WO2019188435A1 - 誘電体組成物および電子部品 - Google Patents

誘電体組成物および電子部品 Download PDF

Info

Publication number
WO2019188435A1
WO2019188435A1 PCT/JP2019/010904 JP2019010904W WO2019188435A1 WO 2019188435 A1 WO2019188435 A1 WO 2019188435A1 JP 2019010904 W JP2019010904 W JP 2019010904W WO 2019188435 A1 WO2019188435 A1 WO 2019188435A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
dielectric composition
phase
composite oxide
film
Prior art date
Application number
PCT/JP2019/010904
Other languages
English (en)
French (fr)
Inventor
翔太 鈴木
信之 奥澤
大亮 廣瀬
大槻 史朗
和希子 佐藤
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to CN201980022603.2A priority Critical patent/CN111902883B/zh
Priority to JP2020510664A priority patent/JP7188438B2/ja
Priority to US17/042,523 priority patent/US11380482B2/en
Publication of WO2019188435A1 publication Critical patent/WO2019188435A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1254Ceramic dielectrics characterised by the ceramic dielectric material based on niobium or tungsteen, tantalum oxides or niobates, tantalates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6265Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/085Vapour deposited
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics

Definitions

  • the present invention relates to a dielectric composition and an electronic component.
  • the frequency region to be used is a high frequency region such as the GHz band.
  • Some high-frequency components such as baluns, couplers, filters, or duplexers and diplexers that combine filters that operate in such a high-frequency region use dielectric materials as resonators. Such a dielectric material is required to have low dielectric loss and good frequency selectivity in a high frequency region.
  • the number of electronic components mounted on one mobile communication device also tends to increase.
  • the size of electronic components is small. Simultaneousization is also required.
  • the dielectric material has a high relative dielectric constant in the high-frequency region. Desired.
  • Such mobile communication devices are exposed to temperature changes due to the usage environment, heat generation of parts used in the devices, and the like.
  • the capacitance of the dielectric material changes depending on the temperature, the dielectric material is required to have a small temperature dependency of the capacitance, that is, a capacitance temperature coefficient within a predetermined temperature range.
  • a dielectric material applied to a high-frequency component used in the high-frequency region is required to have a low dielectric loss, a high relative dielectric constant, and a low capacitance temperature coefficient in the high-frequency region. Since the reciprocal of the dielectric loss can be expressed as a quality factor Q value, in other words, a dielectric material having a high relative permittivity and a quality factor Q value in a high frequency region and a small capacitance temperature coefficient in a predetermined temperature range. It is desired.
  • Patent Document 1 discloses a sintered body composed of a mixture of a Bi 3 NbO 7 phase and a Bi 2 (Zn 2/3 Nb 4/3 ) O 7 phase.
  • Patent Document 2 discloses a dielectric thin film composed of a mixture of a first crystal phase having a pyrochlore crystal structure and a second crystal phase having a ⁇ -BiNbO 4 crystal structure.
  • Non-Patent Document 1 discloses a dielectric thin film represented by the composition formula (Bi 3x Zn 2-3x ) (Zn x Nb 2-x ) O 7 , where x is 0.5 or 2/3. ing.
  • the absolute value of the temperature coefficient of dielectric constant is 10 ppm or less for a sintered body in which Bi 3 NbO 7 phase and Bi 2 (Zn 2/3 Nb 4/3 ) O 7 phase are mixed at 1: 1.
  • the dielectric constant is about 100, and the dielectric quality factor Q at 1 GHz is about 1000.
  • the dielectric disclosed in Patent Document 1 is a sintered body, and in order to exhibit these dielectric characteristics, it is necessary to use a sintered body having a sufficient volume. There is a problem that the size of the applied dielectric material is too large.
  • the absolute value of the temperature coefficient of dielectric constant is 60 ppm or less for a thin film composed of a mixture of a first crystal phase having a pyrochlore crystal structure and a second crystal phase having a ⁇ -BiNbO 4 crystal structure. It is described that the relative dielectric constant at 1 Hz to 100 kHz is about 150. However, in Patent Document 2, the Q value in the high frequency region is not evaluated at all, and the dielectric characteristics in the high frequency region are not sufficient.
  • Non-Patent Document 1 a thin film represented by a composition formula (Bi 1.5 Zn 0.5 ) (Zn 0.5 Nb 1.5 ) O 7 and a composition formula Bi 2 (Zn 1/3 Nb 2). / 3 ) With respect to the thin film represented by 2 O 7 , it is described that the relative dielectric constant at 10 kHz is 150 or less and the Q value is about 250. However, Non-Patent Document 1 does not evaluate the Q value in the high frequency region, and the dielectric characteristics in the high frequency region are not sufficient.
  • the present invention is made in view of such a situation, and provides a dielectric composition having a high relative dielectric constant ⁇ r and a quality factor Q value in a high frequency region and a small absolute value of a capacity temperature coefficient Tcc in a predetermined temperature range. For the purpose.
  • an aspect of the present invention provides: [1] A dielectric composition having a composite oxide containing bismuth, zinc and niobium,
  • the dielectric composition has a crystal phase composed of a complex oxide and having a pyrochlore crystal structure, and an amorphous phase
  • a dielectric composition having a high relative dielectric constant ⁇ r and a quality factor Q value in a high frequency region and a small absolute value of a capacity temperature coefficient Tcc in a predetermined temperature range.
  • FIG. 1 is a schematic cross-sectional view of a thin film capacitor as an example of an electronic component according to the present embodiment.
  • FIG. 2 is a TEM observation image of a sample according to an example of the present invention.
  • Thin film capacitor 1.1. Overall configuration of thin film capacitor 1.2. Dielectric film 1.2.1. Dielectric composition 1.3. Substrate 1.4. Lower electrode 1.5. 1. Upper electrode 2. Manufacturing method of thin film capacitor Effect in the present embodiment 4. Modified example
  • a thin film capacitor 10 as an example of an electronic component according to the present embodiment has a configuration in which a substrate 1, a lower electrode 3, a dielectric film 5, and an upper electrode 4 are laminated in this order. have.
  • the lower electrode 3, the dielectric film 5 and the upper electrode 4 form a capacitor portion.
  • the dielectric film 5 Capacitance is exhibited, and the function as a capacitor can be exhibited. A detailed description of each component will be described later.
  • the base layer 2 is formed between the substrate 1 and the lower electrode 3 in order to improve the adhesion between the substrate 1 and the lower electrode 3.
  • the material constituting the base layer 2 is not particularly limited as long as the material can sufficiently secure the adhesion between the substrate 1 and the lower electrode 3.
  • the underlayer 2 can be made of Cr
  • the underlayer 2 can be made of Ti.
  • a protective film for blocking the dielectric film 5 from the external atmosphere may be formed.
  • the shape of the thin film capacitor is not particularly limited, but is usually a rectangular parallelepiped shape. There are no particular restrictions on the dimensions, and the thickness and length may be set appropriately according to the application.
  • the dielectric film 5 is composed of a dielectric composition according to this embodiment to be described later.
  • the dielectric film 5 is not formed of a sintered body obtained by firing a molded body obtained by molding a raw material powder of a dielectric composition, but is a thin film and is a known film formation. A dielectric deposited film formed by the method is preferred.
  • a thin film capacitor having such a dielectric film 5 exhibits a high relative dielectric constant ⁇ r (for example, 100 or more) and a high Q value (for example, 1000 or more) even in a high frequency region (for example, 2 GHz), Moreover, a good capacity temperature coefficient (for example, the absolute value of the capacity temperature coefficient is within 30 ppm / ° C.) can be exhibited.
  • ⁇ r for example, 100 or more
  • Q value for example, 1000 or more
  • a good capacity temperature coefficient for example, the absolute value of the capacity temperature coefficient is within 30 ppm / ° C.
  • the thickness of the dielectric film 5 is preferably 10 nm to 2000 nm, more preferably 50 nm to 1000 nm. If the thickness of the dielectric film 5 is too thin, the dielectric breakdown of the dielectric film 5 tends to occur easily. When dielectric breakdown occurs, the function as a capacitor cannot be exhibited. On the other hand, if the dielectric film 5 is too thick, it is necessary to widen the electrode area in order to increase the capacitance of the capacitor, and it may be difficult to reduce the size and height of the electronic film depending on the design of the electronic component. is there.
  • the Q value tends to decrease as the thickness of the dielectric decreases. Therefore, in order to obtain a high Q value, it is necessary to form a dielectric having a certain thickness, that is, a bulk dielectric.
  • the dielectric film composed of the dielectric composition according to the present embodiment can obtain a high Q value even when the thickness is very thin as described above.
  • the thickness of the dielectric film 5 is measured by excavating a thin film capacitor including the dielectric film 5 with a FIB (focused ion beam) processing apparatus and observing the obtained cross section with an SEM (scanning electron microscope). be able to.
  • FIB focused ion beam
  • the dielectric composition according to the present embodiment contains a composite oxide (Bi—Zn—Nb—O-based oxide) containing bismuth (Bi), zinc (Zn) and niobium (Nb) as a main component.
  • a main component is a component which occupies 90 mass% or more with respect to 100 mass% of dielectric compositions.
  • the dielectric composition has a crystalline phase and an amorphous phase.
  • the crystal phase has a pyrochlore crystal structure and is composed of the above complex oxide represented by the general formula A 2 B 2 O 7 .
  • the amorphous phase is considered to have the same composition as the composite oxide constituting the crystalline phase. That is, in this embodiment, both the crystal phase and the amorphous phase are composed of the above complex oxide.
  • This amorphous phase has a short-range order similar to the pyrochlore crystal structure because the atoms constituting the composite oxide are arranged so as to form a pyrochlore crystal structure, but do not reach the thermal equilibrium state. However, it is a phase composed of incomplete crystals whose atomic arrangement does not have crystal regularity.
  • the amorphous phase and the crystalline phase are composed of Bi—Zn—Nb—O-based oxides, that is, have the same composition in that they contain bismuth, zinc, niobium and oxygen. be able to.
  • the amorphous phase and the crystalline phase may have the same constituent element ratio or may be slightly shifted.
  • the region that has reached the thermal equilibrium state is the crystal phase, and has not reached the thermal equilibrium state.
  • the existing region is the above amorphous phase.
  • the present inventors have found that the crystal phase of the composite oxide has a negative capacity temperature coefficient, and the amorphous phase of the composite oxide has a positive capacity temperature coefficient. Therefore, in this embodiment, in the composite oxide, the absolute value of the capacity temperature coefficient as the dielectric composition is controlled within a predetermined range by mixing the crystal phase and the amorphous phase. Further, by using such a multiphase structure, the crystal grain boundaries are reduced, and as a result, current leakage through the crystal grain boundaries is suppressed, and the quality factor Q value can also be improved.
  • the diffraction angle 2 ⁇ Of the diffraction peak of the (222) plane that appears in the range of 27 ° to 30 ° is 0.35 to 2.0.
  • the full width at half maximum is within the above range, the absolute value of the capacitance temperature coefficient of the dielectric composition is controlled within a predetermined range, and the quality factor Q value is further improved.
  • the full width at half maximum is calculated as the spread of the peak at half the peak intensity.
  • the half width of the peak obtained by X-ray diffraction has a correlation with the order length in the structure. The shorter the order, the larger the half width, and the longer the order, the smaller the half width.
  • the dielectric composition having a peak half-value width of 0.35 or more and 2.0 or less preferably has a crystalline phase and an amorphous phase.
  • 2 ⁇ is 27 ° or more and 30 ° or less in an X-ray diffraction chart obtained by performing X-ray diffraction measurement on a dielectric composition using Cu—K ⁇ ray as an X-ray source.
  • the half width of the peak appearing in the range is 0.35 or more and 2.0 or less, it may be determined that the dielectric composition has both a crystalline phase and an amorphous phase.
  • the half width is less than 0.35, it indicates that the order is long. Therefore, when the dielectric composition is a single phase of the crystal phase and the half width is more than 2.0, Since the order is short, it is determined that the dielectric composition is a single phase of the amorphous phase.
  • the pyrochlore crystal structure is represented by the general formula A 2 B 2 O 7 .
  • oxygen is 8-coordinated to an element occupying the A site (A-site element), and oxygen is 6-coordinated to an element occupying the B site (B-site element).
  • a BO 6 octahedron in which the B site element is located at the center of the octahedron composed of oxygen constitutes a three-dimensional network in which the vertices of each other are shared, the A site element is located in the gap of this network, and A The site element is located at the center of a hexahedron composed of oxygen.
  • the general formula A 2 B 2 O 7 can be represented by a composition formula Bi x Zn y Nb z O 1.75 + ⁇ . That is, the composite oxide constituting the crystal phase and the amorphous phase is represented by the composition formula Bi x Zn y Nb z O 1.75 + ⁇ .
  • the oxygen (O) amount may be a stoichiometric ratio or may be slightly deviated from the stoichiometric ratio.
  • the amount of deviation from the stoichiometric ratio varies depending on the type of element to be substituted and the amount of substitution, and is represented by “ ⁇ ” in the above composition formula.
  • x represents the content ratio of Bi among the metal elements in the composition formula of the composite oxide (crystalline phase and amorphous phase), and “y” represents the metal in the composition formula of the composite oxide.
  • the content ratio of Zn is indicated, and “z” indicates the content ratio of Nb among the metal elements in the composition formula of the composite oxide.
  • the pyrochlore type crystal structure of the crystal phase composed of the composite oxide (Bi—Zn—Nb—O-based oxide) and the composite oxide (Bi—Zn—Nb—O-based oxide)
  • a structure similar to the pyrochlore type crystal structure of an amorphous phase composed of:
  • oxygen is 8 coordinated to Zn
  • hexahedrons and octahedrons in which oxygen is coordinated to Zn are hexahedrons and octahedrons in which oxygen is coordinated to Zn.
  • the proportion of the polyhedron in which oxygen is coordinated to Zn affects the stability of the pyrochlore crystal structure and its similar structure. Therefore, in this embodiment, “y” indicating the Zn content ratio is controlled to be 0.20 or more and 0.50 or less. Further, “y” is preferably 0.30 or more.
  • the proportion of hexahedrons in which oxygen is 8-coordinated to Zn and octahedrons in which oxygen is 6-coordinated to Zn is increased.
  • variations in the polyhedral structure in the composite oxide are suppressed, and structural changes due to temperature changes are less likely to occur.
  • the capacitance tends to be kept constant, so that the absolute value (
  • “x / z” indicating the Bi content ratio (“x”) with respect to the Nb content ratio (“z”) is 2/3 or more and 3/2 or less.
  • X / z is preferably 1.20 or more and 1.50 or less.
  • atomic disorder disorder
  • ⁇ r can be further improved due to this disorder.
  • x / z is preferably 0.90 or more and 1.10 or less.
  • the dielectric composition according to the present embodiment may contain a trace amount of impurities, subcomponents, and the like within the range where the effects of the present invention are exhibited.
  • impurities include Mn, Ca, Ba and the like.
  • the substrate 1 shown in FIG. 1 is not particularly limited as long as it is made of a material having mechanical strength that can support the base layer 2, the lower electrode 3, the dielectric film 5, and the upper electrode 4 formed thereon.
  • a material having mechanical strength that can support the base layer 2, the lower electrode 3, the dielectric film 5, and the upper electrode 4 formed thereon for example, Si single crystal, SiGe single crystal, GaAs single crystal, InP single crystal, SrTiO 3 single crystal, MgO single crystal, LaAlO 3 single crystal, ZrO 2 single crystal, MgAl 2 O 4 single crystal, NdGaO 3 single crystal, etc.
  • Single crystal substrate composed, ceramic polycrystalline substrate composed of Al 2 O 3 polycrystal, ZnO polycrystal, SiO 2 polycrystal, etc., metals such as Ni, Cu, Ti, W, Mo, Al, Pt, etc. Examples thereof include a metal substrate made of an alloy or the like.
  • Si single crystal is used as the substrate from the viewpoints of low cost, workability, and the like.
  • the thickness of the substrate 1 is set to 10 ⁇ m to 5000 ⁇ m, for example. If the thickness is too small, the mechanical strength may not be ensured, and if the thickness is too large, there may be a problem that the electronic component cannot be reduced in size.
  • the resistivity of the substrate 1 is different depending on the material of the substrate.
  • the substrate is made of a material having a low resistivity, current leakage to the substrate side may occur during operation of the thin film capacitor, which may affect the electrical characteristics of the thin film capacitor. Therefore, when the resistivity of the substrate 1 is low, it is preferable to insulate the surface of the substrate 1 so that current does not flow to the substrate 1 when the capacitor is activated.
  • an insulating layer is preferably formed on the surface of the substrate 1.
  • the material constituting the insulating layer and the thickness thereof are not particularly limited.
  • the material constituting the insulating layer SiO 2, Al 2 O 3 , Si 3 N x , and the like.
  • the thickness of an insulating layer is 0.01 micrometer or more.
  • a lower electrode 3 is formed in a thin film shape on a substrate 1 with an underlayer 2 interposed.
  • the lower electrode 3 is an electrode for sandwiching a dielectric film 5 together with an upper electrode 4 described later to function as a capacitor.
  • the material which comprises the lower electrode 3 will not be restrict
  • the thickness of the lower electrode 3 is not particularly limited as long as it is a thickness that functions as an electrode. In the present embodiment, the thickness is preferably 0.01 ⁇ m or more.
  • the upper electrode 4 is formed in a thin film shape on the surface of the dielectric film 5.
  • the upper electrode 4 is an electrode for sandwiching the dielectric film 5 together with the lower electrode 3 described above to function as a capacitor. Therefore, the upper electrode 4 has a polarity different from that of the lower electrode 3.
  • the material constituting the upper electrode 4 is not particularly limited as long as it is a conductive material, like the lower electrode 3.
  • Examples thereof include metals such as Pt, Ru, Rh, Pd, Ir, Au, Ag, and Cu, alloys thereof, or conductive oxides.
  • the substrate 1 is prepared.
  • a Si single crystal substrate is used as the substrate 1
  • an insulating layer is formed on one main surface of the substrate.
  • a known film formation method such as a thermal oxidation method or a CVD (Chemical Vapor Deposition) method may be used.
  • the base layer 2 is formed by forming a thin film of a material constituting the base layer on the formed insulating layer using a known film forming method.
  • a lower electrode 3 is formed on the underlayer 2 by forming a thin film of a material constituting the lower electrode using a known film forming method.
  • heat treatment may be performed for the purpose of improving the adhesion between the base layer 2 and the lower electrode 3 and improving the stability of the lower electrode 3.
  • the rate of temperature rise is preferably 10 ° C./min to 2000 ° C./min, more preferably 100 ° C./min to 1000 ° C./min.
  • the holding temperature during the heat treatment is preferably 400 to 800 ° C., and the holding time is preferably 0.1 to 4.0 hours.
  • the heat treatment condition is outside the above range, the adhesion between the base layer 2 and the lower electrode 3 is likely to be poor, and the surface of the lower electrode 3 is likely to be uneven. As a result, the dielectric characteristics of the dielectric film 5 are likely to deteriorate.
  • the dielectric film 5 as a deposited film is formed by depositing the material constituting the dielectric film 5 in a thin film on the lower electrode 3 by a known film forming method.
  • Known film formation methods include, for example, vacuum deposition, sputtering, PLD (pulse laser deposition), MO-CVD (organometallic chemical vapor deposition), MOD (organometallic decomposition), sol-gel method, CSD. Examples include (chemical solution deposition method). Note that the raw materials used for film formation (evaporation materials, various target materials, organometallic materials, etc.) may contain trace amounts of impurities, subcomponents, etc. No problem.
  • the dielectric thin film 5 is formed on the lower electrode 3 using a target having a desired composition.
  • the film forming conditions are preferably as follows.
  • the oxygen pressure is preferably 0.1 to 10 Pa.
  • the film formation is preferably performed at room temperature.
  • the laser power is preferably 3 to 5 J / cm 2 and the pulse frequency is preferably 1 to 20 Hz.
  • RTA Rapid Thermal Anneal
  • the atmosphere is preferably an oxygen atmosphere
  • the rate of temperature rise is preferably 1000 ° C./min or more
  • the annealing time is preferably 1 to 30 minutes. It is preferable that the temperature is 300 ° C. or higher and 750 ° C. or lower.
  • the constituent phase of the composite oxide tends to be an amorphous phase single phase, and when the annealing temperature is too high, the constituent phase of the composite oxide becomes a single phase of crystal phase. There is a tendency.
  • a thin film of a material constituting the upper electrode is formed on the formed dielectric film 5 by using a known film forming method to form the upper electrode 4.
  • a thin film capacitor 10 in which a capacitor portion (lower electrode 3, dielectric film 5 and upper electrode 4) is formed on a substrate 1 is obtained.
  • the protective film for protecting the dielectric film 5 may be formed by a known film forming method so as to cover at least a portion where the dielectric film 5 is exposed to the outside.
  • Zn can occupy both the A site and the B site, and forms two types of polyhedrons.
  • the present inventors have found that by increasing the proportion of these two types of polyhedrons, the pyrochlore crystal structure is stabilized and structural changes due to temperature changes are less likely to occur.
  • the crystal temperature and the amorphous phase of the composite oxide are allowed to coexist and the content ratio of Zn in the composite oxide is within the above range, so that the capacity temperature coefficient Tcc is improved.
  • the inventors reduced the defects of the composite oxide constituting the crystalline phase and the amorphous phase by making the content ratio of Bi occupying the A site relatively close to the content ratio of Nb occupying the B site.
  • the quality factor Q value is improved.
  • the present inventors have found that the quality factor Q value can be further improved by coexisting a crystal phase and an amorphous phase, thereby reducing crystal grain boundaries and suppressing leakage current. Therefore, in this embodiment, a high quality factor Q value is obtained by setting the ratio of the Bi content ratio and the Nb content ratio within the above range.
  • the dielectric constant ⁇ r is as high as 100 or higher and the quality is as high as 1000 or higher in a high frequency region of 2 GHz or higher.
  • the coefficient Q value is shown, and the absolute value of the capacity temperature coefficient Tcc can be 30 ppm / ° C. or less.
  • the dielectric film is usually composed only of the dielectric composition of the present invention.
  • the dielectric film may have a laminated structure combined with a film of another dielectric composition.
  • the impedance and ratio of the dielectric film 5 can be obtained by forming a laminated structure with an existing amorphous dielectric film or crystal film such as Si 3 N x , SiO x , Al 2 O x , ZrO x , and Ta 2 O x. It becomes possible to adjust the temperature change of the dielectric constant.
  • the base layer is formed in order to improve the adhesion between the substrate and the lower electrode, but the base layer is omitted when sufficient adhesion between the substrate and the lower electrode can be secured. be able to.
  • the base layer and the lower electrode can be omitted.
  • Bi 2 O 3 , ZnO, and Nb 2 O 5 powders were prepared as raw material powders for target preparation. These powders were weighed so as to have the compositions of Examples 1 to 10 and Comparative Examples 1 to 9 shown in Table 1.
  • the weighed raw material powder, water and ⁇ 2 mm ZrO 2 beads were put into a polypropylene wide-mouthed pot having a volume of 1 L, and wet-mixed for 20 hours. Thereafter, the mixed powder slurry is dried at 100 ° C. for 20 hours, and the obtained mixed powder is placed in an Al 2 O 3 crucible and calcined under a firing condition of holding at 800 ° C. in the air for 5 hours to obtain a calcined powder. It was.
  • the obtained calcined powder is put in a mortar, and a PVA (polyvinyl alcohol) aqueous solution having a concentration of 6 wt% as a binder is added so as to be 4 wt% with respect to the calcined powder, and a granulated powder is produced using a pestle. did.
  • the produced granulated powder was put into a ⁇ 20 mm mold so as to have a thickness of about 5 mm, and subjected to pressure molding using a uniaxial pressure press machine to obtain a molded body.
  • the molding conditions were a pressure of 2.0 ⁇ 10 8 Pa and a temperature of room temperature.
  • the obtained molded body was subjected to binder removal treatment in an atmospheric pressure atmosphere with a temperature rising rate of 100 ° C./hour, a holding temperature of 400 ° C., and a temperature holding time of 4 hours. Subsequently, the heating rate was 200 ° C./hour, the holding temperature was 1000 ° C. to 1200 ° C., the temperature holding time was 12 hours, and firing was performed in atmospheric pressure to obtain a sintered body.
  • the both sides were polished with a cylindrical polishing machine so that the thickness of the obtained sintered body was 4 mm, and a target for forming a dielectric film was obtained.
  • a 10 mm ⁇ 10 mm square substrate provided with SiO 2 as a 6 ⁇ m thick insulating layer on the surface of a 350 ⁇ m thick Si single crystal substrate was prepared.
  • a Ti thin film as an underlayer was formed on the surface of this substrate by sputtering so as to have a thickness of 20 nm.
  • a Pt thin film as a lower electrode was formed on the Ti thin film formed above by a sputtering method so as to have a thickness of 4 ⁇ m.
  • the formed Ti / Pt thin film (underlayer and lower electrode) is subjected to heat treatment under normal pressure with a temperature rising temperature of 400 ° C./min, a holding temperature of 700 ° C., a temperature holding time of 0.5 hours, and an atmosphere of oxygen. went.
  • a dielectric film was formed on the Ti / Pt thin film after the heat treatment.
  • a dielectric film was formed by the PLD method on the lower electrode so as to have a thickness of 400 nm using the target prepared above.
  • Film formation conditions by the PLD method were an oxygen pressure of 1 Pa, a laser power of 3 J / cm 2 , a laser pulse frequency of 10 Hz, and a film formation temperature of room temperature.
  • a metal mask was used to form a region where no dielectric film was formed.
  • RTA rapid thermal annealing
  • a thin film capacitor sample having the configuration shown in FIG. 1 (Examples 1 to 29 and Comparative Examples 1 to 6) is formed by using a metal mask so that the shape of the upper electrode is 100 ⁇ m in diameter and 100 nm in thickness. )
  • the composition of the dielectric film was analyzed for all samples at room temperature using a WD-XRF (wavelength dispersive X-ray fluorescence elemental analysis) apparatus (ZSX-100e manufactured by Rigaku Corporation), and listed in Table 1. It was confirmed that it was consistent with the composition.
  • the thickness of the dielectric film was a value measured by digging a thin film capacitor with an FIB and observing the obtained cross section with an SEM (scanning electron microscope).
  • the relative dielectric constant ⁇ r, Q value, and capacitance temperature coefficient Tcc were measured by the method described below. Further, the constituent phases of the dielectric composition constituting the dielectric film were identified by the following method.
  • the relative permittivity and Q value are the conditions of a frequency of 2 GHz and an input signal level (measurement voltage) of 0.5 Vrms with an RF impedance / material analyzer (Agilent 4991A) at a reference temperature of 25 ° C. for a thin film capacitor sample. It was calculated from the capacitance measured below and the thickness of the dielectric film obtained above. In this example, a higher relative dielectric constant is preferable, and a sample having a relative dielectric constant of 100 or more was judged to be good. A higher Q value is preferable, and a sample having a Q value of 1000 or more was judged to be good. The results are shown in Table 1.
  • Tcc Temporal coefficient of capacitance
  • the constituent phase of the dielectric composition is identified by performing X-ray diffraction on the dielectric thin film, and in the obtained X-ray diffraction chart, the diffraction angle 2 ⁇ appears in the range of 27 ° to 30 ° (222) plane. The calculation was performed by calculating the half width of the diffraction peak.
  • Cu—K ⁇ ray was used as an X-ray source. The measurement conditions were a voltage of 45 kV, a current of 200 mA, and a scanning speed of 20 deg / min.
  • the dielectric composition when the full width at half maximum is less than 0.35 °, the dielectric composition is determined to be a single phase, and the full width at half maximum is not less than 0.35 ° and not more than 2.0 °.
  • the dielectric composition was judged to be a mixed phase of a crystalline phase and an amorphous phase, and when the half-value width was over 2.0 °, the dielectric composition was judged to be an amorphous phase single phase. .
  • Table 1 The results are shown in Table 1.
  • Example 4 TEM observation was performed on the sample of Example 4.
  • a TEM image of the obtained composite oxide is shown in FIG. In FIG. 2, the area surrounded by the white line is the amorphous phase.
  • the white line indicating the amorphous phase is a line added to clearly show the amorphous phase, and the boundary between the amorphous phase and the crystalline phase does not appear as a white line in the TEM image.
  • a sample that is a mixed phase of an amorphous phase having a structure is a thin film having a thickness of 400 nm, but has a high relative dielectric constant ⁇ r (100 or more) and a high quality factor Q value (1000 or more) in a high-frequency region (2 GHz). ) And good temperature characteristics (
  • the composite oxide has a mixed phase of the crystalline phase and the amorphous phase by TEM observation. was confirmed visually.
  • a dielectric composition having a high relative dielectric constant and Q value in a high frequency region and a small capacitance temperature coefficient in a predetermined temperature range can be obtained.
  • Such a dielectric composition is suitable as a thin-film dielectric film, and is suitable for high-frequency electronic components such as baluns, couplers, filters, or duplexers or diplexers that combine filters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Insulating Materials (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Ceramic Capacitors (AREA)

Abstract

ビスマスと亜鉛とニオブとを含む複合酸化物を有する誘電体組成物であって、誘電体組成物が、複合酸化物から構成されパイロクロア型結晶構造を有する結晶相と、アモルファス相と、を有し、複合酸化物を組成式BiZnNb1.75+δで表した場合、x、yおよびzは、x+y+z=1.00、0.20≦y≦0.50、2/3≦x/z≦3/2である関係を満足することを特徴とする誘電体組成物である。

Description

誘電体組成物および電子部品
 本発明は、誘電体組成物および電子部品に関する。
 スマートフォンに代表される移動体通信機器の高性能化に対する要求は高く、たとえば、高速で大容量の通信を可能とするために、使用する周波数領域の数も増加している。使用する周波数領域はGHz帯のような高周波領域である。このような高周波領域において作動するバラン、カプラ、フィルタ、あるいは、フィルタを組み合わせたデュプレクサ、ダイプレクサ等の高周波部品のなかには、誘電体材料を共振器として利用しているものがある。このような誘電体材料には、高周波領域において、誘電損失が小さく、周波数の選択性が良好であることが求められる。
 また、移動体通信機器の高性能化に伴い、1つの移動体通信機器に搭載される電子部品の数も増加する傾向にあり、移動体通信機器のサイズを維持するには、電子部品の小型化も同時に求められる。誘電体材料を用いる高周波部品を小型化するには、電極面積を小さくする必要があるため、これによる静電容量の低下を補うべく、高周波領域において、誘電体材料の比誘電率が高いことが求められる。
 このような移動体通信機器は、使用環境、機器に使用されている部品の発熱等により、温度変化に曝される。一方、誘電体材料の静電容量は温度により変化するため、所定の温度範囲において、誘電体材料には、静電容量の温度依存性、すなわち、容量温度係数が小さいことが求められる。
 したがって、高周波領域において使用される高周波部品に適用される誘電体材料には、高周波領域において、誘電損失が小さく、比誘電率が高く、かつ容量温度係数が小さいことが要求される。誘電損失の逆数は、品質係数Q値として表すことができるので、換言すれば、高周波領域において比誘電率および品質係数Q値が高く、かつ所定の温度範囲において容量温度係数が小さい誘電体材料が望まれている。
 従来、高周波数領域において高い誘電率を持つ材料としてはBi-Zn-Nb-O系酸化物が知られている。たとえば、特許文献1には、BiNbO相とBi(Zn2/3Nb4/3)O相との混合物から構成される焼結体が開示されている。また、特許文献2には、パイロクロア型結晶構造の第1結晶相とβ-BiNbO型結晶構造の第2結晶相との混合物から構成される誘電体薄膜が開示されている。また、非特許文献1には、組成式(Bi3xZn2-3x)(ZnNb2-x)Oで表され、xが0.5または2/3である誘電体薄膜が開示されている。
特表2009-537444号公報 国際公開第2016/013416号
Wei Ren et al., "Bismuth zinc niobate pyrochlore dielectric thin films for capacitive applications", Journal of Applied Physics 89, 767 (2001)
 特許文献1では、BiNbO相およびBi(Zn2/3Nb4/3)O相が1:1で混合された焼結体について、誘電率の温度係数の絶対値が10ppm以下であり、比誘電率は100程度、1GHzにおける誘電品質係数Qは1000程度であることが記載されている。しかしながら、特許文献1に開示された誘電体は焼結体であり、これらの誘電特性を示すには、十分な体積を有する焼結体とする必要があり、高周波領域において使用される高周波部品に適用される誘電体材料としてはサイズが大きすぎるという問題があった。
 また、特許文献2では、パイロクロア型結晶構造の第1結晶相とβ-BiNbO型結晶構造の第2結晶相との混合物から構成される薄膜について、誘電率の温度係数の絶対値が60ppm以下、1Hz~100kHzにおける比誘電率は150程度であることが記載されている。しかしながら、特許文献2では、高周波領域におけるQ値については何ら評価されておらず、高周波領域における誘電特性は十分ではなかった。
 また、非特許文献1では、組成式(Bi1.5Zn0.5)(Zn0.5Nb1.5)Oで表される薄膜と、組成式Bi(Zn1/3Nb2/3で表される薄膜とについて、10kHzにおける比誘電率が150以下、Q値が250程度であることが記載されている。しかしながら、非特許文献1では、高周波領域におけるQ値については何ら評価されておらず、高周波領域における誘電特性は十分ではなかった。
 本発明は、このような実状に鑑みてなされ、高周波領域において比誘電率εrおよび品質係数Q値が高く、かつ所定の温度範囲において容量温度係数Tccの絶対値が小さい誘電体組成物を提供することを目的とする。
 上記目的を達成するため、本発明の態様は、
 [1]ビスマスと亜鉛とニオブとを含む複合酸化物を有する誘電体組成物であって、
 誘電体組成物が、複合酸化物から構成されパイロクロア型結晶構造を有する結晶相と、アモルファス相と、を有し、
 複合酸化物を、組成式BiZnNb1.75+δで表した場合、x、yおよびzは、x+y+z=1.00、0.20≦y≦0.50、2/3≦x/z≦3/2である関係を満足することを特徴とする誘電体組成物である。
 [2]アモルファス相が、複合酸化物と同じ組成を有することを特徴とする[1]に記載の誘電体組成物である。
 [3]ビスマスと亜鉛とニオブとを含む複合酸化物を有する誘電体組成物であって、
 複合酸化物を、組成式BiZnNb1.75+δで表した場合、x、yおよびzは、x+y+z=1.00、0.20≦y≦0.50、2/3≦x/z≦3/2である関係を満足し、
 Cu-Kα線をX線源とするX線回折測定により得られる誘電体組成物のX線回折チャートにおいて、回折角2θが27°以上30°以下の範囲に現れる(222)面の回折ピークの半値幅が0.35°以上2.0°以下であることを特徴とする誘電体組成物である。
 [4]誘電体組成物が、パイロクロア型結晶構造を有する結晶相と、アモルファス相と、を有することを特徴とする[3]に記載の誘電体組成物である。
 [5]yが、0.30≦y≦0.50である関係を満足することを特徴とする[1]から[4]のいずれかに記載の誘電体組成物である。
 [6]xおよびzが、1.20≦x/z≦1.50である関係を満足することを特徴とする[1]から[5]のいずれかに記載の誘電体組成物である。
 [7]xおよびzが、0.90≦x/z≦1.10である関係を満足することを特徴とする[1]から[5]のいずれかに記載の誘電体組成物である。
 [8][1]から[7]のいずれかに記載の誘電体組成物を含む誘電体膜を備える電子部品である。
 [9]誘電体膜が、誘電体堆積膜であることを特徴とする[8]に記載の電子部品である。
 本発明によれば、高周波領域において比誘電率εrおよび品質係数Q値が高く、かつ所定の温度範囲において容量温度係数Tccの絶対値が小さい誘電体組成物を提供することができる。
図1は、本実施形態に係る電子部品の一例としての薄膜コンデンサの模式的な断面図である。 図2は、本発明の実施例に係る試料のTEM観察像である。
 以下、本発明を、具体的な実施形態に基づき、以下の順序で詳細に説明する。
1.薄膜コンデンサ
 1.1.薄膜コンデンサの全体構成
 1.2.誘電体膜
  1.2.1.誘電体組成物
 1.3.基板
 1.4.下部電極
 1.5.上部電極
2.薄膜コンデンサの製造方法
3.本実施形態における効果
4.変形例
 (1.薄膜コンデンサ)
 まず、本実施形態に係る電子部品として、誘電体層が薄膜状の誘電体膜から構成される薄膜コンデンサについて説明する。
 (1.1.薄膜コンデンサの全体構成)
 図1に示すように、本実施形態に係る電子部品の一例としての薄膜コンデンサ10は、基板1と、下部電極3と、誘電体膜5と、上部電極4とがこの順序で積層された構成を有している。下部電極3と誘電体膜5と上部電極4とはコンデンサ部を形成しており、下部電極3および上部電極4が外部回路に接続されて電圧が印加されると、誘電体膜5が所定の静電容量を示し、コンデンサとしての機能を発揮することができる。各構成要素についての詳細な説明は後述する。
 また、本実施形態では、基板1と下部電極3との間に、基板1と下部電極3との密着性を向上させるために下地層2が形成されている。下地層2を構成する材料は、基板1と下部電極3との密着性が十分に確保できる材料であれば特に制限されない。たとえば、下部電極3がCuで構成される場合には、下地層2はCrで構成され、下部電極3がPtで構成される場合には、下地層2はTiで構成することができる。
 また、図1に示す薄膜コンデンサ10において、誘電体膜5を外部雰囲気から遮断するための保護膜が形成されていてもよい。
 なお、薄膜コンデンサの形状に特に制限はないが、通常、直方体形状とされる。またその寸法にも特に制限はなく、厚みや長さは用途に応じて適当な寸法とすればよい。
 (1.2.誘電体膜)
 誘電体膜5は、後述する本実施形態に係る誘電体組成物から構成されている。また、本実施形態では、誘電体膜5は、誘電体組成物の原料粉末を成形した成形体を焼成して得られる焼結体から構成されるのではなく、薄膜状であり公知の成膜法により形成された誘電体堆積膜であることが好ましい。
 このような誘電体膜5を有する薄膜コンデンサは、高周波領域(たとえば、2GHz)であっても、高い比誘電率εr(たとえば、100以上)および高いQ値(たとえば、1000以上)を示しつつ、かつ、良好な容量温度係数(たとえば、容量温度係数の絶対値が30ppm/℃以内)を示すことができる。
 誘電体膜5の厚みは、好ましくは10nm~2000nm、より好ましくは50nm~1000nmである。誘電体膜5の厚みが薄すぎると、誘電体膜5の絶縁破壊が生じやすい傾向にある。絶縁破壊が生じると、コンデンサとしての機能を発揮できない。一方、誘電体膜5の厚みが厚すぎると、コンデンサの静電容量を大きくするために電極面積を広くする必要があり、電子部品の設計によっては小型化および低背化が困難となる場合がある。
 通常、Q値は、誘電体の厚みが薄くなると低下する傾向にあることが知られている。そのため、高いQ値を得るには、ある程度の厚みを有する誘電体、すなわち、バルク状の誘電体で構成する必要がある。しかしながら、本実施形態に係る誘電体組成物から構成される誘電体膜は、上記のように、厚みが非常に薄い場合であっても、高いQ値を得ることができる。
 なお、誘電体膜5の厚みは、誘電体膜5を含む薄膜コンデンサを、FIB(集束イオンビーム)加工装置で掘削し、得られた断面をSEM(走査型電子顕微鏡)で観察して測定することができる。
 (1.2.1.誘電体組成物)
 本実施形態に係る誘電体組成物は、ビスマス(Bi)、亜鉛(Zn)およびニオブ(Nb)を含む複合酸化物(Bi-Zn-Nb-O系酸化物)を主成分として含有している。本実施形態では、主成分とは、誘電体組成物100質量%に対して、90質量%以上を占める成分である。
 また、当該誘電体組成物は、結晶相とアモルファス相とを有している。
 結晶相は、パイロクロア型結晶構造を有し、一般式Aで表される上記の複合酸化物から構成される。一方、アモルファス相は、結晶相を構成する複合酸化物と同じ組成を有していると考えられる。すなわち、本実施形態では、結晶相およびアモルファス相は、どちらも上記の複合酸化物から構成されている。
 このアモルファス相は、上記の複合酸化物を構成する原子がパイロクロア型結晶構造を形成するように配列されたものの、熱平衡状態に達しなかったため、パイロクロア型結晶構造に類似した短距離秩序を有しているが、その原子配列が結晶的な規則性を有していない不完全な結晶から構成される相である。
 このアモルファス相は、完全に結晶化していないので、結晶相が結晶化する際に排出される元素を取り込むことがある。また、このアモルファス相は、完全に結晶化していないので、構成元素のイオン半径等による結晶構造上の制限を受けづらく、構成元素の比率がずれることがある。したがって、アモルファス相と結晶相とは、Bi-Zn-Nb-O系酸化物から構成されている、すなわち、ビスマス、亜鉛、ニオブおよび酸素を含むという点では、同じ組成を有していると言うことができる。ただし、アモルファス相と結晶相とは、構成元素の比率が一致している場合もあるし、少しずれている場合もある。
 換言すれば、上記の複合酸化物(Bi-Zn-Nb-O系酸化物)において、熱平衡状態に達している領域が上記の結晶相であり、熱平衡状態に達していないため、組成のゆらぎが存在する領域が上記のアモルファス相である。
 本発明者らは、上記の複合酸化物の結晶相は負の容量温度係数を有し、当該複合酸化物のアモルファス相は正の容量温度係数を有していることを見出した。そこで、本実施形態では、複合酸化物において、結晶相とアモルファス相とを混在させることにより、誘電体組成物としての容量温度係数の絶対値を所定の範囲内に制御している。また、このような混相組織とすることにより、結晶粒界が少なくなり、その結果、結晶粒界を通じた電流のリークが抑制されるので、品質係数Q値をも向上させることができる。
 また、本実施形態では、X線源としてCu-Kα線を用いて、本実施形態に係る誘電体組成物に対してX線回折測定を行うことにより得られるX線回折チャートにおいて、回折角2θが27°以上30°以下の範囲に現れる(222)面の回折ピークの半値幅が0.35以上2.0以下である。半値幅が上記の範囲内であることにより、誘電体組成物の容量温度係数の絶対値が所定の範囲内に制御され、さらに品質係数Q値が向上する。半値幅は、ピーク強度の半分の強度でのピークの広がりとして算出される。
 また、X線回折により得られるピークの半値幅は、構造中の秩序の長さと相関があり、秩序が短いほど半値幅は大きく、秩序が長いほど半値幅は小さくなる。上記のピークの半値幅が0.35以上2.0以下である誘電体組成物は、結晶相とアモルファス相とを有していることが好ましい。
 一方、本実施形態では、X線源としてCu-Kα線を用いて、誘電体組成物に対してX線回折測定を行うことにより得られるX線回折チャートにおいて、2θが27°以上30°以下の範囲に現れるピークの半値幅が0.35以上2.0以下である場合に、誘電体組成物が、結晶相とアモルファス相との両方を有していると判断してもよい。なお、半値幅が0.35未満である場合には、秩序が長いことを示しているので、誘電体組成物が結晶相単相であり、半値幅が2.0超である場合には、秩序が短いことを示しているので、誘電体組成物がアモルファス相単相であると判断する。
 上述したように、パイロクロア型結晶構造は一般式Aで表される。パイロクロア型結晶構造においては、Aサイトを占める元素(Aサイト元素)に酸素が8配位しており、Bサイトを占める元素(Bサイト元素)に酸素が6配位している。そして、酸素から構成される八面体の中心にBサイト元素が位置するBO八面体が互いの頂点を共有した三次元ネットワークを構成し、このネットワークの間隙にAサイト元素が位置し、かつAサイト元素は、酸素から構成される六面体の中心に位置している。
 本実施形態では、一般式Aは、組成式BiZnNb1.75+δで表すことができる。すなわち、上記の結晶相とアモルファス相とを構成する複合酸化物は、組成式BiZnNb1.75+δで表される。この組成式において、「x」、「y」および「z」は、x+y+z=1.00である。
 また、当該複合酸化物では、酸素(O)量が化学量論比であってもよいし、化学量論比から若干偏倚してもよい。化学量論比からの偏倚量は、置換する元素の種類およびそれらの置換量に応じて変化し、上記の組成式において「δ」で表される。
 したがって、「x」は、上記の複合酸化物(結晶相およびアモルファス相)の組成式における金属元素のうち、Biの含有割合を示し、「y」は、上記の複合酸化物の組成式における金属元素のうち、Znの含有割合を示し、「z」は、上記の複合酸化物の組成式における金属元素のうち、Nbの含有割合を示す。
 上記の一般式において、BiはAサイトを占め、NbはBサイトを占める。一方、Znは、上記の一般式において、AサイトおよびBサイトのどちらも占めることができる。したがって、上記の複合酸化物(Bi-Zn-Nb-O系酸化物)から構成される結晶相のパイロクロア型結晶構造、および、上記の複合酸化物(Bi-Zn-Nb-O系酸化物)から構成されるアモルファス相のパイロクロア型結晶構造に類似の構造においては、Biに酸素が8配位した六面体およびNbに酸素が6配位した八面体に加えて、Znに酸素が8配位した六面体およびZnに酸素が6配位した八面体が存在する。
 Bi、ZnおよびNbを含む複合酸化物においては、Znに酸素が配位した多面体の割合が、パイロクロア型結晶構造およびその類似構造の安定性に影響している。そこで、本実施形態では、Znの含有割合を示す「y」は、0.20以上0.50以下に制御している。また、「y」は0.30以上であることが好ましい。
 「y」を上記の範囲内とすることにより、複合酸化物(結晶相およびアモルファス相)において、Znに酸素が8配位した六面体およびZnに酸素が6配位した八面体の割合が増加し、複合酸化物中における多面体構造のバラツキが抑制され、温度変化による構造変化が生じにくくなる。その結果、温度が変化しても、静電容量が一定に保たれる傾向にあるので、容量温度係数Tccの絶対値(|Tcc|)を所定の範囲内とすることができる。
 「y」が小さすぎると、複合酸化物(結晶相およびアモルファス相)において、Biに酸素が8配位した六面体およびNbに酸素が6配位した八面体が占める割合が増え、多面体構造のバラツキが大きくなり、構造変化しやすい傾向にあるので、容量温度係数Tccが悪化する傾向にある。一方、「y」が大きすぎると、Znに酸素が配位した多面体の割合が多くなりすぎ、複合酸化物において比誘電率に寄与する成分が少なくなるため、比誘電率εrが悪化する傾向にある。
 また、本実施形態では、Nbの含有割合(「z」)に対するBiの含有割合(「x」)を示す「x/z」は、2/3以上3/2以下である。「x/z」を上記の範囲内とすることにより、Biの含有割合とNbの含有割合とが比較的に近づくため、複合酸化物(結晶相およびアモルファス相)における欠陥が少なくなり、品質係数Q値を良好にすることができる。
 「x/z」は、1.20以上1.50以下であることが好ましい。上記の範囲内とすることにより、複合酸化物(結晶相およびアモルファス相)のAサイトにおいて原子配列の乱れ(ディスオーダー)が適切な範囲内で生じるため、品質係数Q値を良好に維持しつつ、このディスオーダーに起因して比誘電率εrをさらに良好にすることができる。「x/z」が大きすぎると、ディスオーダーが大きくなりすぎ、逆に、品質係数Q値が低下する傾向にある。
 また、「x/z」は、0.90以上1.10以下であることも好ましい。上記の範囲内とすることにより、Biの含有割合とNbの含有割合とがほぼ同程度となるため、複合酸化物(結晶相およびアモルファス相)における欠陥がさらに少なくなり、品質係数Q値をさらに向上させることができる。
 上記の組成式において、「x」、「y」および「z」を上記の範囲内とすることにより、比誘電率εrと、品質係数Q値と、容量温度係数Tccとを良好にすることができる。
 また、本実施形態に係る誘電体組成物は、本発明の効果を奏する範囲内において、微量な不純物、副成分等を含んでいてもよい。このような成分としては、たとえば、Mn、Ca、Ba等が例示される。
 (1.3.基板)
 図1に示す基板1は、その上に形成される下地層2、下部電極3、誘電体膜5および上部電極4を支持できる程度の機械的強度を有する材料で構成されていれば特に限定されない。たとえば、Si単結晶、SiGe単結晶、GaAs単結晶、InP単結晶、SrTiO単結晶、MgO単結晶、LaAlO単結晶、ZrO単結晶、MgAl単結晶、NdGaO単結晶等から構成される単結晶基板、Al多結晶、ZnO多結晶、SiO多結晶等から構成されるセラミック多結晶基板、Ni、Cu、Ti、W、Mo、Al、Pt等の金属、それらの合金等から構成される金属基板等が例示される。本実施形態では、低コスト、加工性等の観点から、Si単結晶を基板として用いる。
 基板1の厚みは、たとえば、10μm~5000μmに設定される。厚みが小さすぎると、機械的強度が確保できない場合が生じることがあり、厚みが大きすぎると、電子部品の小型化に寄与できないといった問題が生じる場合がある。
 上記の基板1は、基板の材質によってその抵抗率が異なる。抵抗率が低い材料で基板を構成する場合、薄膜コンデンサの作動時に基板側への電流のリークが生じ、薄膜コンデンサの電気特性に影響を及ぼすことがある。そのため、基板1の抵抗率が低い場合には、その表面に絶縁処理を施し、コンデンサ作動時の電流が基板1へ流れないようにすることが好ましい。
 たとえば、Si単結晶を基板1として使用する場合においては、基板1の表面に絶縁層が形成されていることが好ましい。基板1とコンデンサ部との絶縁が十分に確保されていれば、絶縁層を構成する材料およびその厚みは特に限定されない。本実施形態では、絶縁層を構成する材料として、SiO、Al、Si等が例示される。また、絶縁層の厚みは、0.01μm以上であることが好ましい。
 (1.4.下部電極)
 図1に示すように、基板1の上には、下地層2を介して、下部電極3が薄膜状に形成されている。下部電極3は、後述する上部電極4とともに誘電体膜5を挟み、コンデンサとして機能させるための電極である。下部電極3を構成する材料は、導電性を有する材料であれば特に制限されない。たとえば、Pt、Ru、Rh、Pd、Ir、Au、Ag、Cu等の金属、それらの合金、又は、導電性酸化物等が例示される。
 下部電極3の厚みは、電極として機能する程度の厚みであれば特に制限されない。本実施形態では、厚みは0.01μm以上であることが好ましい。
 (1.5.上部電極)
 図1に示すように、誘電体膜5の表面には、上部電極4が薄膜状に形成されている。上部電極4は、上述した下部電極3とともに、誘電体膜5を挟み、コンデンサとして機能させるための電極である。したがって、上部電極4は、下部電極3とは異なる極性を有している。
 上部電極4を構成する材料は、下部電極3と同様に、導電性を有する材料であれば特に制限されない。たとえば、Pt、Ru、Rh、Pd、Ir、Au、Ag、Cu等の金属、それらの合金、又は、導電性酸化物等が例示される。
 (2.薄膜コンデンサの製造方法)
 次に、図1に示す薄膜コンデンサ10の製造方法の一例について以下に説明する。
 まず、基板1を準備する。基板1として、たとえば、Si単結晶基板を用いる場合、当該基板の一方の主面に絶縁層を形成する。絶縁層を形成する方法としては、熱酸化法、CVD(Chemical Vapor Deposition)法等の公知の成膜法を用いればよい。
 続いて、形成された絶縁層上に、公知の成膜法を用いて下地層を構成する材料の薄膜を形成して下地層2を形成する。
 下地層2を形成した後、当該下地層2上に、公知の成膜法を用いて下部電極を構成する材料の薄膜を形成して下部電極3を形成する。
 下部電極3の形成後に、下地層2と下部電極3との密着性向上、および、下部電極3の安定性向上を図る目的で、熱処理を行ってもよい。熱処理条件としては、たとえば、昇温速度は好ましくは10℃/分~2000℃/分、より好ましくは100℃/分~1000℃/分である。熱処理時の保持温度は、好ましくは400℃~800℃、その保持時間は、好ましくは0.1時間~4.0時間である。熱処理条件が上記の範囲外である場合には、下地層2と下部電極3との密着不良、下部電極3の表面に凹凸が発生しやすくなる。その結果、誘電体膜5の誘電特性の低下が生じやすくなる。
 続いて、下部電極3上に誘電体膜5を形成する。本実施形態では、公知の成膜法により、誘電体膜5を構成する材料を下部電極3上に薄膜状に堆積させた堆積膜としての誘電体膜5を形成する。
 公知の成膜法としては、たとえば、真空蒸着法、スパッタリング法、PLD(パルスレーザー蒸着法)、MO-CVD(有機金属化学気相成長法)、MOD(有機金属分解法)、ゾルゲル法、CSD(化学溶液堆積法)等が例示される。なお、成膜時に使用する原料(蒸着材料、各種ターゲット材料、有機金属材料等)には微量の不純物、副成分等が含まれている場合があるが、所望の誘電特性が得られれば、特に問題はない。
 たとえば、PLD法を用いる場合、所望の組成のターゲットを用いて、下部電極3上に誘電体薄膜5を形成する。本実施形態では、成膜条件は、以下のようにすることが好ましい。酸素圧は0.1~10Paとすることが好ましい。また、成膜は室温で行うことが好ましい。レーザーのパワーは3~5J/cmであることが好ましく、パルス周波数は1~20Hzとすることが好ましい。
 本実施形態では、誘電体膜を形成した後、当該誘電体膜に対し、急速加熱アニール処理(Rapid Thermal Anneal:RTA)を施す。RTAを施す条件を制御することにより、誘電体膜を構成する複合酸化物の構成相として、結晶相とアモルファス相との混相を容易に得ることができる。また、半値幅が上述した範囲内である誘電体組成物を容易に得ることができる。本実施形態では、RTAを施す条件として、雰囲気は酸素雰囲気であることが好ましく、昇温速度を1000℃/分以上とすることが好ましく、アニール時間は1~30分とすることが好ましく、アニール温度を300℃以上750℃以下とすることが好ましい。なお、アニール温度が低すぎる場合には、複合酸化物の構成相がアモルファス相単相となる傾向にあり、アニール温度が高すぎる場合には、複合酸化物の構成相が結晶相単相になる傾向にある。
 次に、形成した誘電体膜5上に、公知の成膜法を用いて上部電極を構成する材料の薄膜を形成して上部電極4を形成する。
 以上の工程を経て、図1に示すように、基板1上に、コンデンサ部(下部電極3、誘電体膜5および上部電極4)が形成された薄膜コンデンサ10が得られる。なお、誘電体膜5を保護する保護膜は、少なくとも誘電体膜5が外部に露出している部分を覆うように公知の成膜法により形成すればよい。
 (3.本実施形態における効果)
 本実施形態では、パイロクロア型結晶構造を有する複合酸化物として、Bi-Zn-Nb-O系酸化物に着目している。本発明者らは、当該複合酸化物を含む誘電体組成物に対するX線回折チャートにおいて、所定のピークの半値幅が所定の範囲内である場合に良好な特性が得られることを見出した。また、当該複合酸化物の結晶相が負の容量温度係数を有し、当該複合酸化物のアモルファス相が正の容量温度係数を有していることを見出した。
 また、この複合酸化物においては、Znは、AサイトおよびBサイトのどちらも占めることができ、2種類の多面体を形成する。本発明者らは、この2種類の多面体の割合を増やすことにより、パイロクロア型結晶構造が安定化し、温度変化による構造変化が生じにくくなることを見出した。
 そこで、本実施形態では、複合酸化物の結晶相とアモルファス相とを共存させ、複合酸化物中のZnの含有割合を上記の範囲内とすることにより、容量温度係数Tccを良好にしている。
 また、本発明者らは、Aサイトを占めるBiの含有割合と、Bサイトを占めるNbの含有割合とを比較的に近づけることにより、結晶相およびアモルファス相を構成する複合酸化物の欠陥を減らし、その結果、品質係数Q値が向上することも見出した。さらに、本発明者らは、結晶相とアモルファス相とを共存させることにより、結晶粒界を減らして、リーク電流を抑制することにより、品質係数Q値をさらに向上できることを見出した。そこで、本実施形態では、Biの含有割合とNbの含有割合との比率を上記の範囲内とすることにより、高い品質係数Q値を得ている。
 具体的には、本実施形態に係る誘電体組成物は、薄膜状の誘電体膜として形成されていても、2GHz以上の高周波領域において100以上の高い比誘電率εrと、1000以上の高い品質係数Q値を示し、しかも、容量温度係数Tccの絶対値を30ppm/℃以下とすることができる。
