CN107353002A - 可逆且荧光可控的光致变色压电材料及其制备方法 - Google Patents

可逆且荧光可控的光致变色压电材料及其制备方法 Download PDF

Info

Publication number
CN107353002A
CN107353002A CN201710682260.5A CN201710682260A CN107353002A CN 107353002 A CN107353002 A CN 107353002A CN 201710682260 A CN201710682260 A CN 201710682260A CN 107353002 A CN107353002 A CN 107353002A
Authority
CN
China
Prior art keywords
piezoelectric
reversible
photochromic
controllable
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710682260.5A
Other languages
English (en)
Inventor
孙海勤
张瑶
张奇伟
郝喜红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inner Mongolia University of Science and Technology
Original Assignee
Inner Mongolia University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inner Mongolia University of Science and Technology filed Critical Inner Mongolia University of Science and Technology
Priority to CN201710682260.5A priority Critical patent/CN107353002A/zh
Publication of CN107353002A publication Critical patent/CN107353002A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及可逆且荧光可控的光致变色压电材料及其制备方法,所述压电材料的化学式组成为(Na0.52K0.48)(0.92‑x‑y)Li0.08HoxYbyNbO3;其中,0≤x≤0.02,0≤y≤0.08。本发明的可逆且荧光可控的光致变色压电材料,在可见光辐照下,压电材料由原来的绿色转变成深灰色,在200℃~300℃热处理1min~20min条件下,所述压电材料的颜色可以发生可逆转变;所述压电材料的荧光强度随可见光辐照时间的进行调节,发光强度发生明显的改变,最大调控程度达到78%。

Description

可逆且荧光可控的光致变色压电材料及其制备方法
技术领域
本发明涉及一种可逆且荧光可控的光致变色压电材料及其制备方法。
背景技术
自从1973年德布首次报道了过渡金属氧化物氧化钨具有光致变色性质以来,以过渡金属氧化物为代表的无机光致变色材料在高内存信息显示装置,光转换材料和器件等领域的应用前景十分广泛,越来越多的科研工作者致力于对高效的固态光致变色材料的发展与研究。无机光致变色材料主要集中在过渡金属氧化物,多金属氧酸盐,碱金属卤化物等体系。与电致变色材料相比,无机光致变色材料不需要应用外部电场来调控变色现象,而且可以依靠可见光辐照调控颜色改变来取代外部电场。另一方面,与有机光致变色材料相比,具有热稳定性高、变色持续时间长、抗氧化性强,受环境影响小等优点。所以无机光致变色材料在许多领域比有机光致变色材料的应用更广泛。例如无机光致变色材料可应用于玻璃材料、晶体材料、复合薄膜、纳米材料等领域。
现代材料科学与信息技术的发展表明,集成化、低维化、智能化是现代材料发展的趋势和信息技术发展的迫切需要。所以通过不同结构、不同组成、不同功能的结合,可以使材料的基本特性得到互补、优化和协同增强,发现新概念,产生新功能,形成新材料。因此光致变色压电多功能材料具有相当可观的科学研究价值和市场竞争力。例如在实际的信息存储过程中,为了避免信息的“写入”,“读取”以及“擦除”之间的干扰和破坏,添加有荧光效应的镧系稀土离子能够实现无破坏性读出。
压电材料,由于其独特的压电效应,电光效应,热释电效应和非线性光学效应,广泛的应用于驱动器,传感器,全息数据存储和光波长变换等器件中。因此,通过两种或者多种功能材料的有效结合制备的绿色环保的多功能材料极大顺应了元器件小型化和智能化的科技发展的新时代潮流。本专利涉及一种独特的具有压电特性的新型环保无机光致变色材料:具有钙钛矿结构的碱式铌酸盐((Na0.52K0.48)0.92Li0.08NbO3),以镧系离子作为发光中心的激活剂或敏化剂的单掺(Ho3+)或共掺杂(Ho3+和Yb3+),有效的调制材料的光致发光,光致变色和压电性质,应用在超高密度光学数据存储和光调制器中。基于以上的构想,结合课题组的调研数据,至今为止在钙钛矿结构的压电材料光致变色特性方面的研究和报道并未出现。
发明内容
本发明的一个目的在于提出一种可逆且荧光可控的光致变色压电材料。
本发明的可逆且荧光可控的光致变色压电材料,其化学式组成为(Na0.52K0.48)(0.92-x-y)Li0.08HoxYbyNbO3;其中,0≤x≤0.02,0≤y≤0.08。
本发明的可逆且荧光可控的光致变色压电材料,在可见光辐照下(400nm~500nm),(Na0.52K0.48)(0.92-x-y)Li0.08HoxYbyNbO3材料由原来的绿色转变成深灰色,在200℃~300℃热处理1min~20min条件下,材料的颜色可以发生可逆转变;(Na0.52K0.48)(0.92-x)Li0.08HoxNbO3材料的荧光强度随可见光辐照时间的进行调节,发光强度发生明显的改变,最大调控程度达到77%。(Na0.52K0.48)(0.915-y)Li0.08Ho0.005YbyNbO3材料的荧光强度随可见光辐照时间的进行调节,发光强度发生明显的改变,最大调控程度达到78%。
本发明的另一个目的在于提出所述的可逆且荧光可控的光致变色压电材料的制备方法。
所述的可逆且荧光可控的光致变色压电材料的制备方法,包括如下步骤:S101:按照化学计量比称取Na2CO3、K2CO3、Li2CO3、Nb2O5、Ho2O3和Yb2O3;S102:将步骤S101中称取的原料按照质量比为原料:锆球:乙醇为1:(1.8~2.2):(2.8~3.2)放入球磨罐中球磨22h~26h,然后干燥;S103:将所述步骤S102得到的物料在2℃/min~5℃/min的升温速率下加热至730℃~780℃,预烧5h~8h,然后在2℃/min~5℃/min的升温速率下加热至290℃~310℃,再冷却至室温;S104:将所述步骤S103得到的产物冷却至室温并研磨成粉末,然后将其加入球磨罐中球磨22h~26h,然后干燥;S105:用聚乙烯醇对所述步骤S104的产物进行造粒,并通过成型模具将其压制成陶瓷生坯片;S106:将所述陶瓷生坯片经过排粘处理后,在2℃/min~5℃/min的升温速率下加热至1000℃~1100℃并保温1h~3h,得到可逆且荧光可控的光致变色压电材料。
另外,根据本发明上述实施例的可逆且荧光可控的光致变色压电材料的制备方法,还可以具有如下附加的技术特征:
进一步地,在所述步骤S102中,所述球磨罐的材料为聚四氟乙烯。
进一步地,在所述步骤S102中,干燥的温度为95℃~105℃;在所述步骤S104中,干燥的温度为95℃~105℃。
进一步地,在所述步骤S105中,所述聚乙烯醇的质量百分含量为8wt.%~10wt.%。
进一步地,在所述步骤S105中,造粒的压力为10MPa~100MPa。
进一步地,在所述步骤S106中,排粘温度为540℃~560℃。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
图1是所述可逆且荧光可控的光致变色压电材料样品的表面显微形貌图;
图2是所述可逆且荧光可控的光致变色压电材料在可见光辐照前后的图片;
图3是所述可逆且荧光可控的光致变色压电材料在可见光辐照前后的发射光谱谱图的变化;
图4是所述可逆且荧光可控的光致变色压电材料在可见光辐照前后的发射光谱谱图的变化。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
实施例1
实施例1提出了一种可逆且荧光可控的光致变色压电材料,其化学式组成为(Na0.52K0.48)0.905Li0.08Ho0.005Yb0.01NbO3;其中,x=0.005,y=0.01。
实施例1的可逆且荧光可控的光致变色压电材料的制备方法包括如下步骤:
(1)按照化学计量比,称取原料2.5065g Na2CO3、3.0323g K2CO3、0.2986g Li2CO3、13.3573g Nb2O5、0.0946g Ho2O3和0.1972g Yb2O3
(2)按照质量比为原料:锆球:乙醇为1:2:3放入聚四氟乙烯球磨罐中球磨24h,球磨后原料置于100℃温度下烘干,获得(Na0.52K0.48)0.905Li0.08Ho0.005Yb0.01NbO3粉体。
(3)将所述步骤(2)得到的物料在3℃/min的升温速率下加热至750℃,预烧6h,然后在3℃/min的升温速率下加热至300℃,再冷却至室温。
(4)将所述步骤(3)得到的产物冷却至室温并研磨成粉末,然后将其加入球磨罐中球磨24h,然后在100℃温度下干燥。
(5)用质量百分含量为8wt.%的聚乙烯醇对所述步骤(4)的产物进行造粒,干法压制成直径生坯片,并通过成型模具将其压制成陶瓷生坯片。
(6)将所述陶瓷生坯片经过压力为50MPa的排粘处理后,在3℃/min的升温速率下加热至1050℃并保温2h,得到可逆且荧光可控的光致变色压电材料。
实施例2
实施例2提出了一种可逆且荧光可控的光致变色压电材料,其化学式组成为(Na0.52K0.48)0.895Li0.08Ho0.005Yb0.02NbO3;其中,x=0.005,y=0.02。
实施例2的可逆且荧光可控的光致变色压电材料的制备方法,按照化学计量比称取原料Na2CO3、K2CO3、Li2CO3、Nb2O5、Ho2O3和Yb2O3,其余试验条件与实施例1一致。
实施例3
实施例3提出了一种可逆且荧光可控的光致变色压电材料,其化学式组成为(Na0.52K0.48)0.875Li0.08Ho0.005Yb0.04NbO3;其中,x=0.005,y=0.04。
实施例3的可逆且荧光可控的光致变色压电材料的制备方法,按照化学计量比称取原料Na2CO3、K2CO3、Li2CO3、Nb2O5、Ho2O3和Yb2O3,其余试验条件与实施例1一致。
实施例1-3配方所制得的(Na0.52K0.48)(0.92-x)Li0.08HoxNbO3陶瓷材料的显微结构图片如图1所示,结构均匀,致密度高。从图2中可以看出,(Na0.52K0.48)(0.92-x)Li0.08HoxNbO3材料在辐照前呈现浅绿色,当在太阳光辐照下,样品变为浅灰色,并且在200-300℃温度下,浅灰色的样品又可以恢复到起始的颜色。在图3中,(Na0.52K0.48)(0.92-x)Li0.08HoxNbO3材料随辐照时间的增加,荧光发射的强度逐渐减弱,最大的降低程度达到77%左右。在图4中,(Na0.52K0.48)(0.915-y)Li0.08Ho0.005YbyNbO3随辐照时间的增加,荧光发射的强度逐渐减弱,最大的降低程度达到78%左右。
本发明的可逆且荧光可控的光致变色压电材料,在可见光辐照下(400nm~500nm),(Na0.52K0.48)(0.92-x-y)Li0.08HoxYbyNbO3材料由原来的绿色转变成深灰色,在200℃~300℃热处理1min~20min条件下,材料的颜色可以发生可逆转变;(Na0.52K0.48)(0.92-x)Li0.08HoxNbO3材料的荧光强度随可见光辐照时间的进行调节,发光强度发生明显的改变,最大调控程度达到77%。(Na0.52K0.48)(0.915-y)Li0.08Ho0.005YbyNbO3材料的荧光强度随可见光辐照时间的进行调节,发光强度发生明显的改变,最大调控程度达到78%。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (7)

1.一种可逆且荧光可控的光致变色压电材料,其特征在于,其化学式组成为(Na0.52K0.48)(0.92-x-y)Li0.08HoxYbyNbO3;其中,0≤x≤0.02,0≤y≤0.08。
2.权利要求1所述的可逆且荧光可控的光致变色压电材料的制备方法,其特征在于,包括如下步骤:
S101:按照化学计量比称取Na2CO3、K2CO3、Li2CO3、Nb2O5、Ho2O3和Yb2O3
S102:将步骤S101中称取的原料按照质量比为原料:锆球:乙醇为1:(1.8~2.2):(2.8~3.2)放入球磨罐中球磨22h~26h,然后干燥;
S103:将所述步骤S102得到的物料在2℃/min~5℃/min的升温速率下加热至730℃~780℃,预烧5h~8h,然后在2℃/min~5℃/min的升温速率下加热至290℃~310℃,再冷却至室温;
S104:将所述步骤S103得到的产物冷却至室温并研磨成粉末,然后将其加入球磨罐中球磨22h~26h,然后干燥;
S105:用聚乙烯醇对所述步骤S104的产物进行造粒,并通过成型模具将其压制成陶瓷生坯片;
S106:将所述陶瓷生坯片经过排粘处理后,在2℃/min~5℃/min的升温速率下加热至1000℃~1100℃并保温1h~3h,得到可逆且荧光可控的光致变色压电材料。
3.根据权利要求2所述的可逆且荧光可控的光致变色压电材料的制备方法,其特征在于,在所述步骤S102中,所述球磨罐的材料为聚四氟乙烯。
4.根据权利要求2所述的可逆且荧光可控的光致变色压电材料的制备方法,其特征在于,在所述步骤S102中,干燥的温度为95℃~105℃;在所述步骤S104中,干燥的温度为95℃~105℃。
5.根据权利要求2所述的可逆且荧光可控的光致变色压电材料的制备方法,其特征在于,在所述步骤S105中,所述聚乙烯醇的质量百分含量为8wt.%~10wt.%。
6.根据权利要求2所述的可逆且荧光可控的光致变色压电材料的制备方法,其特征在于,在所述步骤S105中,造粒的压力为10MPa~100MPa。
7.根据权利要求2所述的可逆且荧光可控的光致变色压电材料的制备方法,其特征在于,在所述步骤S106中,排粘温度为540℃~560℃。
CN201710682260.5A 2017-08-10 2017-08-10 可逆且荧光可控的光致变色压电材料及其制备方法 Pending CN107353002A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710682260.5A CN107353002A (zh) 2017-08-10 2017-08-10 可逆且荧光可控的光致变色压电材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710682260.5A CN107353002A (zh) 2017-08-10 2017-08-10 可逆且荧光可控的光致变色压电材料及其制备方法

Publications (1)

Publication Number Publication Date
CN107353002A true CN107353002A (zh) 2017-11-17

Family

ID=60286636

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710682260.5A Pending CN107353002A (zh) 2017-08-10 2017-08-10 可逆且荧光可控的光致变色压电材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107353002A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108840674A (zh) * 2018-07-19 2018-11-20 宁波大学 基于光致变色的光存储材料及其制备方法
CN113173786A (zh) * 2021-05-14 2021-07-27 桂林电子科技大学 一种透明荧光铁电陶瓷材料及其制备方法和应用
CN113185287A (zh) * 2021-03-30 2021-07-30 南昌大学 一种铌酸钠钾-铌酸锂压电晶体及其制备方法
CN113563883A (zh) * 2021-07-30 2021-10-29 内蒙古科技大学 稀土铌酸盐材料及其制备方法和作为自激发荧光调控光致变色材料的应用
JPWO2022024436A1 (zh) * 2020-07-28 2022-02-03
CN114507064A (zh) * 2020-11-16 2022-05-17 中国民航大学 一种新型光致变色材料及其制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101289318A (zh) * 2008-06-12 2008-10-22 北京科技大学 一种钠离子补偿铌酸钾钠基无铅压电陶瓷及其制备方法
CN101429027A (zh) * 2008-12-12 2009-05-13 清华大学 一种铌酸钾钠基无铅压电陶瓷及其低温烧结制备方法
CN102276248A (zh) * 2011-04-22 2011-12-14 同济大学 铋层状类钙钛矿结构的氧化物上转换发光压电材料及其制备方法
CN102491752A (zh) * 2011-11-18 2012-06-13 河南科技大学 一种锂、锑掺杂的铌酸钾钠无铅压电陶瓷的制备方法
CN102826761A (zh) * 2011-06-17 2012-12-19 中国石油大学(华东) 一种具有湿度敏感特性的无铅压电材料
CN103265954A (zh) * 2013-05-16 2013-08-28 同济大学 一种铌酸钾钠基氧化物上转换发光材料及制备方法
CN103492343A (zh) * 2011-02-22 2014-01-01 Fdk株式会社 碱金属铌酸盐基压电材料及其制备方法
CN103787658A (zh) * 2014-02-09 2014-05-14 内蒙古科技大学 无铅压电铌酸钾钠基光-电多功能材料及制备方法
CN103880421A (zh) * 2014-01-29 2014-06-25 内蒙古科技大学 一种高效铌酸钾钠基无铅压电荧光材料及制备方法
US20150376068A1 (en) * 2013-02-06 2015-12-31 Agency for Science, Tecnology and Research Electro-optic ceramic materials
CN105254298A (zh) * 2015-09-30 2016-01-20 中国科学院上海硅酸盐研究所 一种高压电性能的锂掺杂铌酸钾钠单晶及其制备方法
CN105503186A (zh) * 2016-01-11 2016-04-20 内蒙古科技大学 荧光可控的光致变色铁电材料及其制备方法
CN106085407A (zh) * 2016-06-03 2016-11-09 内蒙古科技大学 荧光可控的光致变色多功能材料及其制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101289318A (zh) * 2008-06-12 2008-10-22 北京科技大学 一种钠离子补偿铌酸钾钠基无铅压电陶瓷及其制备方法
CN101429027A (zh) * 2008-12-12 2009-05-13 清华大学 一种铌酸钾钠基无铅压电陶瓷及其低温烧结制备方法
CN103492343A (zh) * 2011-02-22 2014-01-01 Fdk株式会社 碱金属铌酸盐基压电材料及其制备方法
CN102276248A (zh) * 2011-04-22 2011-12-14 同济大学 铋层状类钙钛矿结构的氧化物上转换发光压电材料及其制备方法
CN102826761A (zh) * 2011-06-17 2012-12-19 中国石油大学(华东) 一种具有湿度敏感特性的无铅压电材料
CN102491752A (zh) * 2011-11-18 2012-06-13 河南科技大学 一种锂、锑掺杂的铌酸钾钠无铅压电陶瓷的制备方法
US20150376068A1 (en) * 2013-02-06 2015-12-31 Agency for Science, Tecnology and Research Electro-optic ceramic materials
CN103265954A (zh) * 2013-05-16 2013-08-28 同济大学 一种铌酸钾钠基氧化物上转换发光材料及制备方法
CN103880421A (zh) * 2014-01-29 2014-06-25 内蒙古科技大学 一种高效铌酸钾钠基无铅压电荧光材料及制备方法
CN103787658A (zh) * 2014-02-09 2014-05-14 内蒙古科技大学 无铅压电铌酸钾钠基光-电多功能材料及制备方法
CN105254298A (zh) * 2015-09-30 2016-01-20 中国科学院上海硅酸盐研究所 一种高压电性能的锂掺杂铌酸钾钠单晶及其制备方法
CN105503186A (zh) * 2016-01-11 2016-04-20 内蒙古科技大学 荧光可控的光致变色铁电材料及其制备方法
CN106085407A (zh) * 2016-06-03 2016-11-09 内蒙古科技大学 荧光可控的光致变色多功能材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KE WANG ET AL.: "Low-Temperature Sintering of Li-Modified (K, Na)NbO3 Lead-Free Ceramics: Sintering Behavior, Microstructure, and Electrical Properties", 《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108840674A (zh) * 2018-07-19 2018-11-20 宁波大学 基于光致变色的光存储材料及其制备方法
CN108840674B (zh) * 2018-07-19 2021-02-09 宁波大学 基于光致变色的光存储材料及其制备方法
JPWO2022024436A1 (zh) * 2020-07-28 2022-02-03
WO2022024436A1 (ja) * 2020-07-28 2022-02-03 国立研究開発法人産業技術総合研究所 圧電性および応力発光性を有する多機能性マルチピエゾ材料
JP7320888B2 (ja) 2020-07-28 2023-08-04 国立研究開発法人産業技術総合研究所 圧電性および応力発光性を有する多機能性マルチピエゾ材料
CN114507064A (zh) * 2020-11-16 2022-05-17 中国民航大学 一种新型光致变色材料及其制备方法
CN113185287A (zh) * 2021-03-30 2021-07-30 南昌大学 一种铌酸钠钾-铌酸锂压电晶体及其制备方法
CN113173786A (zh) * 2021-05-14 2021-07-27 桂林电子科技大学 一种透明荧光铁电陶瓷材料及其制备方法和应用
CN113173786B (zh) * 2021-05-14 2022-03-15 桂林电子科技大学 一种透明荧光铁电陶瓷材料及其制备方法和应用
CN113563883A (zh) * 2021-07-30 2021-10-29 内蒙古科技大学 稀土铌酸盐材料及其制备方法和作为自激发荧光调控光致变色材料的应用

Similar Documents

Publication Publication Date Title
CN107353002A (zh) 可逆且荧光可控的光致变色压电材料及其制备方法
Zhang et al. Large and reversible in-situ up-conversion photoluminescence modulation based on photochromism via electric-field and thermal stimulus in ferroelectrics
CN108017390B (zh) 基于稀土掺杂的无铅铁电光致色变材料及其制备方法和应用
Sun et al. Bi-induced photochromism and photo-stimulated luminescence with fast photochromic response for multi-mode dynamic anti-counterfeiting and optical information storage
Zhang et al. Reversible luminescence modulation and temperature‐sensing properties of Pr3+/Yb3+ codoped K0. 5Na0. 5NbO3 ceramics
CN110041074B (zh) 一种上转换发光透明铁电陶瓷材料及其制备方法和应用
Yu et al. Highly responsive photochromic behavior with large coloration contrast in Ba/Sm co-doped (K0. 5Na0. 5) NbO3 transparent ceramics
Qiu et al. Largely enhanced mechanoluminescence properties in Pr3+/Gd3+ co-doped LiNbO3 phosphors
Jia et al. Multicolor and multimode luminescent modulation via energy transfer engineering in Tb3+/Eu3+ co-doped (K0. 5Na0. 5) NbO3 transparent photochromic materials
Zheng et al. Molten Salt Shielded Synthesis of Monodisperse Layered CaZnOS‐Based Semiconductors for Piezophotonic and X‐Ray Detection Applications
Tang et al. Luminescence modulation of the Eu3+ doped Srn+ 1SnnO3n+ 1 (n= 1, 2, 5,∞) ceramics based on photochromism and its application in anti-counterfeiting technology
Yu et al. Developing" smart windows" for optical storage and temperature sensing based on KNN transparent ceramics
Huang et al. The color-tunable up-conversion photoluminescence properties of Na0. 5Bi0. 5TiO3: Yb3+/Tm3+ ceramics and its temperature sensing application based on the intrinsic defects
Lin et al. Expedient red emitting and transparency dual modulation in KNN-based transparent ceramics via sensitive photothermochromic behavior
Wu et al. How to realize ultrahigh photochromic performance for real-time optical recording in transparent ceramics
Liu et al. Er3+ and K0. 5Na0. 5NbO3 modified Ba0. 85Ca0. 15Ti0. 9Zr0. 1O3: Novel translucent ceramics with reversible photochromism
Tang et al. Rapid high-contrast reversible coloration of Ba 3 MgSi 2 O 8: Pr 3+ photochromic materials for rewritable light-printing
Lu et al. Multilevel luminescence of Er3+/Pr3+ co-doped Ca2Nb2O7 ceramics and composite films for optical anti-counterfeiting
Zhu et al. Optical temperature sensing and luminescent switching properties in Pr/Er‐doped (K0. 5Na0. 5) NbO3 materials
Lu et al. Defect regulation of terbium-doped Y2Zr2O7 transparent ceramic for wide-range multimode tunable light-shielding windows
Yu et al. (K0. 5Na0. 5) NbO3-based photochromic transparent ceramics for high-security dynamic anti-counterfeiting and optical storage applications
Zhang et al. Photochromic contrast optimization based on hafmium-based ceramics for optical information storage: component adjustment and ion-doping
Zuo et al. BaMg0· 28Zr0· 16Ta0· 56O3: Dy3+ an reversible inorganic photochromic material with large photochromic efficiency and high luminescence modulation
CN107418573A (zh) 一种上转换发光温度传感材料及其制备方法与应用
Lin et al. High-contrast photochromic properties with reversible luminescence modulation behaviors in Ba3MgSi2O8: Sm3+ ceramics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171117

RJ01 Rejection of invention patent application after publication