CN103502487B - 电子设备用铜合金、电子设备用铜合金的制造方法、电子设备用铜合金塑性加工材料、及电子设备用组件 - Google Patents

电子设备用铜合金、电子设备用铜合金的制造方法、电子设备用铜合金塑性加工材料、及电子设备用组件 Download PDF

Info

Publication number
CN103502487B
CN103502487B CN201280022058.5A CN201280022058A CN103502487B CN 103502487 B CN103502487 B CN 103502487B CN 201280022058 A CN201280022058 A CN 201280022058A CN 103502487 B CN103502487 B CN 103502487B
Authority
CN
China
Prior art keywords
copper alloy
electronic apparatus
atom
scope
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201280022058.5A
Other languages
English (en)
Other versions
CN103502487A (zh
Inventor
牧一诚
伊藤优树
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011126510A external-priority patent/JP5703975B2/ja
Priority claimed from JP2011243870A external-priority patent/JP5903839B2/ja
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Publication of CN103502487A publication Critical patent/CN103502487A/zh
Application granted granted Critical
Publication of CN103502487B publication Critical patent/CN103502487B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Abstract

本发明的铜合金的一方式以3.3原子%以上且小于6.9原子%的范围含有Mg,且分别以0.001原子%以上0.15原子%以下的范围至少含有Cr及Zr中的任一种或两种,并且剩余部分为Cu及不可避免的杂质,将Mg的含量设为A原子%时,导电率σ(%IACS)满足以下式(1)。σ≤{1.7241/(-0.0347×A2+0.6569×A+1.7)}×100……(1)。该铜合金的制造方法的一方式具备将具有所述铜合金组成的铜材加热至300℃以上900℃以下的温度的工序、以200℃/min以上的冷却速度将加热的铜材淬冷至200℃以下的工序、及对淬冷的铜材进行加工的工序。

Description

电子设备用铜合金、电子设备用铜合金的制造方法、电子设备用铜合金塑性加工材料、及电子设备用组件
技术领域
本发明涉及一种适合于例如端子、连接器、继电器、引线框架等电子设备用组件(电子电气组件)的电子设备用铜合金、电子设备用铜合金的制造方法、电子设备用铜合金塑性加工材料、及电子设备用组件。
本申请基于2011年6月6日在日本申请的日本专利申请第2011-126510号、及2011年11月7日在日本申请的日本专利申请第2011-243870号主张优先权,将其内容援用于本说明书中。
背景技术
以往,随着电子设备和电气设备等的小型化,谋求用于这些电子设备和电气设备等的端子、连接器、继电器、引线框架等电子设备用组件(电子电气组件)的小型化及薄壁化。因此,作为构成电子设备用组件(电子电气组件)的材料,要求弹性、强度、导电率优异的铜合金。尤其,如在非专利文献1中所记载,作为用作端子、连接器、继电器、引线框架等电子设备用组件(电子电气组件)的铜合金,期望屈服强度较高且杨氏模量较低。
在此,作为用作端子、连接器、继电器、引线框架等电子设备用组件的铜合金,例如如专利文献1中所示广泛使用含有Sn和P的磷青铜。
并且,作为弹性、强度、导电率优异的铜合金,例如在专利文献2中提供有Cu-Ni-Si系合金(所谓铜镍硅合金)。该铜镍硅合金为使Ni2Si析出物分散的析出固化型合金,其具有比较高的导电率、强度及耐应力松弛特性。因此,多用作汽车用端子和信号系统小型端子用途,近年来,开发活跃地进行着。
并且,作为其他合金,开发出非专利文献2中所记载的Cu-Mg合金、专利文献3中所记载的Cu-Mg-Zn-B合金等。
如从图1所示的Cu-Mg系状态图可知,这些Cu-Mg系合金中的Mg的含量为3.3原子%以上时,通过进行固溶处理(500℃至900℃)和析出处理,能够使由Cu和Mg构成的金属间化合物析出。即,与上述铜镍硅合金同样地,这些Cu-Mg系合金中也能够通过析出固化而具有比较高的导电率和强度。
然而,专利文献1中所记载的磷青铜中,存在高温中的应力松弛率升高的倾向。在此,在具有柱型端子(オスタブ)上推并插入于插口端子(メス型端子)的弹簧接触部的结构的连接器中,若高温中的应力松弛率较高,则有可能在高温环境下的使用中引起接触压力下降而产生通电不良。因此,无法在汽车的发动机舱周边等高温环境下使用。
并且,专利文献2中所公开的铜镍硅合金中,杨氏模量为125~135Gpa,较高。在此,在具有柱型端子上推并插入于插口端子的弹簧接触部的结构的连接器中,若构成连接器的材料的杨氏模量较高,则有可能因插入时的接触压力急剧变动而且易超过弹性界限而塑性变形,因此不优选。
并且,非专利文献2及专利文献3中所记载的Cu-Mg系合金中,与铜镍硅合金同样地使金属间化合物析出。因此,存在杨氏模量较高的倾向,这些Cu-Mg系合金如上述作为连接器并不优选。
并且,母相中分散有很多粗大的以Cu和Mg为主成分的金属间化合物,因此在弯曲加工时,这些以Cu和Mg为主成分的金属间化合物易成为起点而产生破裂等。因此,存在无法成型连接器等形状复杂的电子设备用组件的问题。
专利文献1:日本特开平01-107943号公报
专利文献2:日本特开平11-036055号公报
专利文献3:日本特开平07-018354号公报
非专利文献1:野村幸矢、「コネクタ用高性能銅合金条の技術動向と当社の開発戦略」、神戸製鋼技報、Vol.54、No.1(2004)p.2~8(野村幸矢,《连接器用高性能铜合金条的技术动向与本公司的开发战略》,神户制铜技报,Vol.54,No.1(2004)p.2~8)
非专利文献2:掘茂徳、他2名、「Cu-Mg合金における粒界型析出」、伸銅技術研究会誌、Vol.19(1980)p.115~124(掘茂德等3人,《Cu-Mg合金中的粒界型析出》,伸铜技术研究会杂志,Vol.19(1980)p.115~124)
发明内容
本发明是鉴于上述事实而完成的,其目的在于提供一种具有低杨氏模量、高屈服强度、高导电性、优异的弯曲加工性且适合于端子、连接器和继电器等电子电气组件的电子设备用铜合金、电子设备用铜合金的制造方法、及电子设备用铜合金塑性加工材料。
并且,本发明的目的在于提供一种具有低杨氏模量、高屈服强度、高导电性、优异的耐应力松弛特性、优异的弯曲加工性且适合于端子、连接器、继电器、引线框架等电子设备用组件的电子设备用铜合金、电子设备用铜合金的制造方法、电子设备用铜合金塑性加工材料、及电子设备用组件。
为了解决该课题,本发明人进行深入研究的结果得到以下见解。
(a)在Cu-Mg合金中至少添加Cr及Zr中的任一种或两种,并通过进行固溶化、加工、热处理、低温退火来制作加工固化型铜合金。该加工固化型铜合金中,在Cu-Mg过饱和固溶体中分散有含有Cr及Zr中的任一种或两种的第二相粒子,且具有低杨氏模量、高屈服强度、高导电性及优异的弯曲加工性。
(b)通过将Cu-Mg合金固溶化后对其进行淬冷,制作出Cu-Mg过饱和固溶体的加工固化型铜合金。该加工固化型铜合金具有低杨氏模量、高屈服强度、高导电性及优异的弯曲加工性。并且,通过对由该Cu-Mg过饱和固溶体构成的铜合金进行精加工后实施适当的热处理,能够提高耐应力松弛特性。并且,通过适量添加Cr及Zr,能够使晶体粒径微细化,并能够实现强度的提高。
本发明是基于相关见解而完成的,其具有以下必要条件。
(1)一种电子设备用铜合金,其特征在于,以3.3原子%以上且小于6.9原子%的范围含有Mg,且分别以0.001原子%以上0.15原子%以下的范围至少含有Cr及Zr中的任一种或两种,并且剩余部分为Cu及不可避免的杂质,
将Mg的含量设为A原子%时,导电率σ(%IACS)满足以下式(1)。
σ≤{1.7241/(-0.0347×A2+0.6569×A+1.7)}×100……(1)
(2)根据上述(1)所述的电子设备用铜合金,其特征在于,杨氏模量E为125GPa以下,0.2%屈服强度σ0.2为400MPa以上。
(3)根据上述(1)或(2)所述的电子设备用铜合金,其特征在于,平均晶体粒径为20μm以下。
(4)一种电子设备用铜合金的制造方法,其特征在于,所述电子设备用铜合金的制造方法制造出上述(1)~(3)中任一项所述的电子设备用铜合金,所述电子设备用铜合金具备如下工序:加热工序,在该工序中,将铜材加热至300℃以上900℃以下的温度,所述铜材以3.3原子%以上且小于6.9原子%的范围含有Mg,且分别以0.001原子%以上0.15原子%以下的范围至少含有Cr及Zr中的任一种或两种,并且剩余部分为Cu及不可避免的杂质;淬冷工序,在该工序中,以200℃/min以上的冷却速度将加热的所述铜材冷却至200℃以下;及加工工序,在该工序中,对淬冷的铜材进行加工。
(5)一种电子设备用铜合金塑性加工材料,其特征在于,所述电子设备用铜合金塑性加工材料由上述(1)~(3)中任一项所述的电子设备用铜合金构成,轧制方向的杨氏模量E为125GPa以下,轧制方向的0.2%屈服强度σ0.2为400MPa以上。
(6)根据上述(5)所述的电子设备用铜合金塑性加工材料,其特征在于,所述的电子设备用铜合金塑性加工材料用作构成端子、连接器或继电器的铜材。
上述方式(1)的电子设备用铜合金中,以固溶限度以上的3.3原子%以上且小于6.9原子%的范围含有Mg,且在将Mg的含量设为A原子%时导电率σ被设定在上述式(1)的范围内。因此,电子设备用铜合金为Mg在母相中过饱和固溶的Cu-Mg过饱和固溶体。
由这种Cu-Mg过饱和固溶体构成的铜合金中存在杨氏模量降低的倾向,即使应用于例如具有柱型端子上推并插入于插口端子的弹簧接触部的结构的连接器等中,也可抑制插入时的接触压力变动。并且,因弹性界限较广而不会轻易塑性变形。因此,方式(1)的电子设备用铜合金尤其适合于端子、连接器和继电器等电子电气组件。
并且,使Mg过饱和固溶,因此能够通过加工固化来提高强度。
并且,母相中未广泛分散有成为破裂起点的粗大的以Cu和Mg为主成分的金属间化合物,因此弯曲加工性上升。因此,能够成型端子、连接器、继电器等形状复杂的电子电气组件等。
并且,方式(1)的电子设备用铜合金中分别以0.001原子%以上0.15原子%以下的范围至少含有Cr及Zr中任一种或两种。因此,晶粒得以微细化,且能够实现加工性的提高及强度的提高。
并且,Cr及Zr作为含有这些的分散粒子而从母相中析出,因此能够不降低导电率而实现强度的提高。另外,只要在上述范围内,则含有Cr及Zr的分散粒子非常细微或少量,因此不会给弯曲加工性带来不良影响。
在此,优选上述电子设备用铜合金如方式(2),杨氏模量E为125GPa以下,0.2%屈服强度σ0.2为400MPa以上。
当杨氏模量E为125GPa以下且0.2%屈服强度σ0.2为400MPa以上时,弹性能模量(σ0.2 2/2E)升高,不易塑性变形。因此,方式(2)的电子设备用铜合金尤其适合于端子、连接器、继电器等电子电气组件。
并且,优选上述电子设备用铜合金中如方式(3),平均晶体粒径为20μm以下。通过使平均晶体粒径在20μm以下,能够进一步提高0.2%屈服强度σ0.2
方式(4)的电子设备用铜合金的制造方法为制造出(制造)上述方式(1)~(3)中的任一电子设备用铜合金的电子设备用铜合金的制造方法。该制造方法具备将铜材加热至300℃以上900℃以下的温度的加热工序、将加热的所述铜材以200℃/min以上的冷却速度冷却至200℃以下的淬冷工序、及对淬冷的铜材进行加工的加工工序。所述铜材以3.3原子%以上且小于6.9原子%的范围含有Mg,且分别以0.001原子%以上0.15原子%以下的范围至少含有Cr或Zr中的任一种或两种,并且剩余部分为Cu及不可避免的杂质。
根据该方式(4)的电子设备用铜合金的制造方法,通过将上述组成的铜材加热至300℃以上900℃以下的温度的加热工序,能够进行Mg的固溶化。在此,加热温度小于300℃时固溶化不完全,母相中有可能较多残留以Cu和Mg为主成分的金属间化合物。另一方面,若加热温度超过900℃,则存在铜材的一部分成为液相而组织或表面状态不均匀的可能性。因此,将加热温度设定在300℃以上900℃以下的范围。另外,为了使这种作用效果可靠奏效,优选将加热工序中的加热温度设在500℃以上800℃以下的范围内。
并且,由于具备将加热的所述铜材以200℃/min以上的冷却速度冷却至200℃以下的淬冷工序,因此能够抑制以Cu和Mg为主成分的金属间化合物在冷却过程中析出。由此能够将铜材设为Cu-Mg过饱和固溶体。
并且,由于具备对淬冷的铜材(Cu-Mg过饱和固溶体)进行加工的加工工序,因此能够通过加工固化来实现强度提高。在此,加工方法无特别限定。例如当最终形态为板或条时,采用轧制。当最终形态为线或棒时,采用拉制、挤制或孔型轧制。当最终形态为块状时,采用锻造或冲压。加工温度也无特别限定,但优选将加工温度设定在成为冷加工或温加工的-200℃~200℃的范围,以免引起析出。加工率以接近于最终形状的方式适当选择,但考虑到加工固化,优选加工率为20%以上,更优选设为30%以上。
另外,可以在加工工序后进行所谓的低温退火。通过该低温退火,能够实现力学特性的进一步提高。
方式(5)的电子设备用铜合金塑性加工材料由上述方式(1)~(3)中的任一电子设备用铜合金构成,且杨氏模量E为125GPa以下,0.2%屈服强度σ0.2为400MPa以上。
根据方式(5)的电子设备用铜合金塑性加工材料,弹性能模量(σ0.2 2/2E)较高,不易塑性变形。
并且,优选上述电子设备用铜合金塑性加工材料如方式(6),用作构成端子、连接器、继电器的铜材。
(7)一种电子设备用铜合金,其特征在于,以3.3原子%以上6.9原子%以下的范围含有Mg,且分别以0.001原子%以上0.15原子%以下的范围至少含有Cr及Zr中的任一种或两种,并且剩余部分实际上为Cu及不可避免的杂质,将Mg的含量设为X原子%时,导电率σ(%IACS)满足以下式(2),在150℃、1000小时下的应力松弛率为50%以下。
σ≤{1.7241/(-0.0347×X2+0.6569×X+1.7)}×100……(2)。
(8)一种电子设备用铜合金,其特征在于,以3.3原子%以上6.9原子%以下的范围含有Mg,且分别以0.001原子%以上0.15原子%以下的范围至少含有Cr及Zr中的任一种或两种,并且剩余部分实际上为Cu及不可避免的杂质,通过扫描型电子显微镜观察的粒径0.1μm以上的以Cu和Mg为主成分的金属间化合物的平均个数为1个/μm2以下,
在150℃、1000小时下的应力松弛率为50%以下。
(9)一种电子设备用铜合金,其特征在于,以3.3原子%以上6.9原子%以下的范围含有Mg,且分别以0.001原子%以上0.15原子%以下的范围至少含有Cr及Zr中的任一种或两种,并且剩余部分实际上为Cu及不可避免的杂质,将Mg的含量设为X原子%时,导电率σ(%IACS)满足以下式(2),通过扫描型电子显微镜观察的粒径0.1μm以上的以Cu和Mg为主成分的金属间化合物的平均个数为1个/μm2以下,在150℃、1000小时下的应力松弛率为50%以下。
σ≤{1.7241/(-0.0347×X2+0.6569×X+1.7)}×100……(2)。
(10)根据上述(7)~(9)中任一项所述的电子设备用铜合金,其特征在于,杨氏模量为125GPa以下,0.2%屈服强度σ0.2为400MPa以上。
(11)一种电子设备用铜合金的制造方法,其特征在于,所述电子设备用铜合金的制造方法制造出上述(7)~(10)中任一项所述的电子设备用铜合金,所述设备用铜合金具备如下工序:精轧制工序,在该工序中,将铜材轧制成预定形状,所述铜材为以3.3原子%以上6.9原子%以下的范围含有Mg,且分别以0.001原子%以上0.15原子%以下的范围至少含有Cr及Zr中的任一种或两种,并且剩余部分实际上为Cu及不可避免的杂质的组成;及精热处理工序,该工序在所述精轧制工序之后实施热处理。
(12)根据上述(11)所述的电子设备用铜合金的制造方法,其特征在于,在所述精热处理工序中,以超过200℃且800℃以下的范围实施热处理,之后,以200℃/min以上的冷却速度将加热的所述铜材冷却至200℃以下。
(13)一种电子设备用铜合金塑性加工材料,其特征在于,所述电子设备用铜合金塑性加工材料由上述(7)~(10)中任一项所述的电子设备用铜合金构成,与轧制方向平行的方向上的杨氏模量E为125GPa以下,与轧制方向平行的方向上的0.2%屈服强度σ0.2为400MPa以上。
(14)一种电子设备用铜合金塑性加工材料,其特征在于,所述电子设备用铜合金塑性加工材料由上述(7)~(10)中任一项所述的电子设备用铜合金构成,其用作构成电子设备用组件的铜材,所述电子设备用组件为端子、连接器、继电器或引线框架。
(15)一种电子设备用组件,其特征在于,所述电子设备用组件由上述(7)~(10)中任一项所述的电子设备用铜合金构成。
上述方式(7)或(9)的电子设备用铜合金中,以固溶限度以上的3.3原子%以上6.9原子%以下的范围含有Mg,且在将Mg的含量设为X原子%时,导电率σ被设定在上述式(2)的范围内。因此,电子设备用铜合金为Mg在母相中过饱和固溶的Cu-Mg过饱和固溶体。
上述方式(8)或(9)的电子设备用铜合金中,以固溶限度以上的3.3原子%以上6.9原子%以下的范围含有Mg,且通过扫描型电子显微镜观察的粒径0.1μm以上的以Cu和Mg为主成分的金属间化合物的平均个数为1个/μm2以下。因此,可抑制以Cu和Mg为主成分的金属间化合物的析出,电子设备用铜合金为Mg在母相中过饱和固溶的Cu-Mg过饱和固溶体。
另外,使用场发射式扫描电子显微镜以倍率:5万倍、视场:约4.8μm2进行10个视场观察来计算出粒径为0.1μm以上且以Cu和Mg为主成分的金属间化合物的平均个数。
并且,以Cu和Mg为主成分的金属间化合物的粒径设为金属间化合物的长径与短径的平均值。另外,长径为以在中途不与晶界接触为条件在粒内画成最长的直线的长度,短径为在与长径直角相交的方向上以在中途不与晶界接触为条件画成最长的直线长度。
由这种Cu-Mg过饱和固溶体构成的铜合金中存在杨氏模量降低的倾向,即使应用于例如具有柱型端子上推并插入于插口端子的弹簧接触部的结构的连接器等中,也可抑制插入时的接触压力的变动。并且,因弹性界限较广而不会轻易塑性变形。因此,方式(7)~(9)的电子设备用铜合金尤其适合于端子、连接器、继电器、引线框架等电子设备用组件。
并且,Mg过饱和固溶,因此在母相中未广泛分散有成为破裂的起点的粗大的以Cu和Mg为主成分的金属间化合物,弯曲加工性上升。因此,能够成型端子、连接器、继电器、引线框架等形状复杂的电子设备用组件等。
并且,由于使Mg过饱和固溶,因此能够通过加工固化来提高强度。
并且,方式(7)~(9)的电子设备用铜合金中,分别以0.001原子%以上0.15原子%以下的范围至少含有Cr及Zr中的任一种或两种。因此,晶体粒径被微细化,能够不大幅降低导电率而提高机械强度。
因此,方式(7)~(9)的电子设备用铜合金中,在150℃、1000小时下的应力松弛率为50%以下,因此即使在高温环境下使用时也能够抑制因接触压力下降而产生的通电不良。因此,方式(7)~(9)的电子设备用铜合金能够用作在发动机舱等高温环境下使用的电子设备用组件的原材料。
在此,优选上述电子设备用铜合金如方式(10),杨氏模量E为125GPa以下,0.2%屈服强度σ0.2为400MPa以上。
当杨氏模量E为125GPa以下且0.2%屈服强度σ0.2为400MPa以上时,弹性能模量(σ0.2 2/2E)升高,不易塑性变形。因此,方式(10)的电子设备用铜合金尤其适合于端子、连接器、继电器、引线框架等电子设备用组件。
方式(11)的电子设备用铜合金的制造方法为制造出方式(7)~(9)中的任一电子设备用铜合金的电子设备用铜合金的制造方法。该制造方法具备将铜材轧制成预定形状的精轧制工序、及在该精轧制工序之后实施热处理的精热处理工序。所述铜材以3.3原子%以上6.9原子%以下的范围含有Mg,且分别以0.001原子%以上0.15原子%以下的范围至少含有Cr及Zr中的任一种或两种,并且剩余部分实际上为Cu及不可避免的杂质。
根据该方式(11)的电子设备用铜合金的制造方法,具备将上述组成的铜材加工成预定形状的精加工工序、及在该精加工工序之后实施热处理的精热处理工序,因此通过该精热处理工序,能够提高耐应力松弛特性。
在此,优选如方式(12),在所述精热处理工序中以超过200℃且800℃以下的范围实施热处理。并且,优选以200℃/min以上的冷却速度将加热的所述铜材冷却至200℃以下。
此时,能够通过精热处理工序提高耐应力松弛特性,且能够将在150℃、1000小时下的应力松弛率设为50%以下。
方式(13)的电子设备用铜合金塑性加工材料由方式(7)~(10)中的任一电子设备用铜合金构成,与轧制方向平行的方向上的杨氏模量E为125GPa以下,与轧制方向平行的方向上的0.2%屈服强度σ0.2为400MPa以上。
根据方式(13)的电子设备用铜合金塑性加工材料,弹性能模量(σ0.2 2/2E)较高,不易塑性变形。
另外,该说明书中塑性加工材料是指在任一制造工序中实施了塑性加工的铜合金。
并且,上述电子设备用铜合金塑性加工材料优选如方式(14),用作构成端子、连接器、继电器、引线框架等电子设备用组件的铜材。
并且,方式(15)的电子设备用组件由方式(7)~(10)中的任一电子设备用铜合金构成。
该方式(15)的电子设备用组件(例如端子、连接器、继电器、引线框架)的杨氏模量较低,且耐应力松弛特性优异,因此在高温环境下也能够使用。
根据本发明的方式,能够提供一种具有低杨氏模量、高屈服强度、高导电性及优异的弯曲加工性且适合于端子、连接器和继电器等电子电气组件的电子设备用铜合金、电子设备用铜合金的制造方法、及电子设备用铜合金塑性加工材料。
并且,根据本发明的方式,能够提供一种具有低杨氏模量、高屈服强度、高导电性、优异的耐应力松弛特性及优异的弯曲加工性且适合于端子、连接器和继电器等电子设备用组件的电子设备用铜合金、电子设备用铜合金的制造方法、电子设备用铜合金塑性加工材料、及电子设备用组件。
附图说明
图1是Cu-Mg系状态图。
图2是第1实施方式的电子设备用铜合金的制造方法的流程图。
图3是第2实施方式的电子设备用铜合金的制造方法的流程图。
图4表示本发明例1-3的分析结果,(a)为SEM照片,(b)为(a)的观察视场中的Cr的分布图,(c)表示以EDX进行定性分析的结果。
图5表示本发明例1-10的分析结果,(a)为SEM照片,(b)为(a)的观察视场中的Zr的分布图,(c)表示以EDX进行定性分析的结果。
图6表示本发明例2-3的析出物的分析结果,(a)为SEM照片,(b)为(a)的观察视场中的Mg的分布图,(c)为(a)的观察视场中的Cr的分布图,(d)表示以EDX进行定性分析的结果。
图7表示本发明例2-8的析出物的分析结果,(a)为SEM照片,(b)为(a)的观察视场中的Mg的分布图,(c)为(a)的观察视场中的Zr的分布图,(d)表示以EDX进行定性分析的结果。
具体实施方式
以下,对作为本发明的一实施方式的电子设备用铜合金、其制造方法、电子设备用铜合金塑性加工材料、及电子设备用组件进行说明。
(第1实施方式)
作为本实施方式的电子设备用铜合金以3.3原子%以上且小于6.9原子%的范围含有Mg,且分别以0.001原子%以上0.15原子%以下的范围至少含有Cr及Zr中的任一种或两种,并且剩余部分为Cu及不可避免的杂质。
并且,将Mg的含量设为A原子%时,导电率σ(%IACS)满足以下式(1)。
σ≤{1.7241/(-0.0347×A2+0.6569×A+1.7)}×100……(1)
并且,该电子设备用铜合金的杨氏模量E为125GPa以下,0.2%屈服强度σ0.2为400MPa以上。
(组成)
Mg是具有不会大幅降低导电率而提高强度并且提高再结晶温度的作用效果的元素。并且,通过使Mg在母相中固溶,杨氏模量抑制在较低,且可获得优异的弯曲加工性。
在此,Mg的含量小于3.3原子%时,其作用效果无法奏效。另一方面,若Mg的含量为6.9原子%以上,则为了固溶化而进行热处理时,导致残留有以Cu和Mg为主成分的金属间化合物,有可能导致在之后的加工等中产生破裂。
从这种理由出发,将Mg的含量设定在3.3原子%以上且小于6.9原子%。
并且,若Mg的含量较少,则强度上升不充分,且无法充分将杨氏模量抑制在较低。并且,由于Mg为活性元素,有可能因过量添加而在熔解铸造时卷入(含有)与氧反应而生成的Mg氧化物。因此,更优选将Mg的含量设定为3.7原子%以上6.3原子%以下的范围。
Cr及Zr是具有易使中间热处理后的晶体粒径微细化的效果的元素。可推断这是由于含有Cr及Zr的第二相粒子在母相内分散,该第二相粒子具有抑制热处理中的母相的晶粒的成长的效果。该晶粒微细化的效果通过反复中间加工→中间热处理而变得更显著。并且,通过这种细微的第二相粒子的分散及晶粒微细化,具有不会大幅降低导电率而进一步提高强度的效果。
在此,Cr及Zr的含量分别小于0.001原子%时,无法使其作用效果奏效。另一方面,若Cr及Zr的含量分别超过0.15原子%,则有可能在轧制时产生裂边。
从这种理由出发,将Cr及Zr的含量分别设定在0.001原子%以上0.15原子%以下。
并且,若Cr及Zr的含量较少,则强度提高和晶粒微细化的效果有可能无法可靠地奏效。并且,若Cr及Zr的含量较多,则会对轧制性和弯曲加工性带来不良影响。
因此,更优选将Cr及Zr的含量分别设为0.005原子%以上0.12原子%以下的范围。
另外,作为不可避免的杂质,可举出Zn、Sn、Fe、Co、Al、Ag、Mn、B、P、Ca、Sr、Ba、Sc、Y、稀土类元素、Hf、V、Nb、Ta、Mo、W、Re、Ru、Os、Se、Te、Rh、Ir、Pd、Pt、Au、Cd、Ga、In、Li、Si、Ge、As、Sb、Ti、Tl、Pb、Bi、S、O、C、Ni、Be、N、H、Hg等。期望这些不可避免的杂质以总量计为0.3质量%以下。
(导电率σ)
上述组成的铜合金中,若将Mg的含量设为A原子%时的导电率σ(%IACS)满足以下式(1),则几乎不存在以Cu和Mg为主成分的金属间化合物。
σ≤{1.7241/(-0.0347×A2+0.6569×A+1.7)}×100……(1)。
即,导电率σ超过上述式(1)的右边的值时,大量存在以Cu和Mg为主成分的金属间化合物,且金属间化合物的尺寸也比较大。因此,弯曲加工性大幅劣化。并且,由于生成以Cu和Mg为主成分的金属间化合物而导致Mg的固溶量也减少,从而还导致杨氏模量上升。因此,通过调整制造条件以使导电率σ满足上述式(1),从而能够将杨氏模量抑制在较低,且能够提高加工性。
接着,参考图2所示的流程图对作为本实施方式的电子设备用铜合金的制造方法进行说明。
(熔解/铸造工序S101)
首先,熔解铜原料来获得熔融铜,接着在所获得的熔融铜中添加前述元素来进行成分调整并制作出熔融铜合金。另外,添加Mg、Cr、Zr时能够使用Mg、Cr、Zr单体或母合金等。并且,也可以将含有Mg、Cr、Zr的原料与铜原料一起熔解。并且,也可以使用铜合金的再生材料及碎片材料。
在此,优选熔融铜为纯度为99.99质量%以上的铜即所谓的4NCu。并且,在熔解工序中为了抑制Mg、Cr、Zr的氧化,优选使用真空炉,更优选使用惰性气体气氛或还原性气氛的气氛炉。
并且,将进行成分调整的熔融铜合金注入到铸模中来制造出铜合金(铜材)的铸块。另外,考虑批量生产时,优选使用连续铸造法或半连续铸造法。
(加热工序S102)
接着,为了所获得的铸块的均化及固溶化而进行加热处理。在凝固过程中,由于Mg偏析浓缩,从而生成以Cu和Mg为主成分的金属间化合物等。在铸块内部存在该以Cu和Mg为主成分的金属间化合物等。因此,为了消除或减少这些偏析及金属间化合物等,进行将铸块加热至300℃以上900℃以下的温度的加热处理。由此,在铸块内使Mg均匀扩散,或使Mg在母相中固溶。另外,该加热工序S102优选在非氧化性或还原性气氛中实施。
(淬冷工序S103)
并且,将在加热工序S102中加热至300℃以上900℃以下的温度的铸块以200℃/min以上的冷却速度冷却至200℃以下的温度。通过该淬冷工序S103,能够抑制在母相中固溶的Mg作为金属间化合物析出。
另外,为了粗加工的效率化和组织的均匀化,也可以在前述加热工序S102之后实施热加工,并在该热加工之后实施上述淬冷工序S103。此时,对于热加工方法无特别限定。例如当最终形态为板或条时能够采用轧制。当最终形态为线或棒时能够采用拉制、挤制及孔型轧制等。当最终形态为块状时能够采用锻造或冲压。
(加工工序S104)
根据需要对经过加热工序S102及淬冷工序S103的铸块进行切断。并且,为了去除在加热工序S102及淬冷工序S103等中生成的氧化膜等,根据需要进行表面磨削。之后,加工成预定形状。
在此,加工方法无特别限定。例如当最终形态为板或条时能够采用轧制。当最终形态为线或棒时能够采用拉制、挤制及孔型轧制。当最终形态为块状时能够采用锻造或冲压。
另外,虽然该加工工序S104中的温度条件无特别限定,但优选将加工温度设定在成为冷加工或温加工的-200℃~200℃的范围内,以免引起析出。
并且,以接近于最终形状的方式适当选择加工率,但为了通过加工固化来提高强度,优选将加工率设为20%以上。并且,当谋求强度的进一步提高时,更优选将加工率设为30%以上。
并且,如图2所示,可以反复实施上述加热工序S102、淬冷工序S103、加工工序S104。在此,第2次之后的加热工序S102的目的在于彻底固溶化、再结晶组织化、晶粒微细化、含有Cr及Zr的第二相粒子的析出、及用于提高加工性的软化。并且,对象并非铸块而是加工材料。
(热处理工序S105)
接着,对于通过加工工序S104获得的加工材料,为了基于低温退火的固化、及耐应力松弛特性的提高而实施热处理。关于该热处理条件,根据对制造出的产品所要求的特性而适当进行设定。
另外,该热处理工序S105中需要设定热处理条件(温度、时间、冷却速度),以免固溶化的Mg析出。优选设为例如200℃且1分钟~1小时左右、300℃且1秒钟~5分钟左右、350℃且1秒钟~3分钟左右。冷却速度优选设定为200℃/min以上。
并且,热处理方法无特别限定,但优选在非氧化性或还原性气氛中进行100~500℃且0.1秒钟~24小时的热处理较好。并且,冷却方法无特别限定,但优选水淬等、冷却速度在200℃/min以上的方法。
并且,也可以反复实施上述加工工序S104和热处理工序S105。
如此制造出(制造)作为本实施方式的电子设备用铜合金。并且,作为本实施方式的电子设备用铜合金的杨氏模量E为125GPa以下,0.2%屈服强度σ0.2为400MPa以上。
并且,将Mg的含量设为A原子%时,导电率σ(%IACS)满足以下式(1)。
σ≤{1.7241/(-0.0347×A2+0.6569×A+1.7)}×100……(1)
根据本实施方式的电子设备用铜合金,以3.3原子%以上且小于6.9原子%的范围含有Mg,且分别以0.001原子%以上0.15原子%以下的范围至少含有Cr及Zr中的一种以上,并且剩余部分为Cu及不可避免的杂质。并且在将Mg的含量设为A原子%时,导电率σ(%IACS)满足以下式(1)。
σ≤{1.7241/(-0.0347×A2+0.6569×A+1.7)}×100……(1)
即,作为本实施方式的电子设备用铜合金为Mg在母相中过饱和固溶的Cu-Mg过饱和固溶体。
由这种Cu-Mg过饱和固溶体构成的铜合金中存在杨氏模量降低的倾向。即使应用于例如具有柱型端子上推并插入于插口端子的弹簧接触部的结构的连接器等中,也可抑制插入时的接触压力变动。并且,因弹性界限较广而不会轻易塑性变形。因此,尤其适合于端子、连接器和继电器等电子电气组件。
并且,Mg过饱和固溶,因此在母相中未广泛分散有在弯曲加工时成为破裂的起点的粗大的以Cu和Mg为主成分的金属间化合物,弯曲加工性上升。因此,能够成型形状复杂的端子、连接器等。
并且,由于使Mg过饱和固溶,因此强度通过加工固化而上升,能够具有比较高的强度。
并且,固溶有Mg的铜合金中还至少含有Cr及Zr中的任一种或两种,因此能够使晶粒微细化,并提高加工性。
并且,通过含有这些Cr及Zr的第二相粒子的分散,能够不降低导电率而实现强度的进一步提高。
并且,电子设备用铜合金中杨氏模量E为125GPa以下,0.2%屈服强度σ0.2为400MPa以上,因此弹性能模量(σ0.2 2/2E)升高而不易塑性变形。因此,电子设备用铜合金尤其适合于端子、连接器等。
并且,通过使平均晶体粒径在20μm以下,能够提高0.2%屈服强度σ0.2
并且,根据作为本实施方式的电子设备用铜合金的制造方法,在加热工序S102中,将作为含有上述组成即Cu、Mg、及Cr和Zr中的至少一种以上的铜合金(铜材)的铸块或加工材料加热至300℃以上900℃以下的温度。通过该加热工序S102,能够进行Mg的固溶化。
并且,在淬冷工序S103中,将通过加热工序S102加热至300℃以上900℃以下的温度的铸块或加工材料以200℃/min以上的冷却速度冷却至200℃以下。由于具备该淬冷工序S103,因此能够抑制以Cu和Mg为主成分的金属间化合物在冷却过程中析出。由此,能够将淬冷后的铸块或加工材料设为Cu-Mg过饱和固溶体。
并且,由于具备对淬冷材料(Cu-Mg过饱和固溶体)进行加工的加工工序S104,因此能够通过加工固化来实现强度提高。
并且,在加工工序S104之后,为了进行基于低温退火的固化,或为了去除残余应变,并且为了提高耐应力松弛特性,实施热处理工序S105。因此,能够实现力学特性的进一步提高。
如上所述,根据作为本实施方式的电子设备用铜合金,能够提供一种具有低杨氏模量、高屈服强度、高导电性、优异的弯曲加工性且适合于端子、连接器和继电器等电子电气组件的电子设备用铜合金。
(电子设备用铜合金塑性加工材料)
本实施方式的电子设备用铜合金塑性加工材料由前述的本实施方式的电子设备用铜合金构成。杨氏模量E为125GPa以下,0.2%屈服强度σ0.2为400MPa以上。弹性能模量(σ0.2 2/2E)较高,因此不易塑性变形。因此,可用作构成端子、连接器、继电器的铜材。另外,塑性加工方法无特别限定,但当最终形状为板或条时,优选采用轧制。当最终形状为线或棒时,优选采用挤制或孔型轧制。当最终形状为块状时,优选采用锻造或冲压。
以上,对作为本发明的第1实施方式的电子设备用铜合金、电子设备用铜合金的制造方法、及电子设备用铜合金塑性加工材料进行了说明,但本发明并不限定于此,在不脱离本发明的必要条件的范围内能够适当进行变更。
例如,上述实施方式中,对电子设备用铜合金的制造方法的一例进行了说明,但制造方法并非限定于本实施方式,也可适当选择已有的制造方法来进行制造。
(第2实施方式)
作为本实施方式的电子设备用铜合金的成分组成以3.3原子%以上6.9原子%以下的范围含有Mg,还分别以0.001原子%以上0.15原子%以下的范围至少含有Cr及Zr中的任一种或两种,并且剩余部分为Cu及不可避免的杂质。
并且,将Mg的含量设为X原子%时,导电率σ(%IACS)满足以下式(2)。
σ≤{1.7241/(-0.0347×X2+0.6569×X+1.7)}×100……(2)。
并且,通过扫描型电子显微镜观察的粒径0.1μm以上的以Cu和Mg为主成分的金属间化合物的平均个数为1个/μm2以下。
并且,在150℃、1000小时下的应力松弛率为50%以下。在此,应力松弛率通过以日本伸铜协会技术标准JCBA-T309:2004的悬臂梁螺纹式为基准的方法来负荷应力并进行测定。
并且,该电子设备用铜合金的杨氏模量E为125GPa以下,0.2%屈服强度σ0.2为400MPa以上。
(组成)
Mg是具有不会大幅降低导电率而提高强度并且提高再结晶温度的作用效果的元素。并且,通过使Mg在母相中固溶,杨氏模量抑制在较低,且可获得优异的弯曲加工性。
在此,Mg的含量小于3.3原子%时,其作用效果无法奏效。另一方面,若Mg的含量超过6.9原子%,则为了固溶化而进行热处理时,导致残留有以Cu和Mg为主成分的金属间化合物,有可能导致在之后的加工等中产生破裂。
从这种理由出发,将Mg的含量设定在3.3原子%以上6.9原子%以下。
并且,若Mg的含量较少,则强度上升不充分,且无法充分将杨氏模量抑制在较低。并且,由于Mg为活性元素,有可能因过量添加而在熔解铸造时卷入(含有)与氧反应而生成的Mg氧化物。因此,更优选将Mg的含量设为3.7原子%以上6.3原子%以下的范围。
Cr及Zr是具有易使中间热处理后的晶体粒径微细化的效果的元素。可推断这是由于含有Cr及Zr的第二相粒子在母相内分散,该第二相粒子具有抑制热处理中的母相的晶粒的成长的效果。该晶粒微细化的效果通过反复中间加工→中间热处理而变得更显著。并且,通过这种细微的第二相粒子的分散及晶粒微细化,具有不会大幅降低导电率而进一步提高强度的效果。
在此,Cr及Zr的含量分别小于0.001原子%时,无法使其作用效果奏效。另一方面,若Cr及Zr的含量分别超过0.15原子%,则有可能在轧制时产生裂边。
从这种理由出发,将Cr及Zr的含量分别设定在0.001原子%以上0.15原子%以下。
并且,若Cr及Zr的含量较少,则有可能无法使强度提高和晶粒微细化的效果可靠地奏效。并且,若Cr及Zr的含量较多,则会对轧制性和弯曲加工性带来不良影响。
因此,更优选将Cr及Zr的含量分别设为0.005原子%以上0.12原子%以下的范围。
另外,作为不可避免的杂质,可举出Sn、Zn、Al、Ni、Fe、Co、Ag、Mn、B、P、Ca、Sr、Ba、Sc、Y、稀土类元素、Hf、V、Nb、Ta、Mo、W、Re、Ru、Os、Se、Te、Rh、Ir、Pd、Pt、Au、Cd、Ga、In、Li、Si、Ge、As、Sb、Ti、Tl、Pb、Bi、S、O、C、Be、N、H、Hg等。期望这些不可避免的杂质以总量计为0.3质量%以下。尤其优选Sn的含量小于0.1质量%,且优选Zn的含量小于0.01质量%。
这基于以下原因。若添加0.1质量%以上的Sn,则易引起以Cu和Mg为主成分的金属间化合物的析出。并且若添加0.01质量%以上的Zn,则在熔解铸造工序中产生薰烟并附着在炉或模具的部件上,从而使铸块的表面品质劣化,并且使耐应力腐蚀破裂性劣化。
(导电率σ)
若将Mg的含量设为X原子%时导电率σ满足以下式(2),则几乎不存在以Cu和Mg为主成分的金属间化合物。
σ≤{1.7241/(-0.0347×X2+0.6569×X+1.7)}×100……(2)。
即,当导电率σ超过上述式(2)的右边的值时,大量存在以Cu和Mg为主成分的金属间化合物,且金属间化合物的尺寸也比较大。因此,弯曲加工性大幅劣化。并且,生成以Cu和Mg为主成分的金属间化合物,且Mg的固溶量较少。因此还导致杨氏模量上升。因此,调整制造条件以使导电率σ满足上述式(2)。
该以Cu和Mg为主成分的金属间化合物具有可由化学式MgCu2、原型MgCu2、皮尔逊符号cF24及空间群编号Fd-3m来表示的晶体结构。
另外,为了使上述作用效果可靠地奏效,优选导电率σ(%IACS)满足以下式(3)。
σ≤{1.7241/(-0.0300×X2+0.6763×X+1.7)}×100……(3)。
此时,以Cu和Mg为主成分的金属间化合物的量更少,因此弯曲加工性进一步提高。
为了使上述作用效果可靠地奏效,更优选导电率σ(%IACS)满足以下式(4)。
σ≤{1.7241/(-0.0292×X2+0.6797×X+1.7)}×100……(4)。
此时,以Cu和Mg为主成分的金属间化合物的量更加少,因此弯曲加工性进一步提高。
(应力松弛率)
作为本实施方式的电子设备用铜合金中,如上所述,在150℃、1000小时下的应力松弛率为50%以下。
该条件中的应力松弛率较低时,即使在高温环境下使用也能够将永久变形抑制在较小,且能够抑制接触压力下降。因此作为本实施方式的电子设备用铜合金能够用作在如汽车的发动机舱周围的高温环境下使用的端子。
另外,应力松弛率优选在150℃、1000小时下设为30%以下,更优选在150℃、1000小时下设为20%以下。
(组织)
作为本实施方式的电子设备用铜合金中,以扫描型电子显微镜进行观察的结果,粒径0.1μm以上的以Cu和Mg为主成分的金属间化合物的平均个数为1个/μm2以下。即,几乎没有以Cu和Mg为主成分的金属间化合物析出,Mg在母相中固溶。
在此,固溶化不完全或固溶化后有以Cu和Mg为主成分的金属间化合物析出时,存在大量尺寸较大的以Cu和Mg为主成分的金属间化合物。此时,这些以Cu和Mg为主成分的金属间化合物成为破裂的起点而在加工时产生破裂,或使弯曲加工性大幅劣化。并且,若以Cu和Mg为主成分的金属间化合物的量较多则杨氏模量上升,因此不优选。
对组织进行调查的结果,粒径0.1μm以上的以Cu和Mg为主成分的金属间化合物在合金中为1个/μm2以下时,即以Cu和Mg为主成分的金属间化合物不存在或少量存在时,可获得良好的弯曲加工性和低杨氏模量。
并且,为了使上述作用效果可靠地奏效,更优选粒径0.05μm以上的以Cu和Mg为主成分的金属间化合物的个数在合金中为1个/μm2以下。
另外,对于以Cu和Mg为主成分的金属间化合物的平均个数,使用场发射式扫描电子显微镜以倍率:5万倍、视场:约4.8μm2进行10个视场观察并计算出其平均值来求出。
并且,以Cu和Mg为主成分的金属间化合物的粒径设为金属间化合物的长径与短径的平均值。另外,长径为以在中途不与晶界接触为条件在粒内画成最长的直线的长度,短径为在与长径直角相交的方向上以在中途不与晶界接触为条件画成最长的直线长度。
(晶体粒径)
晶体粒径是对耐应力松弛特性有较大影响的因素,晶体粒径小于所需以上时耐应力松弛特性劣化。并且,晶体粒径大于所需以上时给弯曲加工性带来不良影响。因此,优选将平均晶体粒径设在0.5μm以上100μm以下的范围内。另外,更优选将平均晶体粒径设在0.7μm以上50μm以下的范围内,进一步优选设在0.7μm以上30μm以下的范围内。
另外,后述的精加工工序S206的加工率较高时,有时成为加工组织而无法测定晶体粒径。因此,优选将精加工工序S206之前(中间热处理工序S205之后)阶段中的平均晶体粒径设在上述范围内。
在此,晶体粒径超过10μm时,优选利用光学显微镜测定平均晶体粒径。另一方面,晶体粒径为10μm以下时,优选通过SEM-EBSD(Electron BackscatterDiffraction Patterns)测定装置来测定平均晶体粒径。
