanocavity Enhancement for Ultra-Thin Film Optical Absorber;Song HM et al.;《ADVANCED MATERIALS》;20140531;第26卷(第17期);2737-2743 *
Song HM et al..Nanocavity Enhancement for Ultra-Thin Film Optical Absorber.《ADVANCED MATERIALS》.2014,第26卷(第17期),2737-2743. *
苏少坚等.Ge(001)衬底上分子束外延生长高质量的Ge1−xSnx合金.《物理学报》.2013,第62卷(第5期),058101-1至058101-5. *

Also Published As

Publication number Publication date
CN105506554A (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
Alonso-Álvarez et al. ITO and AZO films for low emissivity coatings in hybrid photovoltaic-thermal applications
US20170261376A1 (en) Method of Making a Variable Emittance Window
CN105506554B (zh) 一种可见光/红外波段纳米光学吸收涂层及其制备方法
Nielsen et al. Large area, low cost anti-reflective coating for solar glasses
RU2429427C2 (ru) Способ изготовления абсорбционной панели для солнечных коллекторов
Prasanth et al. Optical properties of sputter deposited nanocrystalline CuO thin films
An et al. Optimization of TiAlN/TiAlON/Si3N4 solar absorber coatings
CN104195552A (zh) 一种在硅基底上制备高电阻变化率二氧化钒薄膜的方法
Haider et al. TiO2/Ni composite as antireflection coating for solar cell application
Park et al. Influence of working pressure on the structural, optical and electrical properties of sputter deposited AZO thin films
Wu et al. TiO x/Ag/TiO x multilayer for application as a transparent conductive electrode and heat mirror
CN108796441B (zh) 一种光吸收镀膜、其制备方法及应用
Kanmaz et al. Solution-based hafnium oxide thin films as potential antireflection coating for silicon solar cells
KR20150138232A (ko) 가스 배리어성 필름 및 그 제조 방법
CN107742661A (zh) 用物理气相沉积法制备无机锡基钙钛矿太阳能电池的方法
CN107179571A (zh) 一种可见到红外宽带吸收器及其制备方法
Selvakumar et al. Optical simulation and fabrication of HfMoN/HfON/Al2O3 spectrally selective coating
He et al. The optical properties of alumina films prepared by electron beam evaporation at oblique incidence
Hao et al. Broadband visible to mid-infrared aluminum-black absorbers and the aging behavior
US10115843B2 (en) Broadband antireflection coatings under coverglass using ion gun assisted evaporation
KR20130114483A (ko) 반사방지 코팅층을 가지는 투명기판 및 그 제조방법
Gobbiner et al. Influence of oxygen flow rate on the structural, optical and electrical properties of ZnO films grown by DC magnetron sputtering
CN108728812B (zh) 一种制备薄膜的方法
Wang et al. The effect of Cu doping into Ag in ZnO/Ag/ZnO/SiO2 on reduction of the thermal effect of solar cells
CN106584975B (zh) 一种红外增强的宽带光热转换薄膜器件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant