CN103492343A - 碱金属铌酸盐基压电材料及其制备方法 - Google Patents

碱金属铌酸盐基压电材料及其制备方法 Download PDF

Info

Publication number
CN103492343A
CN103492343A CN201280009879.5A CN201280009879A CN103492343A CN 103492343 A CN103492343 A CN 103492343A CN 201280009879 A CN201280009879 A CN 201280009879A CN 103492343 A CN103492343 A CN 103492343A
Authority
CN
China
Prior art keywords
piezoelectric
preparation
value
tio
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201280009879.5A
Other languages
English (en)
Inventor
小林亮介
三谷明洋
大场佳成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011035782A external-priority patent/JP5830252B2/ja
Priority claimed from JP2011256486A external-priority patent/JP2013110362A/ja
Application filed by FDK Corp filed Critical FDK Corp
Publication of CN103492343A publication Critical patent/CN103492343A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • C04B35/497Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides
    • C04B35/499Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides containing also titanates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8542Alkali metal based oxides, e.g. lithium, sodium or potassium niobates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/093Forming inorganic materials
    • H10N30/097Forming inorganic materials by sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种碱金属铌酸盐基压电材料,其具有通式{(K1-aNaa)1-bLib}(Nb1-c-dTacSbd)O3+x mol%BanTiO3+y mol%CuO,其中0≤a≤0.9,0≤b≤0.3,0<c≤0.5,0≤d≤0.1,0.5≤x<10.0,0.1≤y≤8.0,和0.9≤n≤1.2。

Description

碱金属铌酸盐基压电材料及其制备方法
技术领域
本发明涉及碱金属铌酸盐基压电材料及其制备方法。
背景技术
PZT(PbTiO3-PbZrO3)基陶瓷为众所周知的压电材料。PZT具有卓越的压电性能,例如机电耦合系数和压电常数;PZT广泛地用于如传感器,超声波电动机,和过滤器等设备的压电元件。
附带地,由于环境要求,近年来急迫的需要无铅产物。由于PZT用于工业产品,不言而喻,需要用另一种不含铅的压电材料替换作为含铅的压电材料的PZT。
不含铅的压电材料(无铅压电材料)可以包括:钛酸钡(BanTiO3)基压电材料;碱金属铌酸盐基压电材料,例如具有通式KxNa(1-x)NbO3的化合物(KNN)和具有通式(K1-aNaa)1-bLib(Nb1-c-dTacSbd)O3的化合物;及类似物。应该注意的是以下[PTL1]描述了含有作为主要成分的KNN的压电材料(下文称为KNN基压电材料)。[PTL1]公开了一种压电材料,其中KNN的x值为0.02≤x≤0.5,至少Fe2O3或Co2O3之一添加至KNN。以下描述的[NPL1]和[NPL2]详细描述了压电材料的常用技术。
引文列表
专利文献
[PTL1]Japanese Examined Patent Publication No.56-12031[Non Patent Literature].
[NPL1]FDK Corporation,“piezoelectric ceramics(technical document)”,[online],[search result on February9,2011],Internet<URL:http://www.fdk.co.jp/cyber-j/pdf/BZ-TEJ001.pdf>.
[NPL2]NEC TOKIN Corporation,“piezoelectric ceramics Vol.04”,[online],[search result on January18,2011],Internet<URL:http://www.nec-tokin.com/product/piezodevice1/pdf/piezodevice_j.pdf>
发明内容
技术问题
本发明考虑到上述环境背景,试图改善碱金属铌酸盐基压电材料的性能。发明人已经发明了具有改善的耐湿性的的KNN基压电材料,同时保持实际使用的压电性能,并为此提交了专利申请(日本专利申请号2010-39062:在先发明1)。
同样,除了KNN,对于其他碱金属铌酸盐基压电材料,发明人研究了组成或额外物质;具体来说,发明人研究了具有通式(K1-aNaa)1-bLib(Nb1-c-dTacSbd)O3的化合物的耐湿性。在他们的研究过程中,发明人发现使用的合适百分比组成的化合物(在通式中为a-b的值)及玻璃的加入。因此,发明人发明了一种压电材料,该压电材料具有改善的耐湿性,同时保持实际使用的压电性能,并提交了专利申请(日本专利申请号2010-57735:在先发明2,日本专利申请号2010-161855:在先发明3)。
因此,本发明一方面提供环境友好的压电材料,其压电性能优良且均衡。
附带地,发明人正在全心全意地研究该主题,以进一步改善碱金属铌酸盐基压电材料的压电性能(机电耦合系数Kp,机械品质因数Qm,和相对介电常数εr)。在他们的研究中,发明人发现,对于碱金属铌酸盐基压电材料,很难同时做到以下事情:改善压电性能(机电耦合系数Kp,机械品质因数Qm,和相对介电常数εr);并均衡所有这些压电性能。具体地,发现Qm和εr相互成反比关系,且根据在先发明1-3的技术的扩展,进一步同时改善Qm和εr是非常困难的。
例如,在先发明2和3为碱金属铌酸盐基压电材料,其中作为它们的压电性能来源的物质(下文中称为基本材料)为具有通式{(K1-aNaa)1-bLib}(Nb1-c-dTacSbd)O3的化合物,且玻璃和铜(Cu)的氧化物添加至该基本材料。根据这些发明的压电材料比传统碱金属铌酸盐基压电材料具有更优异的性能,但是很难同时改善机械品质因数Qm和相对介电常数εr。
因此,发明人研究主要的基本材料是BanTiO3的压电材料,它是一种不同于碱金属铌酸盐基压电材料的无铅压电材料。但是,该压电材料具有实际应用的主要问题,因为BanTiO3具有低的居里温度,且在约100℃下消磁,失去压电性能。此外,由于它的烧结温度约为1300℃,这使得很难产生致密的结构。这种机械性弱点造成低的生产率,因为该材料被加工至一定形状时,容易破损。因此,本发明一方面旨在提供碱金属铌酸盐基压电材料,其压电性能非常优越且具有很好的均衡性。同样,本发明另一方面在于提供制备该压电材料的方法。
如上所述,虽然碱金属铌酸盐基压电材料和BanTiO3都是被预期为可用的无铅压电材料,但是这两种压电材料都有需要解决的问题。因此,发明人考虑含有碱金属铌酸盐基压电材料和BanTiO3的压电材料可弥补它们的缺点,从而能够进一步改善Qm和εr,并防止生产率下降。然后,发明人研究压电材料的以下设置,以及该压电材料的制备方法:成为压电材料的化合物;该化合物的组成百分比;额外物质的类型和含量;等等。然后,发明人得到本发明。
技术方案
本发明涉及具有通式{(K1-aNaa)1-bLib}(Nb1-c-dTacSbd)O3+x mol%BanTiO3+y mol%CuO的压电材料,其中0≤a≤0.9、0≤b≤0.3、0<c≤0.5、0≤d≤0.1、0.5≤x<10.0、0.1≤y≤8.0、和0.9≤n≤1.2。
同样地,本发明涉及制备具有通式{(K1-aNaa)1-bLib}(Nb1-c-dTacSbd)O3+x mol%BanTiO3+ymol%CuO的压电材料的方法,其中0≤a≤0.9,0≤b≤0.3,0<c≤0.5,0≤d≤0.1,0.5≤x<10.0,0.1≤y≤8.0,和0.9≤n≤1.2,
该方法包括:
将溶剂与作为压电材料的化合物原材料混合;
在低于烧结温度的温度下,初步加热所述溶剂与所述化合物原材料的混合物;
使加入粘合剂的经初步加热的混合物形成一定形状;和
在氧气环境中,加热烧结成型产品。
进一步地,本发明还涉及用于制备碱金属铌酸盐基压电材料的方法,其中该压电材料含有具有通式为KxNa(1-x)NbO3的化合物。
发明效果
根据本发明,能够提供环境友好的压电材料,其压电性能是优良且均衡的,还提供用于制备该压电材料的方法。
附图说明
图1A和1B为描述用于制备压电材料的方法的工序图。
图2为展示了具有通式(K1-aNaa)1-bLib(Nb1-c-dTacSbd)O3+x mol%BanTiO3+y mol%CuO的化合物的相对介电常数εr,机械品质因数Qm和x的关系的图,该化合物构成本发明实施例中的压电材料。
图3为展示了化合物的y值与每个相对介电常数εr和机械品质因数Qm的关系的图。
图4为展示了化合物的a值与每个相对介电常数εr和机械品质因数Qm的关系的图。
图5为展示了化合物的b值与每个相对介电常数εr和机械品质因数Qm的关系的图。
图6为展示了化合物的c值与每个相对介电常数εr和机械品质因数Qm的关系的图。
图7为展示了化合物的d值与每个相对介电常数εr和机械品质因数Qm的关系的图。
图8为展示了化合物的n值与每个相对介电常数εr和机械品质因数Qm的关系的图。
图9为展示了具有通式(K1-aNaa)1-bLib(Nb1-c-dTacSbd)O3+x mol%BanTiO3+y mol%CuO的压电材料A的TG/DTA结果的曲线,该压电材料A通过第一实施例和第二实施的方法制备。
图10为压电材料A的电子显微照片。
图11为展示压电材料的结构的示意图。
具体实施方式
本发明的技术理念
前述在先发明2和3包括具有更优良的性能的压电材料,该更优良的性能通过向通式为(K1-aNaa)1-bLib(Nb1-c-dTacSbd)O3的化合物(下文中称为基本材料)中添加玻璃和铜(Cu)的氧化物来实现。但是,发现即使向基本材料中添加铜(Cu)的氧化物,压电材料很难同时改善机械品质因数Qm和相对介电常数εr,其中在压电材料中压电性能来源的物质仅仅是基本材料。因此,虽然KNN作为基本材料,或者基本材料的一部分,但是还考虑到除了KNN之外的一种无铅压电材料,BanTiO3的使用。但是,仅烧结BanTiO3的加热温度高达约1300℃,在1300℃下烧结基本材料会导致碱性成分蒸发或分解。也就是说,如果使用BanTiO3作为基本材料,或者基本材料的一部分,那么加热温度需要不低于1300℃。在这种情况下,自然地,相对密度将降低,这导致不能产生致密的结构。这导致以下问题:破坏压电性能;在加工时,由于机械性弱点而破损。同样,由于BanTiO3具有低的居里温度,含有大致相同含量的BanTiO3作为基本材料将降低居里温度,这将导致一些问题。
发明人需要范式转变(paradigm shift),以解决前述问题。因此,发明人考虑含有基本材料和BanTiO3的压电材料可以弥补它们的缺点,从而能够进一步改善Qm和εr的性能,并防止生产率的下降。然后,当发明人实现在先发明2和3,并通过基于上述考虑的后续研究时,通过获得的知识,发明人实现了本发明。
压电材料
本发明的压电材料为一种具有经验式{(K1-aNaa)1-bLib}(Nb1-c-dTacSbd)O3+x mol%BanTiO3+ymol%CuO的材料,其中0≤a≤0.9,0≤b≤0.3,0<c≤0.5,0≤d≤0.1,0.5≤x≤7.0,0.9≤n≤1.2,和0.1≤y≤8.0。已经确定该压电材料(下文中称为压电材料A)具有均衡的优异的压电性能。
制备压电材料的步骤
本发明实施例的压电材料A通过烧结混合物而获得,在混合物中,添加剂加入以下原材料:作为压电性能来源的基本材料和BanTiO3。制备具有以下不同组成的多个压电材料作为样品:基本材料的组成百分比(在以上通式中a至d的值);BanTiO3的含量(x值);其他额外物质的含量;等等。该多个压电材料之一为本发明实施例的压电材料A。注意到使用CuO作为添加剂,因为它在在先发明2和3中的性能。考虑到BanTiO3的烧结温度和/或居里温度的上述问题,含有基本相同含量的BanTiO3作为基本材料的压电材料可导致以下问题:由于其机械性弱点导致的加工过程中压电材料的破损;以及居里温度的降低。因此,希望主要成分为基本材料,而BanTiO3作为一种添加剂(帮助剂)改善基本材料,例如CuO的性能。
一般的压电材料为陶瓷,且基本通过烧结混合物来获得,在混合物中,向作为压电性能来源的物质中添加添加剂。根据第二实施例的制备方法为遵从该基本步骤。但是,在第二实施例的制备方法中,通过使用碱金属铌酸盐基压电材料和采用合适的烧结条件,能够进一步改善压电材料A的性能。
图1A和B分别展示了第一实施例的制备方法的步骤,和第二实施例的制备方法的步骤。
根据第一实施例的制备方法
在如图1A所示的第一实施例的制备方法中,称量并混合一定量的压电材料A的原材料(s1),将该原材料和作为溶剂的醇(例如乙醇)浸入球磨机中并混合(S2)。从而,该压电材料A的原材料被混合并研磨成粉末。然后,在空气中,在950℃下,初步加热该混合物1-10小时(S3)。
接下来,将通过初步加热获得的粉末混合至液体中24小时,在将混合物加入作为粘合剂的PVA溶液之后,混合并研磨该混合物;从而,具有合适颗粒尺寸的粉末被造粒(S4)。该造粒的粉末被塑形至所需形状(S5)。然后,将该成形产物放置在一定温度(例如,在300-500℃的温度)下,并从该产物中去除粘合剂,然后,在空气中,温度900-1200℃下,加热该产物1小时(S7),以获得压电陶瓷。将该压电陶瓷加工成直径Φ大于或等于15mm,厚度t为1.0mm的圆盘(S8),并利用银对圆盘的两个表面进行电极化(S9)。最后,在硅油中,120℃,用4Kv/mm的电场中极化(poled)该压电陶瓷30分钟,以制备压电材料(s10)。
根据第二实施例的制备方法
另一方面,在如图1B所示的第二实施例的制备方法中,在加热工序中,在氧气环境中加热该混合物(S17),这不同于第一实施例的制备方法。在第一实施例的制备方法中,加热工序(S7)在空气中进行。除了加热工序(S17),其他工序(S11)至(S16)和(S18)至(S20)与第一实施例制备方法中的工序(S1)至(S6)和(S8)至(S10)相同。在第一和第二实施例的制备方法中,根据实施例制备具有不同组成(a至d、x、y和n的值)的各种压电材料A。应该注意到,同时制备a至d、x、y和n值在在先发明3界定的范围之外的样品。
样品的组成
本发明基于的技术理念为向基本材料(压电物质)中添加CuO和BanTiO3(帮助剂)弥补缺点,以从整体上改善各种压电性能。但是,如果它们的组成百分比和BanTiO3的n值确定不慎,那么这将不能弥补它们的缺点,并使它们的优点消失。不言而喻,关注基本材料的组成是有必要的。因此,制备30份(编号1至30)具有通式{(K1-aNaa)1-bLib}(Nb1-c-dTacSbd)O3+xmol%BanTiO3+y mol%CuO的压电材料的样品,其中a至d、x、y、和n值不同。测定每种样品的压电性能。
下表1展示了制备的样品(编号1至30)的组成。
表1
Figure BDA0000370063550000071
在该表中,超出在先发明3的组成界定的范围的值用“*”标记出。
性能的评价
考虑到如表1所示的样品编号1至29,在第一和第二实施例的制备方法中总共制备了具有不同组成的58份样品。将所述制备的样品放置在空气中24小时。然后,测定每个样品的介电常数ε33 T,并通过等式εr=ε33 T0获得相对介电常数εr。同样,测定机电耦合系数Kp(%)和机械品质因数Qm(%)。然后,利用以下量化标准确定每个样品的一致性(conformance):εr≥500,Kp≥25,和Qm≥500。
表2展示了测试结果。
表2
Figure BDA0000370063550000081
在仅仅含有基本材料,不含BanTiO3和CuO的编号为30的样品中,其εr因子非常高,而Qm因子非常低。如表所示编号1的样品的压电性能,其中仅仅CuO加入基本材料中,和编号20的样品,其中仅仅BanTiO3添加至基本材料中,CuO倾向于显著增加Qm,BanTiO3倾向于在增加Qm的同时保持εr。
详细地研究编号1至5的样品的压电性能和一致性之间的关系,这些样品的组成除了代表BanTiO3含量的x值不同之外,其他是相同的。编号2至4的样品,其x值分别为0.5,3.0,和7.0%,满足标准。在x=0的压电材料中,即,未添加BanTiO3的材料中,Qm比标准大3倍,εr约等于标准的一半;所以,该压电材料是不实用的。在x=10.0的编号5的样品中,εr充分达到标准,但是Qm=405,为标准的80%;编号5的样品不满足标准。但是,与未加入BanTiO3的编号1的样品相比,编号5的样品的Qm得到改善;其Qm值时实际使用中可接受的。因此,可接受的x值的范围可以是0.5≤x<10.0。根据编号26至29的样品,n值可以是0.9≤n≤1.2。根据编号20至25的样品,表示CuO含量的y值的范围可以是0.1≤y<10.0。
因此,发现虽然BanTiO3可增加εr,但是加入大量的BanTiO3会降低Kp和Qm。同时,确定了加入不适当的量的CuO会降低Kp和Qm,而加入合适量的CuO将Qm维持在高的值。
另一方面,考虑到表示基本材料的组成的a和b值,a=0.95的编号为8的样品在两个压电性能上不满足标准:Kp和εr。a=0和0.9的编号为6和7的样品满足标准。也就是说,可以说a值的合适的范围为0≤a≤0.9。类似的,b至d值的合适范围为0≤b≤0.4,0<c≤0.1,和0≤d≤0.1。从与a至d值对应的压电性能发现以下趋势:基本材料中大量的Na或Li降低了εr和Kp因子;少量的Ta降低了εr因子;大量的Ta降低了Kp和Qm因子;大量的Sb降低了Kp和Qm因子。
如上所述,根据本发明实施例的压电材料A为具有通式{(K1-aNaa)1-bLib}(Nb1-c-dTacSbd)O3+xmol%BanTiO3+y mol%CuO的样品,其中0.5≤x<10.0,0.5≤y<10.0,0≤a≤0.9,0≤b≤0.4,0<c≤0.1,0≤d≤0.1,和0.9≤n≤1.2。进一步地,满足上述范围的更优选的压电材料为εr,Kp,和Qm是εr≥500,Kp≥25,和Qm≥500的压电材料。
压电材料的优化组成
进一步考虑如表2所示的样品的压电性能,可以识别出样品(编号3和22)具有显著有益的压电性能εr≥800,Kp≥25,和Qm≥800。具有这种水平的压电性能使得能够用于压电设备,这种压电设备仅仅使用PZT,例如超声波电动机。所以,得到使εr≥800,Kp≥25,和Qm≥800(最佳范围)的x、y、a至d,和n值。
具体地,x,y,a至d,和n值的最佳范围通过在表2中离散的x、y、a至d,和n值之间进行插值(interpolating)来获得。例如,为了获得x值的最佳范围,根据x的离散值和编号为1至5的样品的εr和Qm离散值的关系,获得表示x和每个εr和Qm关系的拟合曲线。除了x值外,y、a至d,和n值设置为y=0.5,a=0.5,b=0.04,c=0.1,d=0.04,和n=1.0,作为参考值,该参考值为合适范围的中间值。图2中的曲线100展示了x值和每个εr,Qm,和Kp的关系。从展示x与εr关系和展示x与Qm关系的曲线100中的两个拟合曲线(100a和100b)得到实现εr≥800和Qm≥800的x值,即,2.0≤x≤4.0。在图中,实现εr≈800和Qm≈800的x值用虚线表示。如拟合曲线100c,展示了x值与Kp的关系,在x和y值范围内的Kp满足标准Kp≥25。
类似地,获得y、a至d、和n值的最佳范围。例如,从编号为3和20至25的样品的压电性能足以获得y值的最佳范围。也就是说,对于离散值y,使用以下参考值:x=3.0,a=0.5,b=0.04,c=0.1,d=0.04,和n=1.0。然后,从展示y值和每个以下因子:εr和Qm的关系的拟合曲线,获得该值的最佳范围。图3的曲线101展示了y值和每个εr,Qm,和Kp的关系。从如图3所示的拟合曲线(101a至101c)获得可靠地实现εr≥800,Qm≥800,和Kp≥25的值;因此,1.0≤y≤3.0。
类似地,足以获得a至n值的最佳范围。在图4至8中,曲线(102-106)展示了每个a至d和n值与每个εr,Qm,和Kp之间的关系。从如图所示的拟合曲线(102a至106a,102b至106b,和102c至106c)获得所述值的最佳范围:0.35≤a≤0.65,0.03≤b≤0.15,0.05≤c≤0.25,0≤d≤0.01or0.03≤d≤0.06,和0.95≤n≤1.05。
表2展示了通过第一实施例的制备方法制备的样品的εr,Kp(%)和Qm(%)的测量值;此外,表2展示了通过第二实施例的制备方法制备的样品的压电性能(εr,K,和Qm)的性能变化率(Δεr,ΔK,和ΔQm)。进一步地,在表2中,超出在先发明3界定的范围的组成用“*”标记出。
下面以介电常数εr为例,描述性能变化率。将通过第一实施例的制备方法制备的、具有一定组成的压电材料A的介电常数定义为εr1,将通过第二实施例的制备方法制备的、具有相同组成的压电材料A的介电常数定义为εr2,通过以下等式获得该介电常数的性能变化率Δεr(%)。
Δεr={(εr2-εr1)/εr1}×100
如果与第一实施例的制备方法相比,性能变坏,那么εr2-εr1<0。也就是说,性能变化率为负值。如表2所示的结果,无论其组成如何,通过第二实施例的制备方法制备的所有的样品的压电性能都好于通过第一实施例的制备方法制备的样品的压电性能。
性能的改善
如表2所示的结果,可以确认在氧气环境中加热样品,改善了压电材料A的性能。关于上述改善的原因之一,可能是由于进一步提高的结晶。因此,在图1的成形工序(S5,S15)之后,在一定加热速率下,升高温度加热压电材料A的原材料。在该加热工序中,进行已知的TG/DTA(热重法/差热分析),以同时测定以下事项:从初始重量的重量变化(%);和热力差异(参考材料与压电材料A之间的温差(℃))。图9展示了TG/DTA结果。如图所示,展示在氧气环境中加热的性能的曲线用实线表示,展示在空气中加热的性能的曲线用虚线表示。加热温度约为1100℃。
如图9所示的差热特性曲线(201和202),伴随结晶的放热反应发生在约750℃,该放热反应峰(203和204)出现在约900℃。在氧气环境中加热的差热特性曲线101中的峰203大于在空气中加热的差热特性曲线202的峰204。放热反应的温度范围204宽于在空气中加热的温度范围205。这表明在氧气环境中加热材料可进一步促进结晶。
如差热特性曲线高于结晶温度的一侧所示,在空气中加热的差热特性曲线202中,温差的下降(decline)206出现在加热温度附近;该下降可能是由于碱性成分溶液的热量引起的吸热反应。另一方面,在氧气环境中加热的特性曲线,在加热温度附近不会出现吸热反应,这表明碱性成分包含在晶体结构中。关于重量增加的特性,在氧气环境中加热的特性曲线211中,在与伴随结晶的放热反应的峰(203和204)对应的温度附近,出现表明伴随氧化的重量增加的峰213。另一方面,对于在空气中加热的重量增加曲线212,没有出现伴随氧化的质量增加。
因此,可以考虑如下:在通过第二实施例的制备方法制备的样品中,结晶被促进,其中该样品在氧气环境中加热;伴随结晶,氧气和碱性成分被包含在晶体结构中;这使得能够利用少量的氧空位产生理想晶体结构,以改善压电性能。当测定制备的样品的密度时,确定了通过第二实施例的制备方法制备的样品的比通过第一实施例的制备方法制备的样品的密度大5-10%,且具有更致密的晶体结构。
进一步地,如表2所示,在通过第二实施例的制备方法制备的样品中,Qm性能的改善尤为显著。与第一实施例相比,一些样品(编号2和3)的Qm改善了50%或更多。通过添加CuO来改善Qm性能在在先发明3中是已知的;关于这点,可认为这种改善的原因在于通过CuO,在氧气环境中的加热促进了Qm的改善。为了分析CuO如何改善Qm的性能,通过电子显微镜观察压电材料A的晶体结构。
图10为具有一定组成的压电材料A的电子显微照片。图10A和10B分别展示了通过第一实施例的方法制备的具有一定组成的压电材料A,和通过第二实施例的方法制备的、具有相同组成的压电材料A。如图10所示的显微照片,虽然CuO(显微照片中的白色圆点)不均匀分散在通过第一实施例的制备方法制备的压电材料A中,但是CuO均匀地分散在通过第二实施例的制备方法制备的压电材料A中。可以考虑以下原因:压电材料1由晶粒(区域)10构成,晶粒10连接成如图11所示的马赛克;如果含有铜(Cu)的物质渗入区域10之间的边界(晶界)11,那么将有利于“钉扎效果”,其中每个区域的偏振方向在一定频率突然发生逆转;从而Qm得到改善。同样地,可以认为,通过第一实施例的制备方法制得的压电材料A使铜能够更均匀地分布,从而同时在每个区域10出现钉扎效果。众所周知,Qm的幅度与电子测量的共振曲线的锐度对应。区域10的均匀极化改善Qm。
支持实验例
如上所述,发现在氧气环境中加热的压电材料A比在空气中加热的压电材料A具有更优良的压电性能。现在,确定在氧气环境中加热是否可以改善其他碱金属铌酸盐基压电材料的性能。用于该支持实验例的压电材料的制备方法为在氧气环境中加热KNN基压电材料,KNN基压电材料是典型的碱金属铌酸盐基压电材料。用于支持实验例的制备方法具有与如图1B所示的相同的步骤,二者只是原材料不同。
表3展示了通过支持实验例的制备方法制备的各种压电材料的组成。
表3
Figure BDA0000370063550000121
在表3中,编号40的样品为未添加额外物质至KNN的压电材料,编号31的样品为添加CuO作为额外物质的压电材料。编号34至36的样品为根据在先发明1的压电材料,其中玻璃添加至KNN,它们具有典型组成。其他样品为将常用额外物质添加至KNN中的压电材料。关于具有如表3所示的组成的KNN基压电材料,制备在空气中加热的样品,以及在氧气环境中加热的样品。然后,测量样品的压电性能。
表4展示了测量结果。
表4
Figure BDA0000370063550000131
表4展示了KNN基压电材料的如下测量结果:通过第一实施例的制备方法制备的压电材料的压电性能(εr,Kp,和Qm)的测量结果;具有相同组成、但是通过支持实验例的制备方法制备的压电材料的压电性能(εr,K,和Qm)的性能变化率(Δεr,ΔK,和ΔQm)。如表4所示的结果,确定了在氧气环境中加热KNN基压电材料改善了KNN基压电材料的压电性能。由于KNN在其组成中比压电材料A包含更少种类的稀有金属,因此能够以比压电材料A更低的成本提供KNN基压电材料。对于含有嵌入的压电材料的设备,有时主要考虑的问题是其成本而不是其性能,反之亦然。因此,根据含有嵌入的压电材料的设备的使用和要求,使用KNN或压电材料A作为构成压电元件的压电材料是足够的。
附带地,确定了在氧气环境中解热改善了如表3所示的组成不同的(例如,一种是KNN,其是一种典型碱金属铌酸盐基压电材料,其他的为将各种添加剂加入KNN中的压电材料)所有压电材料的性能。因此,可以大胆预测在氧气环境中加热不仅能改善上述KNN或压电材料A的性能,也能改善其他碱金属铌酸盐基压电材料的性能。
工业实用性
本发明可用于使用压电性能的设备或元件中,例如压电蜂鸣器和超声波电动机。
参考符号列表
1压电材料,10晶粒(区域),11晶界,100-106压电性能曲线,201、202差热特性曲线,211、212重量增长曲线,S1、S11混合工序,S2、S12混合和研磨工序,S3、S13初步加热工序,S7、S17加热工序

Claims (5)

1.碱金属铌酸盐基压电材料,具有通式{(K1-aNaa)1-bLib}(Nb1-c-dTacSbd)O3+x mol%BanTiO3+ymol%CuO,其中0≤a≤0.9,0≤b≤0.3,0<c≤0.5,0≤d≤0.1,0.5≤x<10.0,0.1≤y≤8.0,和0.9≤n≤1.2。
2.根据权利要求1所述的碱金属铌酸盐基压电材料,其特征在于,
机电耦合系数Kp≥25%,
相对介电常数εr≥500,和
机械品质因数Qm≥500。
3.根据权利要求2所述的碱金属铌酸盐基压电材料,其特征在于,x,y,a,b,c,d,和n的值分别为2.0≤x≤4.0,1.0≤y≤3.0,0.35≤a≤0.65,0.03≤b≤0.15,0.05≤c≤0.25,0≤d≤0.01or0.03≤d≤0.06,和0.95≤n≤1.05,
相对介电常数εr≥800,以及
机械品质因数Qm≥800。
4.用于制备具有通式{(K1-aNaa)1-bLib}(Nb1-c-dTacSbd)O3+x mol%BanTiO3+y mol%CuO的碱金属铌酸盐基压电材料的方法,其中0≤a≤0.9,0≤b≤0.3,0<c≤0.5,0≤d≤0.1,0.5≤x<10.0,0.1≤y≤8.0,和0.9≤n≤1.2,
所述方法包括:
将溶剂与作为压电材料的化合物原材料混合;
在低于烧结温度的温度下,初步加热所述溶剂与所述化合物原材料的混合物;
使加入有粘合剂的、经初步加热的混合物形成一定形状;和
在氧气环境下,加热烧结成型产品。
5.用于制备权利要求4所述的碱金属铌酸盐基压电材料的方法,其特征在于,该压电材料含有具有通式KxNa(1-x)NbO3的化合物。
CN201280009879.5A 2011-02-22 2012-02-14 碱金属铌酸盐基压电材料及其制备方法 Pending CN103492343A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2011-035782 2011-02-22
JP2011035782A JP5830252B2 (ja) 2011-02-22 2011-02-22 圧電材料
JP2011256486A JP2013110362A (ja) 2011-11-24 2011-11-24 ニオブ酸アルカリ系圧電材料の製造方法
JP2011-256486 2011-11-24
PCT/JP2012/053384 WO2012114938A1 (ja) 2011-02-22 2012-02-14 ニオブ酸アルカリ系圧電材料及びニオブ酸アルカリ系圧電材料の製造方法

Publications (1)

Publication Number Publication Date
CN103492343A true CN103492343A (zh) 2014-01-01

Family

ID=46720720

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280009879.5A Pending CN103492343A (zh) 2011-02-22 2012-02-14 碱金属铌酸盐基压电材料及其制备方法

Country Status (5)

Country Link
US (1) US9590168B2 (zh)
CN (1) CN103492343A (zh)
DE (1) DE112012000933B4 (zh)
GB (1) GB2503141B (zh)
WO (1) WO2012114938A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107353002A (zh) * 2017-08-10 2017-11-17 内蒙古科技大学 可逆且荧光可控的光致变色压电材料及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6326198B2 (ja) * 2012-12-11 2018-05-16 Fdk株式会社 圧電材料
CN110494999B (zh) * 2017-03-28 2023-06-20 Tdk株式会社 压电组合物及压电元件
CN110041073B (zh) * 2019-05-31 2021-11-23 河南科技大学 一种铌酸钾钠陶瓷的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1733650A (zh) * 2004-06-17 2006-02-15 株式会社电装 晶粒取向陶瓷及其制造方法
CN1968910A (zh) * 2005-04-28 2007-05-23 株式会社村田制作所 压电陶瓷组合物和压电陶瓷电子部件
CN101024574A (zh) * 2007-01-30 2007-08-29 合肥工业大学 铋基钙钛矿替代的铌酸钾钠系无铅压电陶瓷及其制备方法
CN101115694A (zh) * 2005-04-28 2008-01-30 株式会社村田制作所 压电陶瓷组合物及该压电陶瓷组合物的制造方法以及压电陶瓷电子部件
CN101549991A (zh) * 2008-03-31 2009-10-07 Tdk株式会社 压电陶瓷及使用该压电陶瓷的压电元件
JP2009242166A (ja) * 2008-03-31 2009-10-22 Tdk Corp 圧電磁器及びその製造方法、並びに当該圧電磁器を用いた圧電素子
WO2010128647A1 (ja) * 2009-05-08 2010-11-11 太陽誘電株式会社 圧電セラミックスおよびその製造方法ならびに圧電デバイス

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612031B2 (zh) 1973-01-30 1981-03-18
JP5264673B2 (ja) 2009-01-12 2013-08-14 株式会社デンソー 圧電セラミックス、その製造方法、積層型圧電素子、及びその製造方法
JP5707047B2 (ja) 2010-03-15 2015-04-22 Fdk株式会社 圧電材料、および圧電材料の製造方法
JP5588771B2 (ja) 2010-07-16 2014-09-10 Fdk株式会社 圧電材料、および圧電材料の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1733650A (zh) * 2004-06-17 2006-02-15 株式会社电装 晶粒取向陶瓷及其制造方法
CN1968910A (zh) * 2005-04-28 2007-05-23 株式会社村田制作所 压电陶瓷组合物和压电陶瓷电子部件
CN101115694A (zh) * 2005-04-28 2008-01-30 株式会社村田制作所 压电陶瓷组合物及该压电陶瓷组合物的制造方法以及压电陶瓷电子部件
CN101024574A (zh) * 2007-01-30 2007-08-29 合肥工业大学 铋基钙钛矿替代的铌酸钾钠系无铅压电陶瓷及其制备方法
CN101549991A (zh) * 2008-03-31 2009-10-07 Tdk株式会社 压电陶瓷及使用该压电陶瓷的压电元件
JP2009242166A (ja) * 2008-03-31 2009-10-22 Tdk Corp 圧電磁器及びその製造方法、並びに当該圧電磁器を用いた圧電素子
WO2010128647A1 (ja) * 2009-05-08 2010-11-11 太陽誘電株式会社 圧電セラミックスおよびその製造方法ならびに圧電デバイス

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107353002A (zh) * 2017-08-10 2017-11-17 内蒙古科技大学 可逆且荧光可控的光致变色压电材料及其制备方法

Also Published As

Publication number Publication date
WO2012114938A1 (ja) 2012-08-30
GB2503141B (en) 2019-07-31
DE112012000933B4 (de) 2023-08-31
GB2503141A (en) 2013-12-18
DE112012000933T5 (de) 2014-01-09
US9590168B2 (en) 2017-03-07
US20140077119A1 (en) 2014-03-20
GB201315672D0 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
George et al. Synthesis and microwave dielectric properties of novel temperature stable high Q, Li2ATi3O8 (A= Mg, Zn) ceramics
Schader et al. Influence of uniaxial stress on the ferroelectric-to-paraelectric phase change in barium titanate
KR101235434B1 (ko) 압전 세라믹 조성물 및 이것을 이용한 압전 소자
CN103492343A (zh) 碱金属铌酸盐基压电材料及其制备方法
Ivetić et al. Structure, electrochemical impedance and Raman spectroscopy of lithium-niobium-titanium-oxide ceramics for LTCC technology
Verma et al. Influence of calcination and sintering temperature on the microstructure, dielectric, ferroelectric and piezoelectric properties of the lead-free KNN ceramics
Sahoo et al. Compositional induced structural phase transitions in (1− x)(K0. 5Na0. 5) NbO3–x (Ba0. 5Sr0. 5) TiO3 ferroelectric solid solutions
JP4524411B2 (ja) 誘電体磁器組成物
Jiang et al. Enhanced electrical properties and good thermal stability in K 0.48 Na 0.52 NbO 3–LiNbO 3–BiAlO 3 lead-free piezoceramics
Kumar et al. Evolution of relaxor properties in lanthanum (La) doped barium zirconate titanate
Krupska-Klimczak et al. An overview of some nonpiezoelectric properties of BaTiO3 ceramics doped by Eu ions
Rai et al. Effect of Fe and Mn doping at B-site of PLZT ceramics on dielectric properties
Sumang et al. Influence of sintering temperature on crystal structure, microstructure and electrical properties of BNT-BKT-BZT piezoelectric ceramic
Yang et al. Effects of Non‐Stoichiometry on the Microstructure, Oxygen Vacancies, and Piezoelectric Properties of CuTa 2 O 6‐Doped NKN Ceramics
JP5526422B2 (ja) Kfを含有するチタン酸バリウム系結晶の圧電体
Deshpande et al. Effect of Li2O-B2O3-SiO2-Nb2O5 glass addition on dielectric and ferroelectric properties of Lithium Niobate ceramics
Qian et al. Structural and electrical properties of 0.69 Pb (Mg1/3Nb2/3) O3-0.31 PbTiO3 ceramics prepared by partial oxalate route via different processings
Dechakupt et al. Electrical and aging properties of doped barium titanate ceramics
Kruea-In et al. Dielectric Characteristics and Tunability of Barium Zirconium Titanate Ceramics Prepared by Two-Step Sintering Method
Czaja et al. The influence of technological conditions on dielectric and optical properties of K0. 5Bi0. 5TiO3 ceramics
Wu et al. Effect of glass additive on microstructure and dielectric properties of SrTiO3 ceramics
Li et al. Microwave dielectric properties and low-fire processing of Ca0. 244Li0. 3Nd0. 404Ti0. 96Al0. 02Nb0. 02O3 ceramics doped with BZLBS
Zhou et al. Structural Transitions and Microwave Dielectric Properties of (Ba, Sr) 2 Ln SbO6 (Ln= La, Pr, Nd, Sm, Gd, Dy) Double Perovskites
Ogawa et al. Dielectric and piezoelectric properties of (1-x)(K0. 474Na0. 474Li0. 052)(Nb0. 948Sb0. 052) O3-x Ba M O3 (M= Ti or Zr) ceramics
Tumarkin et al. Composite structures BaSrTiO3/NiFe2O4 for microwave applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20140101

RJ01 Rejection of invention patent application after publication