接着,参考图3所示的流程图对作为本实施方式的电子设备用铜合金的制造方法进行说明。
另外,在下述制造方法中,作为加工工序而使用轧制时,加工率相当于轧制率。
(熔解/铸造工序S201)
首先,熔解铜原料来获得熔融铜,接着在所获得的熔融铜中添加前述元素来进行成分调整并制作出熔融铜合金。另外,添加Mg时能够使用Mg单体或Cu-Mg母合金等。并且,也可以将含有Mg的原料与铜原料一起熔解。并且,也可以使用铜合金的再生材料及碎片材料。
在此,优选熔融铜为纯度为99.99质量%以上的铜即所谓的4NCu。并且,在熔解工序中为了抑制Mg的氧化,优选使用真空炉、或者惰性气体气氛或还原性气氛的气氛炉。
并且,将进行成分调整的熔融铜合金注入到铸模中来制造出铜合金(铜材)的铸块。另外,考虑批量生产时,优选使用连续铸造法或半连续铸造法。
(加热工序S202)
接着,为了所获得的铸块的均化及固溶化而进行加热处理。在凝固过程中,由于Mg偏析浓缩,从而生成以Cu和Mg为主成分的金属间化合物等。在铸块内部存在该以Cu和Mg为主成分的金属间化合物等。因此,为了消除或减少这些偏析及金属间化合物等,进行将铸块加热至400℃以上900℃以下的温度的加热处理。由此,在铸块内使Mg均匀扩散,或使Mg在母相中固溶。另外,该加热工序S202优选在非氧化性或还原性气氛中实施。
在此,加热温度小于400℃时固溶化不完全,母相中有可能较多残留以Cu和Mg为主成分的金属间化合物。另一方面,若加热温度超过900℃,则存在铜材的一部分成为液相而组织或表面状态不均匀的可能性。因此,将加热温度设定在400℃以上900℃以下的范围。加热温度更优选为500℃以上850℃以下,进一步优选为520℃以上800℃以下。
(淬冷工序S203)
并且,在加热工序S202中将加热至400℃以上900℃以下的温度的铜材以200℃/min以上的冷却速度冷却至200℃以下的温度。通过该淬冷工序S203可抑制在母相中固溶的Mg作为以Cu和Mg为主成分的金属间化合物析出。因此,能够将通过扫描型电子显微镜观察的粒径0.1μm以上的以Cu和Mg为主成分的金属间化合物的平均个数设为1个/μm2以下。即,能够将铜材设为Cu-Mg过饱和固溶体。
另外,为了粗加工的效率化和组织的均匀化,也可以设为在前述加热工序S202之后实施热加工,并在该热加工之后实施上述淬冷工序S203的构成。此时,加工方法(热加工方法)无特别限定。例如当最终形态为板或条时能够采用轧制。当最终形态为线或棒时能够采用拉制、挤制或孔型轧制等。当最终形态为块状时能够采用锻造或冲压。
(中间加工工序S204)
根据需要对经过加热工序S202及淬冷工序S203的铜材进行切断。并且,为了去除在加热工序S202及淬冷工序S203等中生成的氧化膜等,根据需要进行表面磨削。之后,塑性加工成预定形状。
另外,该中间加工工序S204中的温度条件无特别限定,但优选将加工温度设定在成为冷加工或温加工的-200℃~200℃的范围内。并且,以接近于最终形状的方式适当选择加工率,但为了减少至获得最终形状为止的中间热处理工序S205的次数,优选将加工率设为20%以上。并且,更优选将加工率设为30%以上。
塑性加工方法无特别限定,但当最终形状为板或条时优选采用轧制。当最终形状为线或棒时优选采用挤制或孔型轧制。当最终形状为块状时优选采用锻造或冲压。另外,为了彻底固溶化,也可以反复S202~S204。
(中间热处理工序S205)
在中间加工工序S204之后,以彻底固溶化、再结晶组织化、或用于提高加工性的软化为目的来实施热处理。
热处理的方法无特别限定,但优选以400℃以上900℃以下的温度条件在非氧化气氛或还原性气氛中进行热处理。热处理温度更优选为500℃以上850℃以下,进一步优选为520℃以上800℃以下。
另外,中间加工工序S204及中间热处理工序S205也可以反复实施。
在此,在中间热处理工序S205中将加热至400℃以上900℃以下的温度的铜材以200℃/min以上的冷却速度冷却至200℃以下的温度。
通过如此淬冷可抑制在母相中固溶的Mg作为以Cu和Mg为主成分的金属间化合物而析出,且能够在扫描型电子显微镜观察中,将粒径0.1μm以上的以Cu和Mg为主成分的金属间化合物的平均个数设为1个/μm2以下。即,能够将铜材设为Cu-Mg过饱和固溶体。
(精加工工序S206)
将中间热处理工序S205之后的铜材精加工成预定形状。另外,该精加工工序S206中的温度条件无特别限定,但优选在常温下进行。并且,以接近于最终形状的方式适当选择加工率,但为了通过加工固化来提高强度,优选将加工率设为20%以上。并且,谋求强度的进一步提高时,更优选将加工率设为30%以上。该塑性加工方法(精加工方法)无特别限定,但当最终形状为板或条时优选采用轧制。当最终形状为线或棒时优选采用挤制或孔型轧制。当最终形状为块状时优选采用锻造或冲压。
(精热处理工序S207)
接着,对于通过精加工工序S206获得的加工材料,为了提高耐应力松弛特性、及进行基于低温退火的固化,或为了去除残余应变,实施精热处理。
热处理温度优选设在超过200℃且800℃以下的范围内。另外,该精热处理工序S207中,需要设定热处理条件(温度、时间、冷却速度),以免固溶化的Mg析出。例如优选设为250℃且10秒钟~24小时左右,更优选设为300℃且5秒钟~4小时左右、500℃且0.1秒钟~60秒钟左右。该热处理优选在非氧化气氛或还原性气氛中进行。
并且,作为冷却方法可举出水淬等,优选将加热的所述铜材以200℃/min以上的冷却速度冷却至200℃以下的温度。通过如此淬冷可抑制在母相中固溶的Mg作为以Cu和Mg为主成分的金属间化合物析出。因此,能够将通过扫描型电子显微镜观察的粒径0.1μm以上的以Cu和Mg为主成分的金属间化合物的平均个数设为1个/μm2以下。即,能够将铜材设为Cu-Mg过饱和固溶体。
并且,也可反复实施上述精加工工序S206和精热处理工序S207。另外,中间热处理工序和精热处理工序能够通过是否以使中间加工工序或精加工工序中的塑性加工后的组织再结晶化为目的来进行区别。
如此,制造出(制造)作为本实施方式的电子设备用铜合金。并且,作为本实施方式的电子设备用铜合金,其杨氏模量E为125GPa以下,0.2%屈服强度σ0.2为400MPa以上。
并且,将Mg的含量设为X原子%时,导电率σ(%IACS)满足以下式(2)。
σ≤{1.7241/(-0.0347×X2+0.6569×X+1.7)}×100……(2)。
并且,通过精热处理工序S207,作为本实施方式的电子设备用铜合金在150℃、1000小时下的应力松弛率为50%以下。
根据本实施方式的电子设备用铜合金,以固溶限以上的3.3原子%以上6.9原子%以下的范围含有Mg,还分别以0.001原子%以上0.15原子%以下的范围至少含有Cr及Zr中的一种以上,并且剩余部分为Cu及不可避免的杂质。并且将Mg的含量设为X原子%时,导电率σ(%IACS)满足以下式(2)。
σ≤{1.7241/(-0.0347×X2+0.6569×X+1.7)}×100……(2)。
并且,通过扫描型电子显微镜观察的粒径0.1μm以上的以Cu和Mg为主成分的金属间化合物的平均个数为1个/μm2以下。
即,作为本实施方式的电子设备用铜合金为Mg在母相中过饱和固溶的Cu-Mg过饱和固溶体。
由这种Cu-Mg过饱和固溶体构成的铜合金中存在杨氏模量降低的倾向。即使应用于例如具有柱型端子上推并插入于插口端子的弹簧接触部的结构的连接器等中,也可抑制插入时的接触压力变动,且因弹性界限较广而不会轻易塑性变形。因此,尤其适合于端子、连接器、继电器、引线框架等电子设备用组件。
并且,Mg过饱和固溶,因此在母相中未广泛分散有成为破裂的起点的粗大的以Cu和Mg为主成分的金属间化合物,弯曲加工性上升。因此,能够成型端子、连接器、继电器、引线框架等形状复杂的电子设备用组件。
并且,由于使Mg过饱和固溶,因此强度通过加工固化而提高,能够具有比较高的强度。
并且,作为本实施方式的电子设备用铜合金分别以0.001原子%以上0.15原子%以下的范围至少含有Cr及Zr中的任一种或两种。因此,晶体粒径被微细化,能够不大幅降低导电率而提高机械强度。
并且,作为本实施方式的电子设备用铜合金中,在150℃、1000小时下的应力松弛率为50%以下。因此,即使在高温环境下使用时也能够抑制因接触压力下降而产生的通电不良。因此,能够用作在发动机舱等高温环境下使用的电子设备用组件的原材料。
并且,作为本实施方式的电子设备用铜合金中,杨氏模量E为125GPa以下,0.2%屈服强度σ0.2为400MPa以上,因此弹性能模量(σ0.2 2/2E)升高而不易塑性变形。因此,电子设备用铜合金尤其适合于端子、连接器、继电器、引线框架等电子设备用组件。
根据作为本实施方式的电子设备用铜合金的制造方法,在加热工序S202中将具有上述组成的铜材的铸块或加工材料加热至400℃以上900℃以下的温度。通过该加热工序S202能够进行Mg的固溶化。
并且,在淬冷工序S203中将通过加热工序S202加热至400℃以上900℃以下的温度的铸块或加工材料以200℃/min以上的冷却速度冷却至200℃以下。由于具备该淬冷工序S203,因此能够抑制以Cu和Mg为主成分的金属间化合物在冷却过程中析出。由此,能够将淬冷后的铸块或加工材料设为Cu-Mg过饱和固溶体。
并且,由于具备对淬冷材(Cu-Mg过饱和固溶体)进行塑性加工的中间加工工序S204,因此能够轻松地获得接近于最终形状的形状。
并且,以彻底固溶化、再结晶组织化或用于提高加工性的软化为目的,在中间加工工序S204之后具备中间热处理工序S205。因此,能够实现特性的提高及加工性的提高。
并且,在中间热处理工序S205中将加热至400℃以上900℃以下的温度的铜材以200℃/min以上的冷却速度冷却至200℃以下的温度。由此,能够抑制以Cu和Mg为主成分的金属间化合物在冷却过程中析出,并且能够将淬冷后的铜材设为Cu-Mg过饱和固溶体。
并且,在作为本实施方式的电子设备用铜合金的制造方法中,在用于通过加工固化来提高强度和加工成预定形状的精加工工序S206之后具备精热处理工序S207。在该精热处理工序S207中,为了提高耐应力松弛特性及进行基于低温退火的固化,或为了去除残余应变而实施热处理。由此,能够将在150℃、1000小时下的应力松弛率设为50%以下。并且,能够实现力学特性的进一步提高。
在此,应力松弛率通过以日本伸铜协会技术标准JCBA-T309:2004的悬臂梁螺纹式为基准的方法来负荷应力并进行测定。
并且,该电子设备用铜合金的杨氏模量E为125GPa以下,0.2%屈服强度σ0.2为400MPa以上。
(电子设备用铜合金塑性加工材料)
本实施方式的电子设备用铜合金塑性加工材料由前述的本实施方式的电子设备用铜合金构成。与轧制方向平行的方向上的杨氏模量E为125GPa以下,与轧制方向平行的方向上的0.2%屈服强度σ0.2为400MPa以上。弹性能模量(σ0.2 2/2E)较高,因此不易塑性变形。因此,可用作构成端子、连接器、继电器、引线框架等电子设备用组件的铜材。另外,塑性加工方法无特别限定,但当最终形状为板或条时,优选采用轧制。当最终形状为线或棒时,优选采用挤制或孔型轧制。当最终形状为块状时,优选采用锻造或冲压。
(电子设备用组件)
本实施方式的电子设备用组件由前述的本实施方式的电子设备用铜合金构成。具体而言为端子、连接器、继电器、引线框架等。该电子设备用组件的杨氏模量较低且耐应力松弛特性优异,因此在高温环境下也能够使用。
以上,对作为本发明的第2实施方式的电子设备用铜合金、电子设备用铜合金的制造方法、电子设备用铜合金塑性加工材料、及电子设备用组件进行了说明,但本发明并非限定于此,在不脱离本发明的必要条件的范围内能够适当进行变更。
例如,上述实施方式中,对电子设备用铜合金的制造方法的一例进行了说明,但制造方法并非限定于本实施方式,也可适当选择已有的制造方法来进行制造。
实施例
以下,对为了确认本实施方式的效果而进行的确认试验的结果进行说明。
(实施例1)
准备由纯度99.99质量%以上的无氧铜(ASTM B152C10100)构成的铜原料。将该铜原料装入高纯度石墨坩埚内,在设为Ar气体气氛的气氛炉内高频熔解来获得熔融铜。在所获得的熔融铜内添加各种添加元素来制备成表1、2所示的成分组成,并浇注到碳模中来制造出铸块。另外,铸块的尺寸设为厚度约20mm×宽度约30mm×长度约100~120mm。并且在表1、2所示的组成中,除Mg、Cr及Zr以外的剩余部分为Cu及不可避免的杂质。
对于所获得的铸块,在Ar气体气氛中实施以表1、2所记载的温度条件进行4小时加热的加热工序(均化/固溶化),之后实施水淬。
对热处理后的铸块进行切断,并且实施用于去除氧化被膜的表面磨削。
之后,以表1、2所记载的轧制率在常温下实施中间轧制来获得条材。并且,对于所获得的条材,以表1、2所记载的条件进行中间热处理。以表1、2所记载的反复次数反复中间轧制及中间热处理。并且在常温下以表1、2所记载的精轧制率进行精轧制,最后以表1、2所记载的条件进行热处理。在工序中根据需要来进行用于去除热处理引起的氧化被膜的表面磨削。最终的形状为厚度约0.5mm×宽度约30mm的条材。
(加工性评价)
作为加工性的评价,在最终精轧制后观察有无裂边(cracked edge)。若以肉眼完全或几乎确认不到裂边则设为A(优良),若产生了长度小于1mm的较小的裂边则设为B(良好),若产生了长度1mm以上且小于3mm的裂边则设为C(一般),若产生了长度3mm以上的较大的裂边则设为D(差),若因裂边而在轧制过程中发生了破断则设为E(极差)。
另外,裂边的长度为从轧材的宽度方向端部朝向宽度方向中央部的裂边的长度。
并且,利用前述特性评价用条材测定力学特性及导电率。
(力学特性)
从特性评价用条材中采集JIS Z2201所规定的13B号试验片。以拉伸试验的拉伸方向与特性评价用条材的轧制方向平行的方式采集该试验片。
通过JIS Z2241的微量残余伸长法测定0.2%屈服强度σ0.2。在前述试验片上粘贴应变计,测定荷载及伸展率,并通过由这些所获得的应力-应变曲线的倾斜度来求出杨氏模量E。
(导电率)
从特性评价用条材中采集宽度10mm×长度60mm的试验片。该试验片以其长边方向与特性评价用条材的轧制方向平行的方式采集。
通过四端子法求出试验片的电阻。并且,利用测微计进行试验片的尺寸测定,并计算出试验片的体积。并且,由所测定的电阻值和体积计算出导电率。
(弯曲加工性)
依照日本伸铜协会技术标准JCBA-T307:2007的4试验方法进行弯曲加工。
以轧制方向与试验片的长边方向垂直的方式从特性评价用条材采集多个宽度10mm×长度30mm的试验片。接着利用弯曲角度为90度、弯曲半径为0.5mm的W型夹具进行W弯曲试验。
并且,以肉眼确认弯曲部的外周部,无法确认破断或细微破裂时设为A(优良),未引起破断而仅产生细微破裂时设为B(良好),仅有一部分引起破断时设为C(一般),破断时则设为D(差),以此来进行判定。
(组织观察)
对于各试料的轧制面,进行镜面抛光、离子蚀刻。并且,为了确认包含Cr及Zr的金属间化合物的析出状态,利用FE-SEM(场发射式扫描电子显微镜)以1万倍~10万倍进行观察。当确认到包含Cr及Zr的金属间化合物的析出时,在表中以“○”来进行标记。另外,比较例1-2、1-3、1-5及1-6未能进行组织观察。
并且,对于特性评价用条材的本发明例1-3和本发明例1-10,以约4万倍进行观察。并且,对于析出物的成分,利用EDX(能量分散型X射线光谱法)进行确认。将观察结果示于图4及图5。
(晶体粒径测定)
对于各试料进行镜面抛光及蚀刻,并通过光学显微镜以使轧制方向成为照片的横向的方式进行拍摄,并且以1000倍的视场(约300μm×200μm)进行观察。接着根据JIS H0501的切断法测定晶体粒径。各画出5条照片的纵、横的预定长度的线段,对完全被切断的晶体数进行计数,将其切断长度的平均值设为平均晶体粒径。
将制造条件及评价结果示于表1~4。
比较例1-1、1-4中Mg的含量低于本实施方式的范围,而杨氏模量为126GPa、127GPa,显示出较高值。
比较例1-2、1-5中Mg的含量高于本实施方式的范围,冷轧时产生较大的裂边,导致在轧制过程中产生破断。因此,无法实施之后的特性评价。
比较例1-3中Cr的含量高于本实施方式的范围,比较例1-6中Zr的含量高于本实施方式的范围。比较例1-3、1-6中,虽在冷轧时不至于产生破断,但在冷轧时产生了较大的裂边。因此,无法实施之后的特性评价。
比较例1-7、1-8、1-9、1-10中Mg的含量、Cr及Zr的含量为本实施方式的范围,但导电率不满足本实施方式的式(1)。在这些比较例1-7、1-8、1-9、1-10中确认到弯曲加工性恶劣。可推断这是由于粗大的以Cu和Mg为主成分的金属间化合物成为了破裂的起点。
并且,作为含有Ni、Si、Zn、Sn的铜合金即所谓的铜镍硅合金的现有例1-1中,将用于固溶化的加热工序的温度设为980℃并将热处理条件设为400℃×4h来进行金属间化合物的析出处理。该现有例1-1中抑制了裂边的产生,因析出物细微而确保了弯曲加工性。然而,确认到杨氏模量升高为131GPa。
与此相对,本发明例1-1~1-18中杨氏模量均设定较低为119Gpa以下,弹性优异。并且,本发明例1-3~1-5的组成相同,但中间轧制与中间热处理的反复次数不同,因此加工率的总量不同。同样地,本发明例1-10~1-12也具有相同组成,但中间轧制与中间热处理的反复次数不同,因此加工率的总量不同。若比较本发明例1-3~1-5、及本发明例1-10~1-12,则可确认,通过反复进行中间轧制和中间热处理能够提高0.2%屈服强度。并且,本发明例1-7中,裂边为C,但这种程度在实际使用中不成问题。并且,本发明例1-7、1-13~1-15、及1-18的弯曲加工性为C,但确认到这种程度在实际使用中也不成问题。
并且,如图4所示,在含有Cr的本发明例1-3中确认到Cr的析出物粒子,但未观察到含有Mg的粗大的析出物。并且,如图5所示,在含有Zr的本发明例1-10中确认到Zr与Cu的析出物粒子,但未观察到含有Mg的粗大的析出物。
从以上可确认,根据实施例1的本发明例,能够提供一种具有低杨氏模量、高屈服强度、高导电性、优异的弯曲加工性且适合于端子、连接器和继电器等电子电气组件的电子设备用铜合金。
(实施例2)
准备由纯度99.99质量%以上的无氧铜(ASTM B152C10100)构成的铜原料。将该铜原料装入高纯度石墨坩埚内,在设为Ar气体气氛的气氛炉内高频熔解来获得熔融铜。在所获得的熔融铜内添加各种添加元素来制备成表5、6所示的成分组成,并浇注到碳模中来制造出铸块。另外,铸块的尺寸设为厚度约20mm×宽度约20mm×长度约100~120mm。
对于所获得的铸块,在Ar气体气氛中实施以表5、6所记载的温度进行4小时加热的加热工序,之后实施水淬。
对热处理后的铸块进行切断,并且实施用于去除氧化被膜的表面磨削。
之后,在常温下以表5、6所记载的轧制率实施中间轧制来获得条材。并且,对于所获得的条材,以表5、6所记载的温度在盐浴中实施中间热处理。之后实施水淬。
接着,以表5、6所示的轧制率实施精轧制,制造出厚度0.25mm、宽度约20mm的条材。
并且,在精轧制后,以表5、6所示的条件在盐浴中实施精热处理,之后实施水淬。通过以上制作出特性评价用条材。
(中间热处理后的晶体粒径)
对于进行了表5、6所示的中间热处理后的试料进行晶体粒径的测定。对于各试料,进行镜面抛光及蚀刻,并通过光学显微镜拍摄轧制面,并且以1000倍的视场(约300μm×200μm)进行观察。接着根据JIS H0501的切断法测定晶体粒径。各画出5条照片的纵、横的预定长度的线段,对完全被切断的晶体数进行计数,将其切断长度的平均值设为平均晶体粒径。
并且,当平均晶体粒径为10μm以下时,通过SEM-EBSD(Electron BackscatterDiffraction Patterns)测定装置并根据以下方法测定平均晶体粒径。利用防水研磨纸、金刚石磨粒进行机械研磨。接着,利用胶体二氧化硅溶液进行精磨。之后,利用扫描型电子显微镜对试料表面的测定范围内的各个测定点(像素)照射电子射线。根据基于电子背散射衍射的方位分析,将相邻的测定点之间的方位差为15°以上的测定点之间设为大角晶界,15°以下则设为小角晶界。利用大角晶界制作晶界映射图。并且根据JIS H0501的切断法,对于晶界映射图,各画出5条纵、横的预定长度的线段,对完全被切断的晶体数进行计数,将其切断长度的平均值设为平均晶体粒径。
(加工性评价)
作为加工性的评价,观察前述冷轧时有无裂边(cracked edge)。若以肉眼完全或几乎确认不到裂边则设为A(优良),若产生了长度小于1mm的较小的裂边则设为B(良好),若产生了长度1mm以上且小于3mm的裂边则设为C(一般),若产生了长度3mm以上的较大的裂边则设为D(差),若因裂边而在轧制过程中发生了破断则设为E(极差)。
另外,裂边的长度为从特性评价用条材的宽度方向端部朝向宽度方向中央部的裂边的长度。
并且,利用前述特性评价用条材测定力学特性及导电率。
(力学特性)
从特性评价用条材中采集JIS Z2201所规定的13B号试验片。以拉伸试验的拉伸方向与特性评价用条材的轧制方向平行的方式采集该试验片。
根据JIS Z2241的微量残余伸长法测定0.2%屈服强度σ0.2。在前述试验片上粘贴应变计,测定荷载及伸展率,并通过由这些所获得的荷载-伸展曲线的倾斜度来求出杨氏模量E。
(导电率)
从特性评价用条材中采集宽度10mm×长度60mm的试验片。该试验片以其长边方向与特性评价用条材的轧制方向平行的方式采集。
通过四端子法求出试验片的电阻。并且,利用测微计进行试验片的尺寸测定,并计算出试验片的体积。并且,由所测定的电阻值和体积计算出导电率。
(耐应力松弛特性)
将试验片(宽度10mm)以其长边方向与特性评价用条材的轧制方向平行的方式进行采集。
耐应力松弛特性试验通过以日本伸铜协会技术标准JCBA-T309:2004的悬臂梁螺纹式为基准的方法来进行。根据以悬臂梁螺纹式为基准的方法负载应力,以150℃的温度保持预定时间,并测定之后的残余应力率。
以使试验片的表面最大应力成为屈服强度的80%的方式将初始挠曲位移设定为2mm,并调整Span长度。上述表面最大应力以下式进行设定。
表面最大应力(MPa)=1.5Etδ0/LS 2
其中,E、t、δ0、LS分别表示如下。
E:挠曲系数(MPa)
t:试料厚度(t=0.25mm)
δ0:初始挠曲位移(2mm)
LS:Span长度(mm)
由以150℃的温度保持1000小时后的弯曲特性来测定残余应力率,并对应力松弛率进行评价。另外应力松弛率利用下式进行计算。
应力松弛率(%)=(δt0)×100
其中,δt、δ0分别表示如下。
δt:(以150℃保持1000小时后的永久挠曲位移(mm))-(在常温下保持24小时后的永久挠曲位移(mm))
δ0:初始挠曲位移(mm)
(组织观察)
对于各试料的轧制面,进行镜面抛光、离子蚀刻。并且,为了确认以Cu及Mg为主成分的金属间化合物的析出状态,利用FE-SEM(场发射式扫描电子显微镜)以1万倍的视场(约120μm2/视场)进行观察。
接着,为了调查以Cu和Mg为主成分的金属间化合物的密度(个/μm2),选择金属间化合物的析出状态并不异常的1万倍的视场(约120μm2/视场),在该区域以5万倍进行连续10个视场(约4.8μm2/视场)的拍摄。金属间化合物的粒径设为金属间化合物的长径与短径的平均值。另外,长径为以在中途不与晶界接触为条件在粒内画成最长的直线的长度,短径为在与长径直角相交的方向上以在中途不与晶界接触为条件画成最长的直线长度。并且,求出具有0.1μm以上的粒径且以Cu和Mg为主成分的金属间化合物的密度(平均个数)(个/μm2)。
(弯曲加工性)
依照日本伸铜协会技术标准JCBA-T307:2007的4测试方法进行弯曲加工。
以轧制方向与试验片的长边方向平行的方式从特性评价用条材中采集多个宽度10mm×长度30mm的试验片。接着利用弯曲角度为90度、弯曲半径为0.25mm的W型夹具进行W弯曲试验。
并且,以肉眼确认弯曲部的外周部,无法确认破断或细微破裂时设为A(优良),未引起破断而仅产生细微破裂时设为B(良好),仅有一部分引起破断时设为C(一般),破断时则设为D(差),以此来进行判定。
将制造条件及评价结果示于表5~8。
比较例2-1、2-2中Mg的含量低于本实施方式的范围,0.2%屈服强度较低,杨氏模量为127GPa、128GPa,仍然比较高。
比较例2-3、2-4中Mg的含量高于本实施方式的范围,在中间轧制时产生较大的裂边。因此,无法实施之后的特性评价。
比较例2-5中,组成为本实施方式的范围,但未实施精轧制后的最终热处理(精热处理)。该比较例2-5中,应力松弛率成为54%。
比较例2-6中,组成为本实施方式的范围,但导电率不满足本实施方式的式(2)。并且以Cu和Mg为主成分的金属间化合物的个数偏离了本实施方式的范围。在该比较例2-6中确认到屈服强度降低。并且,在比较例2-6中确认到弯曲加工性恶劣。
比较例2-7、2-8中Cr及Zr的含量高于本实施方式的范围,在中间轧制时产生较大的裂边。因此,无法实施之后的特性评价。
并且,作为含有Sn、P的铜合金即所谓磷青铜的现有例2-1、2-2中,导电率较低,且应力松弛率超过50%。
相对于此,本发明例2-1~2-13中杨氏模量均较低为116GPa以下,0.2%屈服强度也均为550MPa以上,弹性优异。并且,应力松弛率也较低为48%以下。并且,中间热处理后的晶体粒径为15μm以下,可通过添加Cr及Zr来实现晶体粒径的微细化。
在此,如图6所示,在含有Cr的本发明例2-3中可确认到Cr的析出物粒子,但未观察到以Cu和Mg为主成分的金属间化合物。
并且,如图7所示,在含有Zr的本发明例2-8中可确认到含有Zr的析出物粒子,但未观察到以Cu和Mg为主成分的金属间化合物。
从以上可确认,根据实施例2的本发明例,能够提供一种具有低杨氏模量、高屈服强度、高导电性、优异的耐应力松弛特性、优异的弯曲加工性且适合于端子、连接器和继电器等电子设备用组件的电子设备用铜合金。
产业上的可利用性
本发明的电子设备用铜合金的一方式具有低杨氏模量、高屈服强度、高导电性、及优异的弯曲加工性。因此,该电子设备用铜合金能够很好地应用于端子、连接器和继电器等电子设备用组件。
本发明的电子设备用铜合金的另一方式具有低杨氏模量、高屈服强度、高导电性、优异的耐应力松弛特性、及优异的弯曲加工性。因此,该电子设备用铜合金能够很好地应用于端子、连接器、继电器、引线框架等电子设备用组件。尤其,该电子设备用铜合金的耐应力松弛特性优异,因此能够很好地应用于在发动机舱等高温环境下使用的电子设备用组件。
符号说明
S102-加热工序,S103-淬冷工序,S104-加工工序,S206-精加工工序,S207-精热处理工序。