 さらに、x/zの値を変化させることにより、高い比誘電率εrが得られることを重視した誘電体組成物と、高い品質係数Q値が得られることを重視した誘電体組成物と、を用途に応じて得ることができる。
 (4.変形例)
 上述した実施形態では、誘電体膜は通常、本発明の誘電体組成物のみで構成される場合を説明したが、別の誘電体組成物の膜と組み合わせた積層構造であっても構わない。例えば、既存のSi、SiO、Al、ZrO、Ta等のアモルファス誘電体膜や結晶膜との積層構造とすることで、誘電体膜5のインピーダンスや比誘電率の温度変化を調整することが可能となる。
 上述した実施形態では、基板と下部電極との密着性を向上させるために、下地層を形成しているが、基板と下部電極との密着性が十分確保できる場合には、下地層は省略することができる。また、基板を構成する材料として、電極として使用可能なCu、Pt等の金属、それらの合金、酸化物導電性材料等を用いる場合には、下地層および下部電極は省略することができる。
 以上、本発明の実施形態について説明してきたが、本発明は上記の実施形態に何ら限定されるものではなく、本発明の範囲内において種々の態様で改変しても良い。
 以下、実施例及び比較例を用いて、本発明をさらに詳細に説明する。ただし、本発明は以下の実施例に限定されるものではない。
 (実験例1)
 まず、誘電体膜の形成に必要なターゲットを以下のようにして作製した。
 ターゲット作製用の原料粉末として、Bi、ZnO、Nbの粉末を準備した。これらの粉末を、表1に示す実施例1~10および比較例1~9の組成となるように秤量した。秤量した原料粉末と水とφ2mmのZrOビーズとを、容積が1Lのポリプロピレン製広口ポットに入れて湿式混合を20時間行った。その後、混合粉末スラリーを100℃で20時間乾燥させ、得られた混合粉末をAl坩堝に入れ、大気中800℃で5時間保持する焼成条件で仮焼を行い、仮焼粉末を得た。
 得られた仮焼粉末を乳鉢に入れ、バインダとして濃度6wt%のPVA(ポリビニルアルコール)水溶液を、仮焼粉末に対して4wt%となるように添加し、乳棒を使用して造粒粉を作製した。作製した造粒粉を、厚みが5mm程度となるようにφ20mmの金型に投入し、一軸加圧プレス機を使用して加圧成形を行い成形体を得た。成形条件は、圧力を2.0×10Pa、温度を室温とした。
 その後、得られた成形体について、昇温速度を100℃/時間、保持温度を400℃、温度保持時間を4時間とし、常圧の大気中で脱バインダ処理を行った。続いて、昇温速度を200℃/時間、保持温度を1000℃~1200℃、温度保持時間を12時間とし、常圧の大気中で焼成を行い、焼結体を得た。
 得られた焼結体の厚さが4mmとなるように、円筒研磨機で両面を研磨し、誘電体膜を形成するためのターゲットを得た。
 続いて、350μm厚のSi単結晶基板の表面に6μm厚の絶縁層としてのSiOを備えた10mm×10mm角の基板を準備した。この基板の表面に、下地層としてのTi薄膜を20nmの厚さとなるようにスパッタリング法で形成した。
 次いで、上記で形成したTi薄膜上に下部電極としてのPt薄膜を4μmの厚さとなるようにスパッタリング法で形成した。
 形成したTi/Pt薄膜(下地層および下部電極)に対し、昇温温度を400℃/分、保持温度を700℃、温度保持時間を0.5時間、雰囲気を酸素雰囲気とし常圧下で熱処理を行った。
 熱処理後のTi/Pt薄膜上に誘電体膜を形成した。本実施例では、上記で作製したターゲットを用いて、下部電極上に400nmの厚さとなるようにPLD法で誘電体膜を形成した。PLD法による成膜条件は、酸素圧を1Paとし、レーザーパワーを3J/cmとし、レーザーパルス周波数を10Hzとし、成膜温度は室温とした。また、下部電極の一部を露出させるために、メタルマスクを使用して、誘電体膜が成膜されない領域を形成した。誘電体膜を形成した後、当該誘電体膜に対し、酸素雰囲気下で昇温速度を1000℃/分とし表1に示した温度で1分保持する急速加熱アニール処理(Rapid Thermal Anneal:RTA)を施した。
 次いで、得られた誘電体膜上に、蒸着装置を使用して上部電極であるAg薄膜を形成した。上部電極の形状を、メタルマスクを使用して直径100μm、厚さ100nmとなるように形成することで、図1に示す構成を有する薄膜コンデンサの試料(実施例1~29および比較例1~6)を得た。
 なお、誘電体膜の組成は、すべての試料について、WD-XRF(波長分散型蛍光X線元素分析)装置(リガク社製ZSX-100e)を用いて、室温において分析を行い、表1に記載の組成と一致していることを確認した。また、誘電体膜の厚みは、薄膜コンデンサをFIBで掘削し、得られた断面をSEM(走査型電子顕微鏡)で観察して測長した値とした。
 得られたすべての薄膜コンデンサ試料について、比誘電率εr、Q値および静電容量の温度係数Tccの測定を、下記に示す方法によって行った。また、誘電体膜を構成する誘電体組成物の構成相の同定を下記に示す方法によって行った。
 (比誘電率およびQ値)
 比誘電率およびQ値は、薄膜コンデンサ試料に対し、基準温度25℃において、RFインピーダンス/マテリアル・アナライザ(Agilent社製4991A)にて、周波数2GHz、入力信号レベル(測定電圧)0.5Vrmsの条件下で測定された静電容量と、上記で得られた誘電体膜の厚みと、から算出した。本実施例では、比誘電率は高い方が好ましく、比誘電率が100以上である試料を良好であると判断した。また、Q値は高い方が好ましく、Q値が1000以上である試料を良好であると判断した。結果を表1に示す。
 (静電容量の温度係数(Tcc))
 静電容量の温度係数は、恒温槽を用いて-55℃から125℃まで25℃毎に測定温度を変えて静電容量を測定した以外は、上記と同様に測定温度における静電容量を測定し、基準温度である25℃での静電容量に対する変化率として算出した(単位ppm/℃)。また、静電容量の温度係数は小さい方が好ましく、静電容量の温度係数の絶対値(|Tcc|)が30ppm/℃以内である試料を良好であると判断した。結果を表1に示す。
 (構成相の同定)
 誘電体組成物の構成相の同定は、誘電体薄膜に対してX線回折を行い、得られるX線回折チャートにおいて、回折角2θが27°以上30°以下の範囲に現れる(222)面の回折ピークの半値幅を算出することにより行った。X線回折は、X線源としてCu-Kα線を用い、その測定条件は、電圧が45kV、電流が200mAで、走査速度が20deg/minであった。本実施例では、半値幅が0.35°未満である場合には、誘電体組成物が結晶相単相であると判断し、半値幅が0.35°以上2.0°以下である場合には、誘電体組成物が結晶相とアモルファス相との混相であると判断し、半値幅が2.0°超である場合には、誘電体組成物がアモルファス相単相であると判断した。結果を表1に示す。
 また、実施例4の試料に対してTEM観察を行った。得られた複合酸化物のTEM像を図2に示す。なお、図2において、白線で囲まれた領域がアモルファス相である。図2において、アモルファス相を示す白線は、アモルファス相を明確に示すために追加した線であり、TEM像において、アモルファス相と結晶相との境界が白線として現れる訳ではない。
Figure JPOXMLDOC01-appb-T000001
 表1より、Bi、ZnおよびNbを含む複合酸化物において、「x」、「y」および「z」の関係が上述した範囲内であり、かつパイロクロア型結晶構造を有する結晶相と、その類似構造を有するアモルファス相と、の混相である試料は、厚みが400nmの薄膜であるにもかかわらず、高周波領域(2GHz)において高い比誘電率εr(100以上)、高い品質係数Q値(1000以上)、および、良好な温度特性(|Tcc|≦30ppm/℃)を有することが確認できた。
 また、図2より、半値幅の値により結晶相とアモルファス相との混相であると判断された試料について、TEM観察により、複合酸化物が結晶相とアモルファス相との混相を有していることが視覚的に確認できた。
 さらに、Znの含有割合(「y」)を限定することにより、高い比誘電率εrおよび高い品質係数Q値を維持しつつ、さらに良好な温度特性(|Tcc|≦15ppm/℃)を有することが確認できた。
 また、「x/z」を大きくする、すなわち、Biの含有割合を大きくすることにより、高い品質係数Q値および良好な温度特性を維持しつつ、より高い比誘電率εr(120以上)が得られることが確認できた。
 また、「x/z」を1に近づける、すなわち、Biの含有割合とNbの含有割合とをほぼ同程度とすることにより、高い比誘電率εrおよび良好な温度特性を維持しつつ、より高い品質係数Q値(1500以上)が得られることが確認できた。
 本発明によれば、高周波領域において比誘電率およびQ値が高く、かつ所定の温度範囲において容量温度係数が小さい誘電体組成物が得られる。このような誘電体組成物は、薄膜状の誘電体膜として好適であり、高周波用の電子部品、たとえば、バラン、カプラ、フィルタ、あるいは、フィルタを組み合わせたデュプレクサ、ダイプレクサ等に好適である。
10… 薄膜コンデンサ
 1… 基板
 2… 下地層
 3… 下部電極
 4… 上部電極
 5… 誘電体膜
                 
                 

Claims (9)

  1.  ビスマスと亜鉛とニオブとを含む複合酸化物を有する誘電体組成物であって、
     前記誘電体組成物が、前記複合酸化物から構成されパイロクロア型結晶構造を有する結晶相と、アモルファス相と、を有し、
     前記複合酸化物を、組成式BiZnNb1.75+δで表した場合、前記x、yおよびzは、x+y+z=1.00、0.20≦y≦0.50、2/3≦x/z≦3/2である関係を満足することを特徴とする誘電体組成物。
  2.  前記アモルファス相が、前記複合酸化物と同じ組成を有することを特徴とする請求項1に記載の誘電体組成物。
  3.  ビスマスと亜鉛とニオブとを含む複合酸化物を有する誘電体組成物であって、
     前記複合酸化物を、組成式BiZnNb1.75+δで表した場合、前記x、yおよびzは、x+y+z=1.00、0.20≦y≦0.50、2/3≦x/z≦3/2である関係を満足し、
     Cu-Kα線をX線源とするX線回折測定により得られる前記誘電体組成物のX線回折チャートにおいて、回折角2θが27°以上30°以下の範囲に現れる(222)面の回折ピークの半値幅が0.35°以上2.0°以下であることを特徴とする誘電体組成物。
  4.  前記誘電体組成物が、パイロクロア型結晶構造を有する結晶相と、アモルファス相と、を有することを特徴とする請求項3に記載の誘電体組成物。
  5.  前記yが、0.30≦y≦0.50である関係を満足することを特徴とする請求項1から4のいずれかに記載の誘電体組成物。
  6.  前記xおよびzが、1.20≦x/z≦1.50である関係を満足することを特徴とする請求項1から5のいずれかに記載の誘電体組成物。
  7.  前記xおよびzが、0.90≦x/z≦1.10である関係を満足することを特徴とする請求項1から5のいずれかに記載の誘電体組成物。
  8.  請求項1から7のいずれかに記載の誘電体組成物を含む誘電体膜を備える電子部品。
  9.  前記誘電体膜が、誘電体堆積膜であることを特徴とする請求項8に記載の電子部品。
                     
                     
PCT/JP2019/010904 2018-03-28 2019-03-15 誘電体組成物および電子部品 WO2019188435A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980022603.2A CN111902883B (zh) 2018-03-28 2019-03-15 电介质组合物及电子部件
JP2020510664A JP7188438B2 (ja) 2018-03-28 2019-03-15 誘電体組成物および電子部品
US17/042,523 US11380482B2 (en) 2018-03-28 2019-03-15 Dielectric composition and electronic component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018062933 2018-03-28
JP2018-062933 2018-03-28

Publications (1)

Publication Number Publication Date
WO2019188435A1 true WO2019188435A1 (ja) 2019-10-03

Family

ID=68061513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010904 WO2019188435A1 (ja) 2018-03-28 2019-03-15 誘電体組成物および電子部品

Country Status (4)

Country Link
US (1) US11380482B2 (ja)
JP (1) JP7188438B2 (ja)
CN (1) CN111902883B (ja)
WO (1) WO2019188435A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7333160B2 (ja) 2017-09-28 2023-08-24 大日本印刷株式会社 高摺動性樹脂成形体
CN111902883B (zh) * 2018-03-28 2022-04-08 Tdk株式会社 电介质组合物及电子部件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04285046A (ja) * 1991-03-12 1992-10-09 Matsushita Electric Ind Co Ltd 誘電体磁器組成物
JP2007129232A (ja) * 2005-11-03 2007-05-24 Samsung Electro Mech Co Ltd 薄膜キャパシタを内蔵した印刷回路基板の製造方法及びそれにより製造された印刷回路基板
JP2016179908A (ja) * 2015-03-23 2016-10-13 Tdk株式会社 誘電体磁器組成物、電子部品および通信機器

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5449652A (en) * 1993-06-04 1995-09-12 Battelle Memorial Institute Ceramic compositions for BZN dielectric resonators
US6395663B1 (en) * 2000-06-16 2002-05-28 National Science Council Low temperature sintered BI2O3-ZNO-NB2O5 ceramics and method for its formation
JP4285046B2 (ja) 2003-04-02 2009-06-24 日産自動車株式会社 車体部品の搭載装置
WO2006105077A2 (en) * 2005-03-28 2006-10-05 Massachusetts Institute Of Technology Low voltage thin film transistor with high-k dielectric material
KR100755603B1 (ko) * 2005-06-30 2007-09-06 삼성전기주식회사 내장형 박막 캐패시터, 적층구조물 및 제조방법
DE102006024231B4 (de) 2006-05-23 2010-01-28 Epcos Ag Keramisches Material, gesinterte Keramik, Verfahren zur Herstellung und Verwendung der Keramik
CN101693988A (zh) * 2009-10-20 2010-04-14 西安交通大学 一种用于嵌入式电容器的铋锌铌薄膜的制备方法
JP2014175453A (ja) * 2013-03-08 2014-09-22 Japan Science & Technology Agency 酸化物層及び酸化物層の製造方法、並びにその酸化物層を備えるキャパシタ、半導体装置、及び微小電気機械システム
WO2014148336A1 (ja) * 2013-03-22 2014-09-25 独立行政法人科学技術振興機構 誘電体層及び誘電体層の製造方法、並びに固体電子装置及び固体電子装置の製造方法
WO2015172138A1 (en) * 2014-05-09 2015-11-12 The Penn State Research Foundation Single phase lead-free cubic pyrochlore bismuth zinc niobate-based dielectric materials and processes for manufacture
JP5932163B1 (ja) 2014-07-25 2016-06-08 国立大学法人北陸先端科学技術大学院大学 酸化物誘電体及びその製造方法、並びに固体電子装置及びその製造方法
US9567263B2 (en) * 2014-10-27 2017-02-14 Tdk Corporation Dielectric composition and electronic component
JP6455343B2 (ja) * 2015-06-29 2019-01-23 Tdk株式会社 誘電体組成物および電子部品
JP6565377B2 (ja) * 2015-06-29 2019-08-28 Tdk株式会社 誘電体組成物および電子部品
CN106495694A (zh) * 2016-09-30 2017-03-15 西安交通大学 铌锌酸铋微波介质薄膜的制备方法
JP7028020B2 (ja) * 2018-03-28 2022-03-02 Tdk株式会社 誘電体組成物および電子部品
CN111902883B (zh) * 2018-03-28 2022-04-08 Tdk株式会社 电介质组合物及电子部件
US11508494B2 (en) * 2019-03-15 2022-11-22 Tdk Corporation Dielectric composition and electronic component
JP7172791B2 (ja) * 2019-03-26 2022-11-16 Tdk株式会社 誘電体膜および電子部品
JP7180492B2 (ja) * 2019-03-26 2022-11-30 Tdk株式会社 誘電体膜および電子部品

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04285046A (ja) * 1991-03-12 1992-10-09 Matsushita Electric Ind Co Ltd 誘電体磁器組成物
JP2007129232A (ja) * 2005-11-03 2007-05-24 Samsung Electro Mech Co Ltd 薄膜キャパシタを内蔵した印刷回路基板の製造方法及びそれにより製造された印刷回路基板
JP2016179908A (ja) * 2015-03-23 2016-10-13 Tdk株式会社 誘電体磁器組成物、電子部品および通信機器

Also Published As

Publication number Publication date
CN111902883A (zh) 2020-11-06
JP7188438B2 (ja) 2022-12-13
US20210012961A1 (en) 2021-01-14
JPWO2019188435A1 (ja) 2021-05-13
CN111902883B (zh) 2022-04-08
US11380482B2 (en) 2022-07-05

Similar Documents

Publication Publication Date Title
US9748018B2 (en) Dielectric composition and electronic component
US9567263B2 (en) Dielectric composition and electronic component
JP2015195342A (ja) 誘電体組成物および電子部品
US9745225B2 (en) Dielectric composition and electronic component
WO2019188435A1 (ja) 誘電体組成物および電子部品
KR102374508B1 (ko) 유전체막 및 전자 부품
KR102360749B1 (ko) 유전체막 및 전자 부품
JP6575185B2 (ja) 誘電体組成物および電子部品
CN111689776B (zh) 电介质组合物和电子部件
JP7211182B2 (ja) 誘電体組成物および電子部品
CN110382441B (zh) 电介质组合物和电子器件
CN104637675B (zh) 介电组合物、介电膜和电子部件
JP7363535B2 (ja) 誘電体組成物および電子部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775967

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510664

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19775967

Country of ref document: EP

Kind code of ref document: A1