CN103492069A - 用于制备包含氧化铀作为活性组分的催化剂的方法 - Google Patents

用于制备包含氧化铀作为活性组分的催化剂的方法 Download PDF

Info

Publication number
CN103492069A
CN103492069A CN201280015614.6A CN201280015614A CN103492069A CN 103492069 A CN103492069 A CN 103492069A CN 201280015614 A CN201280015614 A CN 201280015614A CN 103492069 A CN103492069 A CN 103492069A
Authority
CN
China
Prior art keywords
powder
sintering
catalyst body
intermediate product
blank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201280015614.6A
Other languages
English (en)
Inventor
M·泽梅克
V·兰茨曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Areva GmbH
Original Assignee
Areva NP GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Areva NP GmbH filed Critical Areva NP GmbH
Publication of CN103492069A publication Critical patent/CN103492069A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • B01J37/14Oxidising with gases containing free oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/12Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及用于制备氧化铀催化剂本体的方法,具有如下步骤:a)在第一烧结过程中将纯度为至少50%的UO2+x-粉末(2)(其中x≤0.7)烧结成UO2+y-中间产物(14)(其中y≤0.25),b)用氧气氧化UO2+y-中间产物(14)并使其转化成U3O8-z-粉末(11)(其中z≤l),c)将U3O8-z-粉末(11)压制成具有与之后的催化剂本体(1)相应的形状的坯料(15),和d)在第二烧结过程中在含氧气的烧结气氛中在至少900℃下烧结坯料(15)。

Description

用于制备包含氧化铀作为活性组分的催化剂的方法
本发明涉及用于制备包含氧化铀作为活性组分的催化剂的方法。
氧化铀可以用作一系列氧化反应的氧化催化剂,例如如DE 102007 033 114 A1中所述,用于挥发性有机化合物的完全氧化,用于将一氧化碳氧化成二氧化碳,将异丁烯氧化成丙烯醛和将氯化氢氧化成氯。催化剂和氧化铀催化剂以各种方式制备,其中在载体上以液体形式或以前体(如铀二水合物)的水悬浮液的形式或通过CVD(化学气相沉积)或PVD(物理气相沉积)以气相方式施涂活性组分。
本发明的目的是提供氧化铀催化剂的替代性制备方法。
所述目的通过根据权利要求1所述的方法实现。本发明所基于的总体思路是由氧化铀制备具有高开放孔隙率的烧结体。不同于已知制备方法(其中必须首先提供合适的载体,例如Al2O3载体,然后为所述载体提供活性组分),根据本发明制备载体和活性组分结合的催化剂。这省去了制备成本和在载体上施涂活性组分的成本。此外,此处所讨论类型的铀材料是低放射性的,因此就清除例如过量的或变得不可使用的前体悬浮液或在制备前体时产生的废料而言,不会产生升高的、使制备昂贵的成本。
在第一烧结过程中将UO2+x-粉末(其中x≤0.7)烧结成UO2+y-中间产物(其中y≤0.25)(步骤a),所述UO2+x-粉末优选通过UF6、UO3、UN、UNH、U3O8或UF4的化学反应在干式或湿式转化方法中获得。UO2+x粉末优选在没有其他添加剂(例如金属氧化物如Al2O3或ZrO2)的情况下使用,然而可以包含至多50重量%的这些添加剂。中间产物为具有任意结构的成形体。然而也可以想到,UO2+x粉末在没有预先压实的情况下烧结,然而这出于工艺技术原因是不切实际的。符合目的的是制备中间产物,所述中间产物具有与之后的最终产物(即完成的催化剂本体)相同的形状。为了压制中间产物-坯料和为了下文进一步描述的压制催化剂本体的坯料,可以使用同一压制装置。
在随后的步骤b)中用氧气处理烧结的中间产物,其中UO2+y氧化成U3O8-z(其中z≤l)。由中间产物形成微细U3O8-z-粉末,所述微细U3O8-z-粉末的平均粒径例如在5μm至10μm范围内或通常在1至30μm范围内,其烧结活性相对于初始UO2-粉末降低。初始UO2-粉末的粉末粒子(其可以例如具有5μm至500μm的粒径)即各自由晶粒尺寸在例如50nm至300nm范围内的大量小晶粒形成,这意味着相对高的烧结活性,有利于制备更紧密的、具有低孔隙率的烧结体。在根据本发明的方法中,在第一烧结过程中将最初存在的晶粒融化成更大的晶粒/粒子,使得在第一烧结过程之后和同样地在步骤b)中氧化之后存在高达600倍大的晶粒,即晶粒尺寸为1μm至3μm的晶粒,这鉴于待制备的烧结体的高孔隙率或低密度是有利的。然而另一主要效果可能在于,具有正交晶体结构的U3O8-z的密度小于立方UO2+y的密度,因此在氧化之后造成原始UO2+y-颗粒的体积增大,其中粒子出现大量裂纹并且分解成更小的成分。由此在颗粒中产生大量空腔。
这造成在第二烧结过程中至少部分地保持空腔并且产生具有高开放孔隙率的催化剂本体。
从属权利要求中给出了上述方法的有利实施方案。
现在参考附图更详细地解释本发明。附图各自以高度示意性的形式显示:
图1显示了用作根据本发明的方法的初始粉末的UO2+x-粉末(其中x≤0.7),
图2显示了具有晶粒的初始粉末的UO2+x-颗粒,
图3显示了UO2+x-中间产物或U3O8-z-催化剂本体的坯料的制备,
图4显示了UO2+y-中间产物(其中y≤0.25)用氧气氧化,
图5显示了由UO2+y-粒子通过氧化产生的U3O8-z-颗粒(其中z≤l)。
为了制备根据本发明的例如圆柱状催化剂本体1,使用UO2-粉末2作为初始粉末,优选使用由六氟化铀(UF6)、三氧化铀(UO3)、硝酸铀(UN)、硝酸铀六水合物(UNH)、八氧化三铀(U3O8)或四氟化铀(UF4)通过湿式化学或干式化学转化获得的UO2-粉末。已知方法根据其中间步骤命名,例如AUC-方法(碳酸铵铀)或ADU-方法(重铀酸铵)。在干式化学转化方法中,UF6与水和氢气在气相中直接反应成二氧化铀。所述类型的UO2+x-粉末通常具有粉末颗粒3,所述粉末颗粒3具有5μm至500μm,然而通常在10μm至150μm范围内的平均粒径。粉末颗粒本身又是尺寸在约50nm至300nm范围内的大量晶粒4的聚集体。单个UO2+x颗粒3因此类似于由大量不同取向晶粒组成的构造。
首先在第一方法步骤(步骤a)中,在第一烧结过程中烧结UO2+x-粉末。
优选使用在制备核电站的核燃料芯块的过程中在铀浓缩时产生的贫化的UO2+x。将UO2+x-粉末2压制成例如圆柱状坯料5,其中出于该目的将UO2+x-粉末2装入具有圆柱形空腔6的模具7中,并用以箭头9的方向进入模具7的印模8压缩至通常5至7g/cm3的密度(图3)。还可以使用其他压缩方法,例如双轴压制、均衡压制等以及相应的其他压缩程度。UO2+x的理论密度为约11g/cm3。坯料5的烧结在炉(未示出)中进行从而获得UO2+y(其中y≤0.25)。为了保证上述情况,例如在包含H2的气氛中在1500℃至1800℃下烧结,或在包含CO2的气氛下在1100℃至1200℃下烧结。烧结之后则存在例如圆柱状UO2+y-烧结体作为中间产物14。
在随后的方法步骤(步骤b)中,紧接着烧结之后,在炉16(例如第一烧结过程所使用的炉)中将中间产物14氧化成U3O8-z(其中z≤l),其中U3O8-z分解成U3O8-z-粉末11。因此中间产物14的形状并不重要。当为中间产物14选择与最终产物(催化剂本体1)相同的形状时,可以对各个坯料的压制使用同一装置(模具7、印模8)。第一烧结过程的作用在于,在随后的氧化中获得的U3O8-z-粉末具有低烧结活性,这需要制备紧密性更低的、具有高孔隙率的烧结体。另一作用在于,具有比UO2更低的8.38g/cm3的密度的U3O8,这造成由UO2+y形成的U3O8-z-颗粒10膨胀,其中其部分分解成碎片12并在其中例如以裂纹的形式形成空腔13(参见图5)。氧化通常在300℃至600℃的温度下在例如3小时的时间段内进行。
在另一方法步骤(步骤c)中,将如上所述的U3O8-粉末11例如单轴压制成坯料15,所述坯料15具有通常为5g/cm3至6g/cm3的密度和与之后的催化剂本体1相应的形状。还可以使用其他压缩方法,例如双轴压制、均衡压制等以及其他压缩程度。催化剂本体1例如为直径为7mm且高度为10mm的圆柱体。可以在压制之前向U3O8-z-粉末加入压制助剂,例如0.2重量%的聚乙烯蜡。压制助剂也可以在制备中间产物14时使用。
在第二烧结过程(步骤d)中烧结以上述方式获得的坯料15,其中烧结在U3O8-组成范围保持不变的气氛中进行。保证上述情况的气氛包含氧气或由空气组成,其中在烧结过程中保持1000℃至1300℃的温度。最后获得具有高开放孔隙率和相应的大内表面积的催化剂本体1,催化反应可以在所述大内表面积上进行。
以上述方式制备的U3O8-z-催化剂本体1在空气中在直至约1000℃至1200℃下稳定。为了在还原条件下使用,可以在300℃至1000℃,优选400℃至600℃的温度下在含H2的气氛(例如H2、H2-N2、H2-Ar等)中还原性处理催化剂本体,从而使U3O8-z转化成UO2。虽然UO2作为多孔本体在空气中仅在直至约120℃下稳定,但是在还原性条件下在直至约1000℃下稳定。
实施例:
以上述方式和方法制备的圆柱形UO2-中间产物14在450℃下氧化3小时。由此产生的U3O8-粉末与0.2%压制助剂(PE-蜡)混合并压制成密度为5g/cm3至5.5g/cm3且重量为1g的圆柱状坯料15。然后在炉中在1280℃(批次A)或1100℃(批次B)下用空气作为烧结气氛烧结坯料15一小时。可以获得具有如下性质的催化剂本体1:
批次A 批次B
密度(g/cm2 7.15-7.20 6.67-6.97
开放孔隙率[%] 91-92 92-96
比表面积[m2/kg] 140 250
平均粒径[μm] 4.2 2.2
开放孔隙率以总孔隙率的比例的形式给出,其中总孔隙率(体积%)得自:总孔隙率=(1-密度/理论密度)x100。UO2的理论密度为10.96g/cm3,U3O8的理论密度为8.38g/cm3

Claims (11)

1.用于制备氧化铀催化剂本体的方法,具有如下步骤:
a)在第一烧结过程中将纯度为至少50%的UO2+x-粉末(2)(其中x≤0.7)烧结成UO2+y-中间产物(14)(其中y≤0.25),
b)用氧气氧化UO2+y-中间产物(14)并使其转化成U3O8-z-粉末(11)(其中z≤l),
c)将U3O8-z-粉末(11)压制成具有与之后的催化剂本体(1)相应的形状的坯料(15),和
d)在第二烧结过程中在含氧气的烧结气氛中在至少900℃下烧结坯料(15)。
2.根据权利要求1所述的方法,其特征在于,在步骤a)中使用UO2+x-粉末(2),所述UO2+x-粉末(2)通过UF6、UO3、UNH、U3O8或UF4的转化获得。
3.根据权利要求1或2所述的方法,其特征在于,在步骤a)中使用UO2+x-粉末(2),所述UO2+x-粉末(2)的粉末颗粒具有5μm至500μm的平均粒径。
4.根据权利要求3所述的方法,其特征在于,使用平均粒径为10μm至150μm的UO2+x-粉末(2)。
5.根据前述权利要求任一项所述的方法,其特征在于,使用UO2+x-粉末(2),所述UO2+x-粉末(2)的粉末颗粒(3)由平均尺寸为30nm至300nm的晶粒(4)形成。
6.根据前述权利要求任一项所述的方法,其特征在于,根据步骤b)的UO2+y-中间产物(14)的氧化在至少300℃的温度下进行。
7.根据权利要求6所述的方法,其特征在于,氧化在400℃至500℃下进行。
8.根据前述权利要求任一项所述的方法,其特征在于,催化剂本体(1)的坯料(15)在900℃至1300℃下烧结。
9.根据前述权利要求任一项所述的方法,其特征在于,在步骤d)之后还原催化剂本体(1),从而将U3O8-z转化成UO2
10.根据权利要求9所述的方法,其特征在于,还原在300℃至1000℃的温度下进行。
11.根据权利要求10所述的方法,其特征在于,还原在400℃至600℃的温度下进行。
CN201280015614.6A 2011-08-17 2012-07-25 用于制备包含氧化铀作为活性组分的催化剂的方法 Pending CN103492069A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102011081074A DE102011081074A1 (de) 2011-08-17 2011-08-17 Verfahren zur Herstellung eines Uranoxid als aktive Komponente enthaltenden Katalysators
DE102011081074.9 2011-08-17
PCT/EP2012/064583 WO2013023890A1 (de) 2011-08-17 2012-07-25 Verfahren zur herstellung eines uranoxid als aktive komponente enthaltenden katalysators

Publications (1)

Publication Number Publication Date
CN103492069A true CN103492069A (zh) 2014-01-01

Family

ID=46682804

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280015614.6A Pending CN103492069A (zh) 2011-08-17 2012-07-25 用于制备包含氧化铀作为活性组分的催化剂的方法

Country Status (7)

Country Link
US (1) US8728975B2 (zh)
EP (1) EP2683477B1 (zh)
JP (1) JP5738479B2 (zh)
KR (1) KR101457357B1 (zh)
CN (1) CN103492069A (zh)
DE (1) DE102011081074A1 (zh)
WO (1) WO2013023890A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0023923B1 (en) * 1979-02-12 1985-08-14 Exxon Research And Engineering Company Compounds and catalysts containing phosphorus, arsenic or nitrogen and their use in hydrocarbon conversion processes
CN100999408A (zh) * 2006-12-15 2007-07-18 清华大学 一种制备uo2陶瓷燃料微球的方法
WO2009030538A1 (de) * 2007-08-28 2009-03-12 Evonik Degussa Gmbh Wässrige silansysteme basierend auf bis(trialkoxysilylalkyl)aminen

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1258413A (zh) * 1968-09-06 1971-12-30
DE2007809C3 (de) * 1970-02-20 1975-02-27 Friedrichsfeld Gmbh, Steinzeug- Und Kunststoffwerke, 6800 Mannheim Verfahren zur Herstellung von Kügelchen
KR100283728B1 (ko) * 1999-03-05 2001-02-15 장인순 불량품의 재활용이 가능한 이산화 우라늄(uo₂) 핵연료 소결체의 제조 방법
JP3593515B2 (ja) * 2001-10-02 2004-11-24 原子燃料工業株式会社 核燃料焼結体の製造方法
JP4517146B2 (ja) * 2003-10-17 2010-08-04 国立大学法人横浜国立大学 化合物の分解方法
FR2894954B1 (fr) * 2005-12-19 2008-02-15 Commissariat Energie Atomique Procede de fabrication d'une matiere particulaire et matiere particulaire susceptible d'etre obtenue par ledit procede.
RU2486006C2 (ru) * 2007-07-13 2013-06-27 Байер Интеллектуэль Проперти Гмбх Устойчивый к воздействию температуры катализатор для окисления хлороводорода в газовой фазе
EP2170495A1 (de) * 2007-07-13 2010-04-07 Bayer Technology Services GmbH Verfahren zur herstellung von chlor durch vielstufige adiabatische gasphasenoxidation
CN101743056B (zh) * 2007-07-13 2013-09-25 拜耳知识产权有限责任公司 由气相氧化制备氯气的方法
DE102007033114A1 (de) 2007-07-13 2009-01-15 Bayer Technology Services Gmbh Verfahren zur Herstellung von Chlor durch Gasphasenoxidation von Chlorwasserstoff
KR100973498B1 (ko) 2008-03-14 2010-08-03 한전원자력연료 주식회사 큰 결정립 uo₂소결체의 제조방법 및 그 소결체
DE102008050977A1 (de) * 2008-10-09 2010-04-15 Bayer Technology Services Gmbh Integriertes Verfahren zur Herstellung von Chlor
DE102008050975A1 (de) * 2008-10-09 2010-04-15 Bayer Technology Services Gmbh Mehrstufiges Verfahren zur Herstellung von Chlor
DE102009013905A1 (de) 2009-03-19 2010-09-23 Bayer Technology Services Gmbh Urankatalysator auf Träger besonderer Porengrößenverteilung und Verfahren zu dessen Herstellung, sowie dessen Verwendung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0023923B1 (en) * 1979-02-12 1985-08-14 Exxon Research And Engineering Company Compounds and catalysts containing phosphorus, arsenic or nitrogen and their use in hydrocarbon conversion processes
CN100999408A (zh) * 2006-12-15 2007-07-18 清华大学 一种制备uo2陶瓷燃料微球的方法
WO2009030538A1 (de) * 2007-08-28 2009-03-12 Evonik Degussa Gmbh Wässrige silansysteme basierend auf bis(trialkoxysilylalkyl)aminen

Also Published As

Publication number Publication date
KR101457357B1 (ko) 2014-11-04
US8728975B2 (en) 2014-05-20
WO2013023890A1 (de) 2013-02-21
EP2683477A1 (de) 2014-01-15
KR20130138823A (ko) 2013-12-19
JP5738479B2 (ja) 2015-06-24
EP2683477B1 (de) 2015-06-17
JP2014516315A (ja) 2014-07-10
US20140011668A1 (en) 2014-01-09
DE102011081074A1 (de) 2013-02-21

Similar Documents

Publication Publication Date Title
CN109569683B (zh) 一种氮磷共掺杂的多孔碳片/过渡金属磷化物复合材料的制备方法及应用
CN110921723A (zh) 一种中空型锂离子电池正极材料前驱体的制备方法
CN112058296A (zh) 一种碳化木头负载钴、氮共掺杂碳纳米管复合材料的制备方法及应用
CN101764006B (zh) 一种浸渍型钪钨扩散式阴极材料的制备方法
CN110756188A (zh) 一种三维碳网络负载FeCo双功能氧气催化剂的制备方法
CN108878903A (zh) 一种负载Co2P纳米颗粒的氮掺杂中空碳棒氧还原电催化剂的宏量制备方法
CN113046783A (zh) 一种钴掺杂二硫化钼电催化剂、其制备方法及应用
CN111921552A (zh) 一种过渡金属氮掺杂磷化物催化剂及其制备方法和应用
NL2030278B1 (en) N-go@co-ni12p5-ni3p/ncf composite electrode material and preparation method thereof
CN114570369B (zh) 一种MOFs衍生纳米片自组装分级双层中空纳米材料及其制备方法
US10458027B2 (en) Electrode-supported tubular solid-oxide electrochemical cell
CA3026544C (en) The method of manufacturing a pelletized nuclear ceramic fuel
KR20180038802A (ko) 폐커피를 이용한 이종원소 도핑 탄소소재의 제조방법 및 전극물질로의 적용
CN106602080B (zh) 一种基于十六烷基三甲基溴化铵为碳材料造孔剂的三维多孔Fe-N-C催化剂及制备方法
CN111545234B (zh) 一种锌掺杂类石墨烯催化剂及其制备方法和应用
CN103492069A (zh) 用于制备包含氧化铀作为活性组分的催化剂的方法
CN109264692B (zh) 一种利用氰胺化钙制备的掺氮中孔炭及其制备方法和应用
CN109004241B (zh) 一种铁-氮-石墨碳材料的制备方法
CN110721714A (zh) 一种Mo2C催化剂及其制备方法与应用
CN105833871A (zh) 一种富缺陷的钴镶嵌碳纳米管、制备方法及其应用
CN113943948B (zh) 多相纳米异质结材料及其制备方法与应用
Tartaj et al. Low-temperature preparation by polymeric complex solution synthesis of Cu–Gd-doped ceria cermets for solid oxide fuel cells anodes: Sinterability, microstructures and electrical properties
CN112246253B (zh) 一种Co15Fe3S16纳米点状化合物及其制备方法
US10655235B1 (en) Method for preparing a sintered nickel alkaline water electrolysis electrode
CN112342559A (zh) 一种含氧空位的电解水析氧催化剂及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned

Effective date of abandoning: 20160601

C20 Patent right or utility model deemed to be abandoned or is abandoned