Claims (14)

1.一种电子设备用铜合金,其特征在于,
以3.3原子%以上且小于6.9原子%的范围含有Mg,且分别以0.001原子%以上0.15原子%以下的范围至少含有Cr及Zr中的任一种或两种,并且剩余部分为Cu及不可避免的杂质,
将Mg的含量设为A原子%时,以%IACS表示的导电率σ满足以下式(1),
σ≤{1.7241/(-0.0347×A2+0.6569×A+1.7)}×100……(1)。
2.根据权利要求1所述的电子设备用铜合金,其特征在于,
所述电子设备用铜合金的杨氏模量E为125GPa以下,0.2%屈服强度σ0.2为400MPa以上。
3.根据权利要求1或2所述的电子设备用铜合金,其特征在于,
所述电子设备用铜合金的平均晶体粒径为20μm以下。
4.一种电子设备用铜合金的制造方法,其特征在于,
所述电子设备用铜合金的制造方法制造出权利要求1~3中任一项所述的电子设备用铜合金,所述电子设备用铜合金的制造方法具备如下工序:
加热工序,在该工序中,将铜材加热至300℃以上900℃以下的温度,所述铜材以3.3原子%以上且小于6.9原子%的范围含有Mg,且分别以0.001原子%以上0.15原子%以下的范围至少含有Cr及Zr中的任一种或两种,并且剩余部分为Cu及不可避免的杂质;
淬冷工序,在该工序中,以200℃/min以上的冷却速度将加热的所述铜材冷却至200℃以下;及
加工工序,在该工序中,对淬冷的铜材进行加工。
5.一种电子设备用铜合金塑性加工材料,其特征在于,
所述电子设备用铜合金塑性加工材料由权利要求1~3中任一项所述的电子设备用铜合金构成,
轧制方向的杨氏模量E为125GPa以下,轧制方向的0.2%屈服强度σ0.2为400MPa以上。
6.根据权利要求5所述的电子设备用铜合金塑性加工材料,其特征在于,
所述电子设备用铜合金塑性加工材料用作构成端子、连接器或继电器的铜材。
7.一种电子设备用铜合金,其特征在于,
以3.3原子%以上6.9原子%以下的范围含有Mg,且分别以0.001原子%以上0.15原子%以下的范围至少含有Cr及Zr中的任一种或两种,并且剩余部分实际上为Cu及不可避免的杂质,
将Mg的含量设为X原子%时,以%IACS表示的导电率σ满足以下式(2),
在150℃、1000小时下的应力松弛率为50%以下,
σ≤{1.7241/(-0.0347×X2+0.6569×X+1.7)}×100……(2)。
8.一种电子设备用铜合金,其特征在于,
以3.3原子%以上6.9原子%以下的范围含有Mg,且分别以0.001原子%以上0.15原子%以下的范围至少含有Cr及Zr中的任一种或两种,并且剩余部分实际上为Cu及不可避免的杂质,
通过扫描型电子显微镜观察的粒径0.1μm以上的以Cu和Mg为主成分的金属间化合物的平均个数为1个/μm2以下,
在150℃、1000小时下的应力松弛率为50%以下。
9.一种电子设备用铜合金,其特征在于,
以3.3原子%以上6.9原子%以下的范围含有Mg,且分别以0.001原子%以上0.15原子%以下的范围至少含有Cr及Zr中的任一种或两种,并且剩余部分实际上为Cu及不可避免的杂质,
将Mg的含量设为X原子%时,以%IACS表示的导电率σ满足以下式(2),
通过扫描型电子显微镜观察的粒径0.1μm以上的以Cu和Mg为主成分的金属间化合物的平均个数为1个/μm2以下,
在150℃、1000小时下的应力松弛率为50%以下,
σ≤{1.7241/(-0.0347×X2+0.6569×X+1.7)}×100……(2)。
10.根据权利要求7~9中任一项所述的电子设备用铜合金,其特征在于,
所述电子设备用铜合金的杨氏模量为125GPa以下,0.2%屈服强度σ0.2为400MPa以上。
11.一种电子设备用铜合金的制造方法,其特征在于,
所述电子设备用铜合金的制造方法制造出权利要求7~10中任一项所述的电子设备用铜合金,所述电子设备用铜合金的制造方法具备如下工序:
精轧制工序,在该工序中,将铜材轧制成预定形状,所述铜材为以3.3原子%以上6.9原子%以下的范围含有Mg,且分别以0.001原子%以上0.15原子%以下的范围至少含有Cr及Zr中的任一种或两种,并且剩余部分实际上为Cu及不可避免的杂质的组成;及
精热处理工序,该工序在所述精轧制工序之后实施热处理,
在所述精热处理工序中,以超过200℃且800℃以下的范围实施热处理,
之后,以200℃/min以上的冷却速度将加热的所述铜材冷却至200℃以下。
12.一种电子设备用铜合金塑性加工材料,其特征在于,
所述电子设备用铜合金塑性加工材料由权利要求7~10中任一项所述的电子设备用铜合金构成,
与轧制方向平行的方向上的杨氏模量E为125GPa以下,与轧制方向平行的方向上的0.2%屈服强度σ0.2为400MPa以上。
13.一种电子设备用铜合金塑性加工材料,其特征在于,
所述电子设备用铜合金塑性加工材料由权利要求7~10中任一项所述的电子设备用铜合金构成,
用作构成电子设备用组件的铜材,所述电子设备用组件为端子、连接器、继电器或引线框架。
14.一种电子设备用组件,其特征在于,
所述电子设备用组件由权利要求7~10中任一项所述的电子设备用铜合金构成。
CN201280022058.5A 2011-06-06 2012-05-30 电子设备用铜合金、电子设备用铜合金的制造方法、电子设备用铜合金塑性加工材料、及电子设备用组件 Active CN103502487B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2011-126510 2011-06-06
JP2011126510A JP5703975B2 (ja) 2011-06-06 2011-06-06 電子機器用銅合金、電子機器用銅合金の製造方法及び電子機器用銅合金圧延材
JP2011243870A JP5903839B2 (ja) 2011-11-07 2011-11-07 電子機器用銅合金、電子機器用銅合金の製造方法、電子機器用銅合金塑性加工材および電子機器用部品
JP2011-243870 2011-11-07
PCT/JP2012/063933 WO2012169405A1 (ja) 2011-06-06 2012-05-30 電子機器用銅合金、電子機器用銅合金の製造方法、電子機器用銅合金塑性加工材、及び電子機器用部品

Publications (2)

Publication Number Publication Date
CN103502487A CN103502487A (zh) 2014-01-08
CN103502487B true CN103502487B (zh) 2015-09-16

Family

ID=47295971

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280022058.5A Active CN103502487B (zh) 2011-06-06 2012-05-30 电子设备用铜合金、电子设备用铜合金的制造方法、电子设备用铜合金塑性加工材料、及电子设备用组件

Country Status (4)

Country Link
US (1) US20140096877A1 (zh)
CN (1) CN103502487B (zh)
TW (1) TWI513833B (zh)
WO (1) WO2012169405A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5962707B2 (ja) * 2013-07-31 2016-08-03 三菱マテリアル株式会社 電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用銅合金塑性加工材の製造方法、電子・電気機器用部品及び端子
JP5983589B2 (ja) * 2013-12-11 2016-08-31 三菱マテリアル株式会社 電子・電気機器用銅合金圧延材、電子・電気機器用部品及び端子
CN105112719A (zh) * 2015-09-08 2015-12-02 张超 一种铜合金
JP6736869B2 (ja) * 2015-11-09 2020-08-05 三菱マテリアル株式会社 銅合金素材
US11203806B2 (en) 2016-03-30 2021-12-21 Mitsubishi Materials Corporation Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relay
US11319615B2 (en) 2016-03-30 2022-05-03 Mitsubishi Materials Corporation Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relay
MX2019001825A (es) * 2016-08-15 2019-06-06 Mitsubishi Shindo Kk Aleacion de cobre de corte libre, y metodo para producir la aleacion de cobre de corte libre.
JP6828444B2 (ja) * 2017-01-10 2021-02-10 日立金属株式会社 導電線の製造方法、並びにケーブルの製造方法
KR102452709B1 (ko) * 2017-05-30 2022-10-11 현대자동차주식회사 자동차 가니쉬용 합금 및 자동차용 가니쉬
WO2019189558A1 (ja) 2018-03-30 2019-10-03 三菱マテリアル株式会社 電子・電気機器用銅合金、電子・電気機器用銅合金板条材、電子・電気機器用部品、端子、及び、バスバー
JP6780187B2 (ja) 2018-03-30 2020-11-04 三菱マテリアル株式会社 電子・電気機器用銅合金、電子・電気機器用銅合金板条材、電子・電気機器用部品、端子、及び、バスバー
JP6863409B2 (ja) * 2018-12-26 2021-04-21 三菱マテリアル株式会社 銅合金板、めっき皮膜付銅合金板及びこれらの製造方法
JP2020111789A (ja) * 2019-01-11 2020-07-27 三菱マテリアル株式会社 銅合金材

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2164065A (en) * 1937-09-15 1939-06-27 Mallory & Co Inc P R Copper chromium magnesium alloy
JP2661462B2 (ja) * 1992-05-01 1997-10-08 三菱伸銅株式会社 繰り返し曲げ性にすぐれた直経:0.1mm以下のCu合金極細線
JPH0718354A (ja) * 1993-06-30 1995-01-20 Mitsubishi Electric Corp 電子機器用銅合金およびその製造方法
JP3904118B2 (ja) * 1997-02-05 2007-04-11 株式会社神戸製鋼所 電気、電子部品用銅合金とその製造方法
JPH11199954A (ja) * 1998-01-20 1999-07-27 Kobe Steel Ltd 電気・電子部品用銅合金
US6181012B1 (en) * 1998-04-27 2001-01-30 International Business Machines Corporation Copper interconnection structure incorporating a metal seed layer
CN101265536A (zh) * 2007-03-12 2008-09-17 北京有色金属研究总院 高强高导铜合金及其制备方法
JP2009242814A (ja) * 2008-03-28 2009-10-22 Furukawa Electric Co Ltd:The 銅合金材およびその製造方法
CN101333610B (zh) * 2008-08-05 2010-07-14 中南大学 超高强、高导电CuNiSi系弹性铜合金及其制备方法
CN101724759B (zh) * 2009-12-15 2011-03-16 北京科技大学 一种制备纳米颗粒强化的Cu-Cr-Zr-Mg系铜合金的方法
JP4516154B1 (ja) * 2009-12-23 2010-08-04 三菱伸銅株式会社 Cu−Mg−P系銅合金条材及びその製造方法
CN102822363B (zh) * 2010-05-14 2014-09-17 三菱综合材料株式会社 电子器件用铜合金及其制造方法及电子器件用铜合金轧材

Also Published As

Publication number Publication date
TW201313924A (zh) 2013-04-01
WO2012169405A1 (ja) 2012-12-13
CN103502487A (zh) 2014-01-08
TWI513833B (zh) 2015-12-21
US20140096877A1 (en) 2014-04-10

Similar Documents

Publication Publication Date Title
CN103502487B (zh) 电子设备用铜合金、电子设备用铜合金的制造方法、电子设备用铜合金塑性加工材料、及电子设备用组件
CN102822363B (zh) 电子器件用铜合金及其制造方法及电子器件用铜合金轧材
CN103842551B (zh) 电子设备用铜合金、电子设备用铜合金的制造方法、电子设备用铜合金轧材及电子设备用组件
CN103842531A (zh) 电子设备用铜合金、电子设备用铜合金的制造方法、电子设备用铜合金塑性加工材料及电子设备用组件
TWI465591B (zh) Cu-Ni-Si alloy and its manufacturing method
CN103069025B (zh) 铜合金板材及其制造方法
JP5712585B2 (ja) 電子機器用銅合金、電子機器用銅合金の製造方法及び電子機器用銅合金圧延材
JP4857395B1 (ja) Cu−Ni−Si系合金及びその製造方法
EP2415887B1 (en) Cu-co-si copper alloy for use in electronics, and manufacturing method therefor
JP6696769B2 (ja) 銅合金板材及びコネクタ
TWI582249B (zh) Copper alloy sheet and method of manufacturing the same
TWI429768B (zh) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
KR101917416B1 (ko) 전자 재료용 Cu-Co-Si 계 합금
CN104903478A (zh) 电子电气设备用铜合金、电子电气设备用铜合金薄板、电子电气设备用导电元件及端子
CN104870672A (zh) 电子电气设备用铜合金、电子电气设备用铜合金薄板、电子电气设备用导电元件及端子
CN104919067A (zh) 电子电气设备用铜合金、电子电气设备用铜合金薄板、电子电气设备用导电元件及端子
TWI467035B (zh) Carbene alloy and its manufacturing method
JP6155407B1 (ja) 電子・電気機器用銅合金、電子・電気機器用部品、端子、及びバスバー
JP6821290B2 (ja) 電子部品用Cu−Ni−Co−Si合金
TW201317371A (zh) 卡遜合金及其製造方法
TWI432587B (zh) Cu-Co-Si-Zr alloy and its manufacturing method
JP4987155B1 (ja) Cu−Ni−Si系合金及びその製造方法
JP6246174B2 (ja) 電子部品用Cu−Co−Ni−Si合金
JP6762453B1 (ja) 銅合金板材およびその製造方法
JP4653239B2 (ja) 電気電子機器用銅合金材料および電気電子部品

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant