EP2170495A1 - Verfahren zur herstellung von chlor durch vielstufige adiabatische gasphasenoxidation - Google Patents

Verfahren zur herstellung von chlor durch vielstufige adiabatische gasphasenoxidation

Info

Publication number
EP2170495A1
EP2170495A1 EP08784551A EP08784551A EP2170495A1 EP 2170495 A1 EP2170495 A1 EP 2170495A1 EP 08784551 A EP08784551 A EP 08784551A EP 08784551 A EP08784551 A EP 08784551A EP 2170495 A1 EP2170495 A1 EP 2170495A1
Authority
EP
European Patent Office
Prior art keywords
catalyst
oxygen
hydrogen chloride
catalyst beds
beds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08784551A
Other languages
English (en)
French (fr)
Inventor
Ralph Schellen
Stephan Schubert
Leslaw Mleczko
Aurel Wolf
Oliver Felix-Karl SCHLÜTER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Intellectual Property GmbH
Original Assignee
Bayer Technology Services GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE200710033113 external-priority patent/DE102007033113A1/de
Priority claimed from DE102007033114A external-priority patent/DE102007033114A1/de
Priority claimed from DE200710033107 external-priority patent/DE102007033107A1/de
Application filed by Bayer Technology Services GmbH filed Critical Bayer Technology Services GmbH
Publication of EP2170495A1 publication Critical patent/EP2170495A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0496Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/02Apparatus characterised by being constructed of material selected for its chemically-resistant properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0403Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal
    • B01J8/0423Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal through two or more otherwise shaped beds
    • B01J8/0438Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal through two or more otherwise shaped beds the beds being placed next to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0449Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
    • B01J8/0453Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds the beds being superimposed one above the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0476Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more otherwise shaped beds
    • B01J8/048Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more otherwise shaped beds the beds being superimposed one above the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/03Preparation from chlorides
    • C01B7/04Preparation of chlorine from hydrogen chloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00548Flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00548Flow
    • B01J2208/00557Flow controlling the residence time inside the reactor vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00628Controlling the composition of the reactive mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/02Processes carried out in the presence of solid particles; Reactors therefor with stationary particles
    • B01J2208/023Details
    • B01J2208/024Particulate material
    • B01J2208/025Two or more types of catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/0204Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components
    • B01J2219/0236Metal based
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/025Apparatus characterised by their chemically-resistant properties characterised by the construction materials of the reactor vessel proper
    • B01J2219/0277Metal based
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/025Apparatus characterised by their chemically-resistant properties characterised by the construction materials of the reactor vessel proper
    • B01J2219/0277Metal based
    • B01J2219/0286Steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/025Apparatus characterised by their chemically-resistant properties characterised by the construction materials of the reactor vessel proper
    • B01J2219/0277Metal based
    • B01J2219/029Non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/12Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of actinides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall

Definitions

  • the present invention relates to a process for the production of chlorine by catalytic gas phase oxidation of hydrogen chloride with oxygen, wherein the reaction is carried out on 18 to 60 catalyst beds connected in series under adiabatic conditions, and a reactor system for carrying out the process.
  • the catalyst bed is tempered via the outer wall, and according to DE 10 2004 006 610 A1, the fluidized bed is heated by means of a heat exchanger arranged in the bed.
  • the effective heat removal of this process faces problems of non-uniform residence time distribution and catalyst wear, both of which result in a loss of revenue.
  • thermostated tube bundle reactors are used which, especially in the case of large reactors, have a very complicated cooling circuit (WO 2004/052776 A1).
  • EP 1 170 250 A1 has proposed the use of catalyst fillings in tube bundle reactors which have different activities in different regions of the cooled contact tubes. As a result, the progress of the reaction is slowed down so much that the resulting heat of reaction can be more easily removed via the wall of the catalyst tubes. A similar result should be achieved by the targeted dilution of the catalyst bed with inert material.
  • a disadvantage of these solutions is that two or more catalyst systems must be developed and used in the catalyst tubes or that by using inert material, the reactor capacity is impaired.
  • the catalysts used initially for the Deacon process for example supported catalysts with the active composition CuCl 2 , had only a low activity. Although the activity could be increased by increasing the reaction temperature, it was disadvantageous that the volatility of the active components at high temperature led to rapid deactivation of the catalyst.
  • the oxidation of hydrogen chloride to chlorine is also an equilibrium reaction. The position of the equilibrium shifts with increasing temperature to the detriment of the desired end product.
  • catalysts with the highest possible activity are used, which allow the reaction to proceed at low temperature.
  • Known highly active catalysts are based on ruthenium.
  • DE-A 197 48 299 describes supported catalysts with the active material ruthenium oxide or ruthenium mixed oxide.
  • the content of ruthenium oxide is 0.1 wt .-% to 20 wt .-% and the average Particle diameter of ruthenium oxide 1.0 nra to 10.0 nm.
  • the reaction is carried out at a temperature between 90 ° C and 150 ° C.
  • ruthenium chloride catalysts containing at least one compound of titanium oxide or zirconium oxide, ruthenium-carbonyl complexes, ruthenium salts of inorganic acids, ruthenium-nitosyl complexes, ruthenium-amine complexes , Ruthenium complexes of organic amines or ruthenium-acetylacetonate complexes.
  • the reaction is carried out at a temperature between 100 ° C and 500 ° C, preferably 200 ° C and 380 ° C.
  • the catalyst is used in a fixed bed or in a fluidized bed.
  • the oxygen source used is air or pure oxygen.
  • the Deacon reaction remains an exothermic reaction and temperature control is also required in the application of such highly active catalysts.
  • the inventors of the present invention have surprisingly found that it is possible to achieve the objects described above by carrying out the reaction on 18 to 60 catalyst beds arranged in series under adiabatic conditions.
  • the process gas may in addition to oxygen and hydrogen chloride still have minor components, eg. As nitrogen, carbon dioxide, carbon monoxide or water.
  • the hydrogen chloride can upstream production process, eg. As for the production of polyisocyanates, originate and other impurities, eg. B. phosgene.
  • carrying out the process under adiabatic conditions on the catalyst beds means that substantially no heat is supplied to the catalyst from the outside in the respective catalyst beds nor is heat removed (with the exception of the heat which is supplied or removed by the reaction gas entering or leaving). , Technically, this is achieved by insulating the catalyst beds in a conventional manner.
  • the individual catalyst beds are operated adiabatically, so they are in particular no means of heat dissipation in them are provided.
  • the invention also includes the case in which the heat of reaction is removed, for example, by means of heat exchangers connected between the individual catalyst beds.
  • catalyst bed is here an arrangement of the catalyst in all known forms, e.g. Fixed bed, fluidized bed or fluidized bed understood. Preferred is a fixed bed arrangement. This comprises a catalyst bed in the true sense, d. H. loose, supported or unsupported catalyst in any form and in the form of suitable packings:
  • catalyst bed as used herein also encompasses contiguous areas of suitable packages on a support material or structured catalyst supports. These would be e.g. to be coated ceramic honeycomb carrier with comparatively high geometric surfaces or corrugated layers of metal wire mesh on which, for example, catalyst granules is immobilized.
  • Stationary catalyst beds are preferably used in the new process.
  • the reaction is carried out at 20 to 40, preferably 22 to 30 consecutive Katal ysatorbetten.
  • a preferred further embodiment of the method is characterized in that the process gas mixture emerging from at least one catalyst bed is subsequently passed over at least one heat exchanger arranged downstream of the catalyst bed.
  • the method is located after each catalyst bed at least one, preferably a heat exchanger, through which the exiting process gas mixture is passed.
  • at least one heat exchanger is located behind at least one catalyst bed.
  • at least one, more preferably in each case exactly one heat exchanger is located behind each of the catalyst beds, via which the gas mixture emerging from the catalyst bed is passed.
  • the catalyst beds can either be arranged in a reactor or arranged divided into several reactors.
  • the arrangement of the catalyst beds in a reactor leads to a reduction in the number of apparatuses used.
  • individual ones of the series catalyst beds can be independently replaced or supplemented by one or more catalyst beds in parallel.
  • the use of catalyst beds connected in parallel allows in particular their replacement or supplementation during ongoing continuous operation of the process.
  • the process according to the invention preferably has 18 to 60 catalyst beds connected in series. Parallel and successively connected catalyst beds can in particular also be combined with one another. However, the process according to the invention particularly preferably has exclusively catalyst beds connected in series.
  • the reactors which are preferably used in the process according to the invention can consist of simple containers with one or more thermally insulated catalyst beds, as described, for example, in Ullmann's Encyclopedia of Industrial Chemistry (Fifth, Completely Revised Edition, VoI B4, pages 95-104, pages 210-216) become. This means that it is possible, for example, to use single-stage or multistage fixed-bed reactors, radial-flow reactors or even shallow-bed reactors., However, tube bundle reactors are preferably not used because of the disadvantages described above, since heat is removed from the catalyst beds according to the invention , Such reactor types for receiving the catalyst beds are also unnecessary.
  • the catalysts or the catalyst beds thereof are applied in a manner known per se to or between gas-permeable walls of the reactor.
  • the empty tube velocity of the gas in the catalyst bed is preferably from 0.1 to 10 m / s in the case of the embodiment using a fixed bed.
  • a molar ratio of between 0.25 and 10 equivalents of oxygen per equivalent of hydrogen chloride before entry into the catalyst bed is preferably used.
  • the inlet temperature of the material entering a first catalyst bed gas mixture from 150 to 630 ° C, preferably 200-480 0 C.
  • the hydrogen chloride and oxygen-containing feed gas stream can also be fed preferably only in front of the first catalyst bed. This has the advantage that the entire feed gas stream can be used for the absorption and removal of the heat of reaction in all catalyst beds. However, it is also possible to meter in hydrogen chloride and / or oxygen into the gas stream before one or more of the catalyst beds following the first catalyst bed as required. In addition, the temperature of the reaction can be controlled via the supply of gas between the catalyst beds used.
  • the reaction gas is cooled after at least one of the catalyst beds used, more preferably after each of the catalyst beds used. This is what leads you to that
  • Reaction gas through one or more heat exchangers which are behind the respective Catalyst beds are located.
  • These may be the heat exchanger known to those skilled in the art, such as, for example, tube bundle, plate ring groove, spiral, finned tube, micro heat exchanger.
  • steam is generated on cooling the product gas at the heat exchangers.
  • the catalyst beds connected in series are operated at increasing or decreasing average temperature from catalyst bed to catalyst bed.
  • the chlorine formed is separated off.
  • the separation step usually comprises several stages, namely the separation and, if appropriate, recycling of unreacted hydrogen chloride from the product gas stream of the catalytic hydrogen chloride oxidation, drying of the obtained, essentially chlorine and oxygen-containing stream and the separation of chlorine from the dried stream.
  • the separation of unreacted hydrogen chloride and water vapor formed can be carried out by condensation of aqueous hydrochloric acid from the product gas stream of hydrogen chloride oxidation by cooling. Hydrogen chloride can also be absorbed in dilute hydrochloric acid or water.
  • the z. T. be entrained with the starting materials, the reaction again fed.
  • the recirculated hydrogen chloride and / or oxygen are recycled in front of one or more of the catalyst beds and before, if necessary brought back to the inlet temperature by means of a heat exchanger.
  • the cooling of the product gas and the warming-up of the recirculated hydrogen chloride and / or oxygen are carried out by passing the gas streams in counterflow through heat exchangers to one another.
  • the new process is preferably operated at a pressure of 1 to 30 bar, preferably from 1 to 20 bar, more preferably from 1 to 15 bar.
  • the temperature of the educt gas mixture is preferably before each of the catalyst beds of 150 to 630 ° C, preferably from 200 to 480 0 C, more preferably from 250 to 470 ° C.
  • the gas mixture is preferably homogenized before entering the individual catalyst bed.
  • the thickness of the flow-through catalyst beds can be chosen the same or different, and is suitably 1 cm to 8 m, preferably 5 cm to 5 m, particularly preferably 30 cm to 2.5 m.
  • the catalyst is preferably used immobilized on a support.
  • the catalyst preferably contains at least one of the following elements: copper, potassium, sodium, chromium, cerium, gold, bismuth, uranium, ruthenium, rhodium, platinum, and the elements of VIII. Subgroup of the Periodic Table of the Elements. These are preferably used as oxides, halides, or mixed oxides / halides, in particular chlorides or oxides / chlorides. These elements or compounds thereof can be used alone or in any combination.
  • Preferred compounds of these elements include copper chloride, copper oxide, potassium chloride, sodium chloride, chromium oxide, bismuth oxide, uranium oxide, ruthenium oxide, ruthenium chloride, ruthenium oxychloride, rhodium oxide.
  • the catalyst portion consists completely or partially of ruthenium and / or uranium or compounds thereof, more preferably the catalyst consists of halide and / or oxygen-containing uranium and / or ruthenium compounds.
  • all or part of the catalyst portion is uranium oxides such as UO 3 , UO 2 , UO or the non-stoichiometric phases resulting from mixtures of these species such as U 3 O 5 , U 2 O 5 , U 3 O 7 , U 3 O 8 , U 4 ⁇ 9 .
  • the carrier fraction may be wholly or partly composed of: titanium oxide, tin oxide, aluminum oxide, zirconium oxide, uranium oxide, vanadium oxide, ceria, chromium oxide, uranium oxide, silicon oxide, silica, carbon nanotubes or a mixture or compound of said substances, in particular mixed oxides such as silicon-aluminum oxides.
  • Particularly preferred support materials are tin oxide, carbon nanotubes, uranium oxides such as UO 3 , UO 2 , UO or the non-stoichiometric phases resulting from mixtures of these species, such as U 3 O 5 , U 2 O 5 , U 3 O 7 , U 3 O 8 , U 4 O 9 ..
  • the ruthenium-supported catalysts can be obtained, for example, by impregnation of the support material with aqueous solutions of RuCl 3 and optionally a promoter for doping.
  • the shaping of the catalyst can take place after or preferably before the impregnation of the support material.
  • the catalysts are suitable as promoters alkali metals such as lithium, sodium, potassium, rubidium and cesium, preferably lithium, sodium and potassium, more preferably potassium, alkaline earth metals such as magnesium, calcium, strontium and barium, preferably magnesium and calcium, particularly preferably magnesium, Rare earth metals such as scandium, yttrium, lanthanum, cerium, praseodymium and neodymium, preferably scandium, yttrium, lanthanum and cerium, more preferably lanthanum and cerium, or mixtures thereof.
  • alkali metals such as lithium, sodium, potassium, rubidium and cesium, preferably lithium, sodium and potassium, more preferably potassium, alkaline earth metals such as magnesium, calcium, strontium and barium, preferably magnesium and calcium, particularly preferably magnesium, Rare earth metals such as scandium, yttrium, lanthanum, cerium, praseodymium and neodymium, preferably scandium, yt
  • the shaped bodies can then be dried at a temperature of 100 to 400 ° C., preferably 100 to 300 ° C., for example under a nitrogen, argon or air atmosphere, and optionally calcined.
  • the moldings are first dried at 100 to 150 ° C and then calcined at 200 to 400 ° C.
  • the temperature of the catalyst in the catalyst beds is suitably in a range of 150 ° C to 800 ° C, preferably 200 0 C to 450 ° C, more preferably 250 ° C to 400 ° C.
  • the control of the temperature in the catalyst beds is preferably carried out by at least one of the following measures:
  • the catalysts or the supported catalysts may have any desired form, for. As balls, rods, Raschig rings or granules or tablets.
  • composition of the catalysts in the catalyst beds used according to the invention may be identical or different. In a preferred embodiment, the same catalysts are used in each catalyst bed. However, it is also advantageous to use different catalysts in the individual catalyst beds. Thus, in particular in the first catalyst bed, when the concentration of the reaction products is still high, a less active catalyst can be used and in the further catalyst beds the activity of the catalyst can be increased from catalyst bed to catalyst bed.
  • the control of the catalyst activity can also be carried out by dilution with inert materials or carrier material.
  • 0.1 g / h to 10 g / h of chlorine preferably 0.5 g / h to 5 g / h of chlorine, can be prepared per 1 g of catalyst.
  • the inventive method is thus characterized by high space-time yields, combined with a reduction of the apparatus sizes and a simplification of the apparatus or reactors.
  • the educt for the process according to the invention is hydrogen chloride, which is e.g. is produced and adopted as by-product from the phosgenation of organic amines, especially diamines to isocyanates, in particular diisocyanates or the gas phase phosgenation of phenol to diphenyl carbonate.
  • Oxygen can be supplied as pure oxygen or preferably in the form of an oxygen-containing gas, in particular air.
  • the produced chlorine can be used, for example, for the production of phosgene and possibly recycled into connected production processes.
  • the process is conducted such that a continuous exchange of a fixed bed catalyst takes place.
  • unreacted educt gases are recycled back to the process.
  • Unreacted educt gases are in particular hydrogen chloride and oxygen. The process is therefore operated as a cyclic process.
  • the invention further provides a reactor system for reacting a gas containing hydrogen chloride and oxygen, at least containing feed lines for hydrogen chloride and oxygen or for a mixture of hydrogen chloride and oxygen and 18 to 60 thermally insulated catalyst beds connected in series.
  • the reactor system may also comprise 20 to 40 or 22 to 30 catalyst beds.
  • FIG. 2 shows a process according to the invention with 18 catalyst beds in an integrated reactor
  • FIG. 1 shows a method according to the invention with 18 catalyst beds divided into separate reactors.
  • the educt gases (1, 2) are mixed to gas mixture (3) and fed to the reactor.
  • the reactors each comprise a catalyst bed (20).
  • the product gases of the reactors (4) are passed through heat exchangers (30).
  • the heat exchanger (30) comprises feeds (5) and discharges (6) of cooling medium.
  • Fig. 1 it is symbolized that a repeat unit of reactor with catalyst bed (20) and heat exchanger (30) repeated 16 times in total, so that a total of 18 units are shown.
  • the product gas mixture is finally subjected to a separation of substances (40) and separated into hydrogen chloride (7), oxygen (8), chlorine (9) and water (10). It is also possible to return unreacted hydrogen chloride gas (7) and oxygen gas (8) back to the reactors. This is not shown here.
  • FIG. 2 shows a process according to the invention with 18 catalyst beds in an integrated reactor.
  • the reactors each comprise a catalyst bed (20).
  • the product gases of the reactors (4) are passed through heat exchangers (30).
  • the heat exchanger (30) comprises feeds (5) and discharges (6) of cooling medium.
  • FIG. 2 symbolizes that a repeat unit of reactor with catalyst bed (20) and heat exchanger (30) is repeated a total of 16 times, so that a total of 18 units are shown.
  • the product gas mixture is finally subjected to a separation of substances (40) and separated into hydrogen chloride (7), oxygen (8), chlorine (9) and water (10). It is also possible to return unreacted hydrogen chloride gas (7) and oxygen gas (8) back to the reactors. This is not shown here.
  • Examples 1 and 2 relate to the number of catalyst beds and the temperature profile of the process gas mixture when it reacts in the reaction zones according to the inventive method and is cooled again in downstream heat exchangers. Furthermore, the examples relate to the conversion of HCl obtained.
  • the process gas mixture flowed through a total of 24 catalyst stages, ie through 24 reaction zones. After each catalyst stage there was a heat exchanger which cooled the process gas mixture before entering the next catalyst stage.
  • the process gas used at the outset was a mixture of HCl (38.5 mol%), O 2 (38.5 mol%) and inert gases (Ar, Cl 2 , N 2 , CO 2 , totaling 23 mol%).
  • the inlet pressure of the process gas mixture was 5 bar.
  • the length of the catalyst stages, ie the reaction zones was uniformly 7.5 cm.
  • the activity of the catalyst was adjusted to be the same in all catalyst stages. The procedure was carried out so that a load of 1, 2 kg of HCl per kg of catalyst and hour was achieved. There was no replenishment of process gas components before the individual catalyst stages.
  • the total residence time in the plant was 2.3 seconds.
  • the results are shown in FIG.
  • the individual catalyst stages are listed on the x-axis, so that a spatial course of developments in the process is visible.
  • the temperature of the process gas mixture is indicated on the left y-axis.
  • the temperature profile over the individual catalyst stages is shown as a solid line.
  • On the right y-axis the total conversion of HCl is indicated.
  • the course of the conversion over the individual catalyst stages is shown as a dashed line.
  • the inlet temperature of the process gas mixture before the first catalyst stage is about 340 ° C. Due to the exothermic reaction to chlorine gas under adiabatic conditions, the temperature rises to about 370 ° C, before the process gas mixture is cooled by the downstream heat exchanger again. The inlet temperature before the next catalyst stage is about 344 ° C. By exothermic adiabatic reaction, it rises again to about 370 0 C. The sequence of heating and cooling continues.
  • the inlet temperatures of the process gas mixture upstream of the individual catalyst stages increase with increasing number of stages. This is possible since the amount of reactants capable of reacting in the later stages of the reaction is lower and accordingly the danger of a through exothermic reaction conditional leaving the optimum temperature range of the process decreases. Consequently, the temperature of the process gas mixture can be kept closer to optimal for the respective composition.
  • the process gas mixture flowed through a total of 18 catalyst stages, ie through 18 reaction zones. After each catalyst stage there was a heat exchanger which cooled the process gas mixture before entering the next catalyst stage.
  • the process gas used at the outset was a mixture of HCl (38.5 mol%), O 2 (38.5 mol%) and inert gases (Ar, Cl 2 , N 2 , CO 2 , totaling 23 mol%)
  • the inlet pressure of the process gas mixture was 5 bar.
  • the length of the catalyst stages, ie the reaction zones, was uniformly 15 cm in each case.
  • the activity of the catalyst was adjusted to increase with the number of catalyst stages.
  • the relative catalyst activities were as follows:
  • the procedure was carried out to achieve a load of 1.12 kg of HCl per kg of catalyst per hour. There was no replenishment of process gas components before the individual catalyst calls. The total residence time in the plant was 3.5 seconds.
  • On the left y-axis is the temperature of the Process gas mixture specified. The temperature profile over the individual catalyst stages is shown as a solid line.
  • On the right y-axis the total conversion of HCl is indicated. The course of the conversion over the individual catalyst stages is shown as a dashed line.
  • the inlet temperature of the process gas mixture before the first catalyst stage is about 350 ° C. Due to the exothermic reaction to chlorine gas under adiabatic conditions, the temperature rises to about 370 ° C, before the process gas mixture is cooled by the downstream heat exchanger again. The inlet temperature before the next catalyst stage is again about 350 ° C. By exothermic adiabatic reaction, it rises again to about 370 0 C. The sequence of heating and cooling continues.
  • the inlet temperatures of the process gas mixture upstream of the individual catalyst stages increase more slowly with increasing number of stages than in the case of Example 1. Overall, the fluctuation range of the process gas temperatures is even lower.
  • the desired lower activity of the catalyst in the early stages makes it possible to introduce the process gas mixture with a higher inlet temperature, without fear of undesired overheating. Consequently, the temperature of the process gas mixture can be kept closer to optimal for the respective composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Chlor durch katalytische Gasphasenoxidation von Chlorwasserstoff mit Sauerstoff, worin die Umsetzung an 18 bis 60 hintereinander geschalteten Katalysatorbetten unter adiabatischen Bedingungen durchgeführt wird, sowie ein Reaktorsystem zur Durchführung des Verfahrens.

Description

Verfahren zur Herstellung von Chlor durch vielstufige adiabatische Gasphasenoxidation
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Chlor durch katalytische Gasphasenoxidation von Chlorwasserstoff mit Sauerstoff, worin die Umsetzung an 18 bis 60 hintereinander geschalteten Katalysatorbetten unter adiabatischen Bedingungen durchgeführt wird, sowie ein Reaktorsystem zur Durchfuhrung des Verfahrens.
Das von Deacon 1868 entwickelte Verfahren der katalytischen Chlorwasserstoffoxidation mit Sauerstoff in einer exothermen Gleichgewichtsreaktion stand am Anfang der technischen Chlorchemie:
4 HCl + O2 => 2 Cl2 + 2 H2O
Durch die Chloralkalielektrolyse wurde die technische Anwendung des Deacon- Verfahrens jedoch stark in den Hintergrund gedrängt. Nahezu die gesamte Produktion von Chlor erfolgte durch Elektrolyse wässriger Kochsalzlösungen. Die Attraktivität des Deacon- Verfahrens nimmt jedoch in jüngster Zeit wieder zu, da der weltweite Chlorbedarf stärker wächst als die Nachfrage nach Natronlauge, ein Koppelprodukt der NaCl-Elektrolyse. Dieser Entwicklung kommt das Verfahren zur Herstellung von Chlor durch Oxidation von Chlorwasserstoff entgegen, das von der Natronlaugenherstellung entkoppelt ist. Darüber hinaus ist das Vorprodukt Chlorwasserstoff einfach zugänglich; es fällt in großen Mengen beispielsweise bei Phosgenierungsreaktionen, etwa bei der Isocyanat-Herstellung, als Koppelprodukt an.
Die Abführung und Verwendung der Reaktionswärme ist ein wichtiger Punkt bei der Durchführung des Deacon-Verfahrens. Ein unkontrollierter Temperaturanstieg, der vom Anfang bis Abschluss der Deacon-Reaktion 600 bis 900 °C betragen könnte, würde zum einen zu einer dauerhaften Schädigung des Katalysators führen, zum anderen kommt es bei hohen Temperaturen zu einer ungünstigen Verschiebung des Reaktionsgleichgewichts in Richtung der Edukte mit einer entsprechenden Verschlechterung der Ausbeute. Es ist daher vorteilhaft die Temperatur der Katalysatorschüttung im Laufe des Verfahrens in einem Bereich von 150 bis 600 0C zu halten. In etablierten Verfahren wird daher der Katalysator in Form eines fluidisierten, thermostabilisierten Bettes verwendet. Nach der EP 0 251 731 A2 wird das Katalysator- Bett dabei über die Außenwand temperiert, gemäß der DE 10 2004 006 610 Al wird das fluidisierte Bett über einen im Bett angeordneten Wärmeüberträger temperiert. Der effektiven Wärmeabfuhr dieses Verfahrens stehen Probleme durch eine uneinheitliche Verweilzeitverteilung und Katalysatorabrieb gegenüber, die beide zu Umsatzeinbuße führen.
Eine enge Verweilzeitverteilung und geringer Katalysatorabrieb sind in Reaktoren mit stationären Katalysatorschüttungen möglich. Jedoch ergeben sich in solchen Reaktoren Probleme mit der Thermostatisierung der Katalysatorbetten. Im Allgemeinen werden daher thermostatisierte Rohrbündelreaktoren verwendet, welche, besonders bei großen Reaktoren, einen sehr aufwendigen Kühlkreislauf besitzen (WO 2004/052776 Al).
Um die Wärmeabfuhr aus der Katalysatorschüttung zu verbessern, wird im R&D-Report, „Sumitomo Kagaku", vol. 2004-1 die Verwendung eines Festbettkatalysators aus Rutheniumoxid auf Titanoxid als Träger vorgeschlagen. Neben der hohen Katalysatoraktivität wird die gute Wärmeleitfähigkeit des Katalysatorsystems als Vorteil genannt. Da auch bei einer hohen Wärmeleitfähigkeit innerhalb der Katalysatorpellets die Wärmeleitfähigkeit der Schüttung gering bleibt, wird die Wärmeabfuhr durch diese Maßnahme jedoch nicht wesentlich verbessert.
hi EP 1 170 250 Al wurde vorgeschlagen, Katalysatorfüllungen in Rohrbündelreaktoren einzusetzen, die in unterschiedlichen Bereichen der gekühlten Kontaktrohre jeweils unterschiedliche Aktivitäten aufweisen. Dadurch wird der Reaktionsfortschritt soweit verlangsamt, dass die entstehende Reaktionswärme leichter über die Wand der Kontaktrohre abgeführt werden kann. Ein ähnliches Ergebnis soll durch die gezielte Verdünnung der Katalysatorschüttung mit inertem Material erreicht werden. Nachteilig an diesen Lösungen ist, dass zwei oder mehrere Katalysatorsysteme entwickelt und in den Kontaktrohren eingesetzt werden müssen bzw. dass durch Einsatz von inertem Material die Reaktorkapazität beeinträchtigt wird.
In den Offenlegungsschriften WO 2004/037718 und WO 2004/014845 wird zwar in allgemeiner Form die Möglichkeit einer adiabatischen katalytischen Chlorwasserstoff-
Oxidation neben den bevorzugten isothermen Verfahren erwähnt. Konkrete Ausfüh- rungsformen einer adiabatisch geführten Chlorwasserstoff-Oxidation werden jedoch nicht beschrieben. Es bleibt somit völlig unklar, wie bei einer vollständig adiabatischen Fahrweise des Gesamtverfahrens die Reaktionswärme der exothermen Reaktion abgeführt und eine Beschädigung des Katalysators vermieden werden kann. Tatsächlich erfolgt die Chlorwasserstoff-Oxidation gemäß dieser Schriften jedoch isotherm als Festbettverfahren in Rohrbündelreaktoren, welche wie bereits erwähnt eine äußerst aufwändig zu steuernde Kühlung erfordern. Grundsätzlich sind auch alle beschriebenen Rohrbündelreaktoren sehr komplex und verursachen hohe Investitionskosten. Mit der Baugröße rasch ansteigende Probleme bezüglich mechanischer Festigkeit und gleichmäßiger Thermostatisierung der Katalysatorschüttung machen große Aggregate solchen Typs unwirtschaftlich.
Es wäre daher vorteilhaft, ein einfaches Verfahren bereitzustellen, das in einem einfachen Reaktor ohne aufwändiges System zur Wärmehaushaltung im Reaktor durchgeführt werden kann. Solche Reaktoren wären leicht in einen technischen Maßstab zu übertragen und sind in allen Größen preiswert und robust. Die Reaktionsenthalpie spiegelt sich bei diesem Reaktortyp in der Temperaturdifferenz zwischen Edukt- und Produktgasstrom quantitativ wieder.
Für die exotherme Gasphasenoxidation von Chlorwasserstoff mit einem Sauerstoff enthaltenen Gasstrom wird bisher weder die Verwendung solcher Reaktoren beschrieben, noch werden geeignete Katalysatoren und geeignete Verfahren aufgezeigt.
Die zunächst für das Deacon-Verfahren eingesetzten Katalysatoren, etwa geträgerte Katalysatoren mit der Aktivmasse CuCl2, wiesen nur eine geringe Aktivität auf. Durch eine Erhöhung der Reaktionstemperatur konnte zwar die Aktivität gesteigert werden, nachteilig war jedoch, dass die Flüchtigkeit der Aktivkomponenten bei höherer Temperatur zu einer schnellen Deaktivierung des Katalysators führte. Die Oxidation von Chlorwasserstoff zu Chlor ist zudem eine Gleichgewichtsreaktion. Die Lage des Gleichgewichts verschiebt sich mit zunehmender Temperatur zu Ungunsten des gewünschten Endproduktes.
Üblicherweise werden daher Katalysatoren mit möglichst hoher Aktivität eingesetzt, die die Reaktion bei niedriger Temperatur ablaufen lassen. Bekannte hochaktive Katalysatoren basieren auf Ruthenium. In DE-A 197 48 299 werden geträgerte Katalysatoren mit der Aktivmasse Rutheniumoxid oder Rutheniummischoxid beschrieben. Dabei beträgt der Gehalt an Rutheniumoxid 0,1 Gew.-% bis 20 Gew.-% und der mittlere Teilchendurchmesser von Rutheniumoxid 1,0 nra bis 10,0 nm. Die Reaktion wird bei einer Temperatur zwischen 90°C und 150°C durchgeführt. Weitere getragene Katalysatoren auf Basis von Ruthenium sind aus DE-A 197 34 412 bekannt: Rutheniumchloridkatalysatoren, die mindestens eine Verbindung aus Titanoxid oder Zirkoniumoxid enthalten, Ruthenium- Carbonyl-Komplexe, Rutheniumsalze anorganischer Säuren, Ruthenium-Nitosyl- Komplexe, Ruthenium-Amin-Komplexe, Rutheniumkomplexe organischer Amine oder Ruthenium-Acetylacetonat-Komplexe. Die Reaktion wird bei einer Temperatur zwischen 100°C und 500°C, bevorzugt 200°C und 380°C durchgeführt. In den beiden Anmeldungen DE-A 197 48 299 und DE-A 197 34 412 wird der Katalysator in einem Festbett oder in einem Fließbett verwendet. Als Sauerstoffausgangssubstanz wird Luft oder reiner Sauerstoff verwendet. Die Deacon-Reaktion bleibt aber eine exotherme Reaktion und eine Temperaturkontrolle ist auch bei der Anwendung solcher hochaktiven Katalysatoren erforderlich.
Es bestand daher die Aufgabe, ein Verfahren zur katalytischen Oxidation von Chlorwasserstoff zu Chlor bereitzustellen, das in einem einfachen Reaktor ohne ein komplexes System zur Wärmehaushaltung im Reaktor durchführbar ist.
Die Erfinder der vorliegenden Erfindung fanden überraschend, dass es möglich ist, die vorstehend beschriebenen Aufgaben zu lösen, indem man die Umsetzung an 18 bis 60 hintereinander geschalteten Katalysatorbetten unter adiabatischen Bedingungen durchführt.
Das Prozessgas kann neben Sauerstoff und Chlorwasserstoff noch Nebenbestandteile aufweisen, z. B. Stickstoff, Kohlendioxid, Kohlenmonoxid oder Wasser. Der Chlorwasserstoff kann vorgeschalteten Produktionsverfahren, z. B. zur Herstellung von Polyisocyanaten, entstammen und weitere Verunreinigungen, z. B. Phosgen, enthalten.
Erfindungsgemäß bedeutet die Durchführung des Verfahrens unter adiabatischen Bedingungen an den Katalysatorbetten, dass dem Katalysator in den jeweiligen Katalysatorbetten von außen im wesentlichen weder Wärme zugeführt noch Wärme entzogen wird (mit Ausnahme der Wärme die durch eintretendes bzw. austretendes Reaktionsgas zu- bzw. abgeführt wird). Technisch gelingt dies durch Isolation der Katalysatorbetten in an sich bekannter Weise. Die einzelnen Katalysatorbetten werden adiabatisch betrieben, es sind in ihnen also insbesondere keine Mittel der Wärmeabfuhr vorgesehen sind. Betrachtet man das Verfahren als Ganzes, so ist erfindungsgemäß auch der Fall eingeschlossen, bei dem die Reaktionswärme beispielsweise mittels zwischen den einzelnen Katalysatorbetten geschalteten Wärmetauschern abgeführt wird.
Die Vorteile der erfindungsgemäßen adiabatischen Fahrweise der 18 bis 60 hintereinander geschalteten Katalysatorbetten gegenüber der konventionellen isothermen Fahrweise bestehen vor allem, darin, dass in den Katalysatorbetten keine Mittel zur Wärmeabfuhr bereitgestellt werden müssen, was eine erhebliche Vereinfachung der Konstruktion mit sich bringt. Dadurch ergeben sich insbesondere Vereinfachungen bei der Fertigung des Reaktors sowie bei der Skalierbarkeit des Verfahrens und eine Steigerung der Reaktionsumsätze.
Unter Katalysatorbett wird hier eine Anordnung des Katalysators in allen an sich bekannten Erscheinungsformen, z.B. Festbett, Fließbett oder Wirbelbett verstanden. Bevorzugt ist eine Festbettanordnung. Diese umfasst eine Katalysatorschüttung im eigentlichen Sinn, d. h. losen, geträgerten oder ungeträgerten Katalysator in beliebiger Form sowie in Form von geeigneten Packungen:
Der Begriff der Katalysatorschüttung, wie er hier verwendet wird, umfasst auch zusammenhängende Bereiche geeigneter Packungen auf einem Trägermaterial oder strukturierte Katalysatorträger. Dies wären z.B. zu beschichtende keramische Wabenträger mit vergleichsweise hohen geometrischen Oberflächen oder gewellte Schichten aus Metalldrahtgewebe, auf denen beispielsweise Katalysatorgranulat immobilisiert ist.
In dem neuen Verfahren werden bevorzugt stationäre Katalysatorbetten verwendet.
In einer bevorzugen Ausführungsform des erfindungsgemäßen Verfahrens erfolgt die Umsetzung an 20 bis 40, vorzugsweise 22 bis 30 hintereinander geschalteten Katal ysatorbetten .
Eine bevorzugte weitere Ausführung des Verfahrens ist dadurch gekennzeichnet, dass das aus mindestens einem Katalysatorbett austretende Prozessgasgemisch anschließend über wenigstens einen dem Katalysatorbett nachgeschalteten Wärmetauscher geleitet wird.
In einer besonders bevorzugten weiteren Ausführung des Verfahrens befindet sich nach jedem Katalysatorbett wenigstens ein, bevorzugt ein Wärmetauscher, über den das austretende Prozessgasgemisch geleitet wird. In einer bevorzugten Ausführungsform befindet sich wenigstens hinter einem Katalysatorbett wenigstens ein Wärmetauscher. Besonders bevorzugt befindet sich hinter jedem der Katalysatorbetten mindestens ein, noch bevorzugter jeweils genau ein Wärmetauscher, über den das aus dem Katalysatorbett austretende Gasgemisch geleitet wird.
Die Katalysatorbetten können dabei entweder in einem Reaktor angeordnet oder in mehreren Reaktoren aufgeteilt angeordnet werden. Die Anordnung der Katalysatorbetten in einem Reaktor führt zu einer Verringerung der Anzahl der verwendeten Apparaturen.
Zusätzlich können einzelne der in Reihe geschalteten Katalysatorbetten unabhängig voneinander auch durch eine oder mehrere parallel geschaltete Katalysatorbetten ersetzt oder ergänzt werden. Die Verwendung von parallel geschalteten Katalysatorbetten erlaubt insbesondere deren Austausch bzw. Ergänzung bei laufendem kontinuierlichen Gesamtbetrieb des Verfahrens.
Bevorzugt weist das erfindungsgemäße Verfahren aber 18 bis 60 hintereinander geschaltete Katalysatorbetten auf. Parallele und hintereinander geschaltete Katalysatorbetten können insbesondere auch miteinander kombiniert sein. Besonders bevorzugt weist das erfindungsgemäße Verfahren aber ausschließlich hintereinander geschaltete Katalysatorbetten auf.
Werden parallel geschaltete Katalysatorbetten verwendet, so werden insbesondere maximal 5, bevorzugt 3, besonders bevorzugt maximal 2 aus hintereinander geschalteten Katalysatorbetten bestehenden Verfahrensstränge parallel geschaltet.
Die im erfindungsgemäßen Verfahren bevorzugt verwendeten Reaktoren können aus einfachen Behältern mit einer oder mehreren thermisch isolierten Katalysatorbetten bestehen, wie sie z.B. in Ullmanns Encyclopedia of Industrial Chemistry (Fifth, Completely Revised Edition, VoI B4, Seite 95-104, Seite 210-216) beschrieben werden. D.h. es können z.B. einfache oder mehrstufige Festbettreaktoren, Radial-Flow-Reaktoren oder auch Flachbettreaktoren („Shallow-bed reactors") sein. Rohrbündelreaktoren werden wegen der vorstehend beschriebenen Nachteile jedoch bevorzugt nicht verwendet. Da eine Abfuhr der Wärme erfindungsgemäß aus den Katalysatorbetten nicht erfolgt, sind derartige Reaktortypen für die Aufnahme der Katalysatorbetten auch entbehrlich. Die Katalysatoren bzw. die Katalysatorbetten daraus werden in an sich bekannter Weise auf oder zwischen gasdurchlässigen Wandungen des Reaktors angebracht. Insbesondere bei dünnen Katalysatorbetten werden oberhalb, unterhalb oder oberhalb und unterhalb der Katalysatorbetten technische Vorrichtungen zur gleichmäßigen Gasverteilung angebracht. Dies können Lochplatten, Glockenböden, Ventilböden oder andere Einbauten sein, die durch Erzeugung eines geringen, aber gleichmäßigen Druckverlusts einen gleichförmigen Eintritt des Gases in das Katalysatorbett bewirken.
Die Leerrohrgeschwindigkeit des Gases im Katalysatorbett beträgt im Falle der Ausführungsform unter Verwendung eines Festbettes vorzugsweise von 0,1 bis 10 m/s.
Bei einer besonderen Ausführungsform des erfϊndungsgemäßen Verfahrens wird vorzugsweise ein molares Verhältnis von zwischen 0,25 bis 10 Äquivalenten Sauerstoff pro Äquivalent Chlorwasserstoff vor Eintritt in das Katalysatorbett verwendet. Durch eine Erhöhung des Verhältnisses von Äquivalenten Sauerstoff pro Äquivalent Chlorwasserstoff kann zum einen die Reaktion beschleunigt und somit die Raumzeitausbeute (Produzierte Chlormenge pro Reaktorvolumen) gesteigert werden, zum anderen wird das Gleichgewicht der Reaktion positiv in Richtung der Produkte verschoben.
In einer weiteren besonders bevorzugten Ausführung des Verfahrens beträgt die Eingangstemperatur des in ein erstes Katalysatorbett eintretenden Gasgemisches von 150 bis 630°C, bevorzugt von 200 bis 4800C.
Der Chlorwasserstoff und Sauerstoff enthaltende Einsatz-Gasstrom kann auch bevorzugt nur vor dem ersten Katalysatorbett zugeführt werden. Dies hat den Vorteil, dass der gesamte Einsatz-Gasstrom für die Aufnahme und Abfuhr der Reaktionswärme in allen Katalysatorbetten genutzt werden kann. Es ist aber auch möglich vor einer oder mehreren der nach dem ersten Katalysatorbett folgenden Katalysatorbetten nach Bedarf Chlorwasserstoff und/oder Sauerstoff in den Gasstrom einzudosieren. Über die Zufuhr von Gas zwischen den eingesetzten Katalysatorbetten kann zusätzlich die Temperatur der Umsetzung gesteuert werden.
In einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird das Reaktionsgas nach mindestens einem der verwendeten Katalysatorbetten, besonders bevorzugt nach jedem der verwendeten Katalysatorbetten abgekühlt. Dazu leitet man das
Reaktionsgas durch einen oder mehrere Wärmetauscher, die sich hinter den jeweiligen Katalysatorbetten befinden. Dies können die dem Fachmann bekannten Wärmetauscher, wie z.B. Rohrbündel-, Platten- Ringnut-, Spiral-, Rippenrohr-, Mikrowärmetauscher sein. In einer besonderen Ausführung des Verfahrens wird beim Abkühlen des Produktgases an den Wärmetauschern Dampf erzeugt.
In einer bevorzugten Ausführungsform des Verfahrens werden die nacheinander geschalteten Katalysatorbetten bei von Katalysatorbett zu Katalysatorbett steigender oder sinkender Durchschnittstemperatur betrieben. Dies bedeutet, dass man innerhalb einer Folge von Katalysatorbetten die Temperatur von Katalysatorbett zu Katalysatorbett sowohl ansteigen als auch absinken lassen kann. So kann es besonders vorteilhaft sein, die Durchschnittstemperatur zunächst von Katalysatorbett zu Katalysatorbett zur Erhöhung der Katalysatoraktivität ansteigen zu lassen und anschließend zur Verschiebung des Gleichgewichts die Durchschnittstemperatur in den folgenden letzten Katalysatorbetten wieder absinken zu lassen. Dies kann beispielsweise über die Steuerung der zwischen die Katalysatorbetten geschalteten Wärmetauscher eingestellt werden. Weitere Möglichkeiten der Einstellung der Durchschnittstemperatur werden weiter unten beschrieben.
In einem bevorzugten dem neuen Verfahren nachgeordneten Schritt wird das gebildete Chlor abgetrennt. Der Abtrennschritt umfasst üblicherweise mehrere Stufen, nämlich die Abtrennung und ggf. Rückführung von nicht umgesetztem Chlorwasserstoff aus dem Produktgasstrom der katalytischen Chlorwasserstoff-Oxidation, die Trocknung des erhaltenen, im wesentlichen Chlor und Sauerstoff enthaltenden Stroms sowie die Abtrennung von Chlor aus dem getrockneten Strom.
Die Abtrennung von nicht umgesetztem Chlorwasserstoff und von gebildetem Wasserdampf kann durch Auskondensieren von wässriger Salzsäure aus dem Produktgasstrom der Chlorwasserstoffoxidation durch Abkühlung erfolgen. Chlorwasserstoff kann auch in verdünnter Salzsäure oder Wasser absorbiert werden.
In einer bevorzugten Ausführung des Verfahrens werden nicht umgesetzter Chlorwasserstoff und/oder Sauerstoff nach Abtrennung von Chlor und Wasser aus dem Produktstrom und nach Abzweigen einer geringen Gasmenge zum Konstanthalten von gasförmigen Komponenten, die z. T. mit den Edukten eingeschleppt werden, der Reaktion wieder zugeführt. Der zurückgeführte Chlorwasserstoff und/oder Sauerstoff werden vor einem oder mehreren der Katalysatorbetten zurückgeführt und vorher gegebenenfalls mittels eines Wärmetauschers wieder auf Eingangstemperatur gebracht. Vorteilhaft verwirklicht man das Abkühlen des Produktgases und das Aufwärmen des zurückgeführten Chlorwasserstoff und/oder Sauerstoff, indem man die Gasströme im Gegenstrom durch Wärmeaustauscher aneinander vorbeiführt.
Das neue Verfahren wird bevorzugt bei einem Druck von 1 bis 30 bar, bevorzugt von 1 bis 20 bar, besonders bevorzugt von 1 bis 15 bar betrieben.
Die Temperatur des Eduktgasgemisches beträgt bevorzugt vor jedem der Katalysatorbetten von 150 bis 630°C, bevorzugt von 200 bis 4800C, besonders bevorzugt von 250 bis 470°C. Das Gasgemisch ist bevorzugt vor Eintritt in das einzelne Katalysatorbett homogenisiert.
Die Dicke der durchströmten Katalysatorbetten kann gleich oder verschieden gewählt werden, und beträgt zweckmäßig 1 cm bis 8 m, bevorzugt 5 cm bis 5 m, besonders bevorzugt 30 cm bis 2,5 m.
Der Katalysator wird bevorzugt auf einem Träger immobilisiert verwendet. Der Katalysator enthält bevorzugt mindestens eines der folgenden Elemente: Kupfer, Kalium, Natrium, Chrom, Cer, Gold, Bismut, Uran, Ruthenium, Rhodium, Platin, sowie die Elemente der VIII. Nebengruppe des Periodensystems der Elemente. Diese werden bevorzugt als Oxide, Halogenide, oder gemischte Oxide/Halogenide, insbesondere Chloride bzw. Oxide/Choride verwendet. Diese Elemente bzw. Verbindungen daraus können allein oder in beliebiger Kombination verwendet werden.
Bevorzugte Verbindungen dieser Elemente schließen ein: Kupferchlorid, Kupferoxid, Kaliumchlorid, Natriumchlorid, Chromoxid, Bismutoxid, Uranoxid, Rutheniumoxid, Rutheniumchlorid, Rutheniumoxychlorid, Rhodiumoxid.
Besonders bevorzugt besteht der Katalysatoranteil vollständig oder teilweise aus Ruthenium und/oder Uran bzw. Verbindungen daraus, besonders bevorzugt besteht der Katalysator aus Halogenid und/oder Sauerstoff-enthaltenden Uran und/oder Ruthenium- Verbindungen.
Ganz besonders bevorzugt besteht der Katalysatoranteil vollständig oder teilweise aus Uranoxiden wie beispielsweise UO3, UO2, UO bzw. die aus Gemischen dieser Spezies resultierenden nichtstöchimoetrischen Phasen wie bspw. U3O5, U2O5, U3O7, U3O8, U4θ9. Der Trägeranteil kann vollständig oder teilweise bestehen aus: Titanoxid, Zinnoxid, Aluminiumoxid, Zirkoniumoxid, Uranoxid, Vanadiumoxid, Cerdioxid, Chromoxid, Uranoxid, Siliziumoxid, Kieselerde, Kohlenstoffhanoröhren oder einer Mischung oder Verbindung der genannten Stoffe, wie insbesondere Mischoxiden, wie Silizium- Aluminium-Oxiden. Besonders bevorzugte Trägermaterialien sind Zinnoxid, Kohlenstoffhanoröhren, Uranoxide wie beispielsweise UO3, UO2, UO bzw. die aus Gemischen dieser Spezies resultierenden nichtstöchimoetrischen Phasen wie bspw. U3O5, U2O5, U3O7, U3O8, U4O9..
Die Rutheniumträgerkatalysatoren können beispielsweise durch Tränkung des Trägermaterials mit wässrigen Lösungen von RuCl3 und gegebenenfalls eines Promotors zur Dotierung erhalten werden. Die Formgebung des Katalysators kann nach oder bevorzugt vor der Tränkung des Trägermaterials erfolgen.
Zur Dotierung der Katalysatoren eignen sich als Promotoren Alkalimetalle wie Lithium, Natrium, Kalium, Rubidium und Cäsium, bevorzugt Lithium, Natrium und Kalium, besonders bevorzugt Kalium, Erdalkalimetalle wie Magnesium, Calcium, Strontium und Barium, bevorzugt Magnesium und Calcium, besonders bevorzugt Magnesium, Seltenerdmetalle wie Scandium, Yttrium, Lanthan, Cer, Praseodym und Neodym, bevorzugt Scandium, Yttrium, Lanthan und Cer, besonders bevorzugt Lanthan und Cer, oder deren Gemische.
Die Formkörper können anschließend bei einer Temperatur von 100 bis 400°C, bevorzugt 100 bis 300°C beispielsweise unter einer Stickstoff-, Argon- oder Luftatmosphäre getrocknet und gegebenenfalls calciniert werden. Bevorzugt werden die Formkörper zunächst bei 100 bis 150°C getrocknet und anschließend bei 200 bis 400°C calciniert.
Die Temperatur des Katalysators in den Katalysatorbetten liegt zweckmäßig in einem Bereich von 150 °C bis 800 °C, bevorzugt 200 0C bis 450 °C, besonders bevorzugt 250 °C bis 400 °C. Die Steuerung der Temperatur in den Katalysatorbetten erfolgt bevorzugt durch mindestens eine der folgenden Maßnahmen:
Dimensionierung der Katalysatorbetten,
Steuerung der Wärmeabfuhr zwischen den Katalysatorbetten,
- Zusatz von Einsatzgasen zwischen den Katalysatorbetten, Molares Verhältnis der Edukte,
Konzentrationen der Edukte
Zusatz von Inertgasen, insbesondere Stickstoff, Kohlendioxid, vor und/oder zwischen den Katalysatorbetten
Prinzipiell können die Katalysatoren bzw. die geträgerten Katalysatoren jede beliebige Form aufweisen, z. B. Kugeln, Stäbchen, Raschigringe oder Granulat oder Tabletten.
Die Zusammensetzung der Katalysatoren in den erfindungsgemäß verwendeten Katalysatorbetten kann gleich oder verschieden sein. In einer bevorzugten Ausführungsform werden in jedem Katalysatorbett die gleichen Katalysatoren verwendet. Man kann aber auch vorteilhaft verschiedene Katalysatoren in den einzelnen Katalysatorbetten verwenden. So kann insbesondere in dem ersten Katalysatorbett, wenn die Konzentration der Umsetzungsprodukte noch hoch ist, ein weniger aktiver Katalysator verwendet werden und in den weiteren Katalysatorbetten die Aktivität des Katalysators von Katalysatorbett zu Katalysatorbett gesteigert werden. Die Steuerung der Katalysatoraktivität kann auch durch Verdünnung mit Inertmaterialien bzw. Trägermaterial erfolgen.
Mit dem erfindungsgemäßen Verfahren können pro 1 g Katalysators 0,1 g/h bis 10 g/h Chlor, bevorzugt 0,5 g/h bis 5 g/h Chlor hergestellt werden. Das erfindungsgemäße Verfahren zeichnet sich somit durch hohe Raumzeitausbeuten aus, verbunden mit einer Verringerung der Apparategrößen sowie einer Vereinfachung der Apparaturen bzw. Reaktoren.
Das Edukt für das erfindungsgemäße Verfahren ist Chlorwasserstoff, das z.B. als Koppelprodukt aus der Phosgenierung von organischen Aminen, insbesondere Diaminen zu Isocyanaten, insbesondere Diisocyanaten oder der Gasphasenphosgenierung von Phenol zu Diphenylcarbonat produziert und übernommen wird.
Sauerstoff kann als reiner Sauerstoff oder bevorzugt in Form eines sauerstoffenthaltenden Gases, insbesondere Luft, zugeführt werden.
Das produzierte Chlor kann z.B. zur Herstellung von Phosgen eingesetzt werden und ggf. in verbundene Produktionsprozesse rückgeführt werden. In einer weiteren Ausfuhrungsform der vorliegenden wird das Verfahren so geführt, dass ein kontinuierlicher Austausch eines Festbettkatalysators stattfindet.
In einer weiteren Ausführungsform der vorliegenden Erfindung werden nicht umgesetzte Eduktgase wieder in das Verfahren zurückgeführt. Nicht umgesetzte Eduktgase sind insbesondere Chlorwasserstoff und Sauerstoff. Das Verfahren wird also als Kreisprozess betrieben.
Weiterer Gegenstand der Erfindung ist ein Reaktorsystem zur Umsetzung eines Chlorwasserstoff und Sauerstoff enthaltenden Gases, wenigstens enthaltend Zuleitungen für Chlorwasserstoff und Sauerstoff oder für ein Gemisch von Chlorwasserstoff und Sauerstoff und 18 bis 60 hintereinander geschaltete thermisch isolierte Katalysatorbetten. Das Reaktorsystem kann auch 20 bis 40 oder 22 bis 30 Katalysatorbetten umfassen.
Die vorliegende Erfindung wird anhand der Figuren 1 und 2 erläutert. Es zeigen:
FIG 1 eine erfindungsgemäße Verfahrensdurchführung mit 18 Katalysatorbetten aufgeteilt auf separate Reaktoren
FIG. 2 eine erfindungsgemäße Verfahrensdurchführung mit 18 Katalysatorbetten in einem integrierten Reaktor
FIG. 1 zeigt eine erfindungsgemäße Verfahrensdurchführung mit 18 Katalysatorbetten aufgeteilt auf separate Reaktoren. Vor dem ersten der Reaktoren werden die Eduktgase (1, 2) gemischt zu Gasgemisch (3) und dem Reaktor zugeführt. Die Reaktoren umfassen jeweils eine Katalysatorschüttung (20). Die Produktgase der Reaktoren (4) werden durch Wärmetauscher (30) geleitet. Der Wärmetauscher (30) umfasst Zuführungen (5) und Abführungen (6) von Kühlmedium. In Fig. 1 wird symbolisiert, dass eine Wiederholungseinheit von Reaktor mit Katalysatorschüttung (20) und Wärmetauscher (30) insgesamt 16 Mal wiederholt, so dass insgesamt 18 Einheiten gezeigt sind. Das Produktgasgemisch wird zuletzt einer Stofftrennung (40) unterworfen und in Chlorwasserstoff (7), Sauerstoff (8), Chlor (9) und Wasser (10) getrennt werden. Es ist auch möglich, nicht reagiertes Chlorwasserstoffgas (7) und Sauerstoffgas (8) wieder in die Reaktoren zurückzuführen. Dieses ist aber hier nicht gezeigt.
FIG 2 zeigt eine erfindungsgemäße Verfahrensdurchführung mit 18 Katalysatorbetten in einem integrierten Reaktor. Vor dem ersten der Reaktoren werden die Eduktgase (1, 2) gemischt zu Gasgemisch (3) und dem Reaktor zugeführt. Die Reaktoren umfassen jeweils eine Katalysatorschüttung (20). Die Produktgase der Reaktoren (4) werden durch Wärmetauscher (30) geleitet. Der Wärmetauscher (30) umfasst Zuführungen (5) und Abführungen (6) von Kühlmedium. In Fig. 2 wird symbolisiert, dass eine Wiederholungseinheit von Reaktor mit Katalysatorschüttung (20) und Wärmetauscher (30) insgesamt 16 Mal wiederholt, so dass insgesamt 18 Einheiten gezeigt sind. Das Produktgasgemisch wird zuletzt einer Stofftrennung (40) unterworfen und in Chlorwasserstoff (7), Sauerstoff (8), Chlor (9) und Wasser (10) getrennt werden. Es ist auch möglich, nicht reagiertes Chlorwasserstoffgas (7) und Sauerstoffgas (8) wieder in die Reaktoren zurückzuführen. Dieses ist aber hier nicht gezeigt.
Die vorliegende Erfindung wird weiterhin anhand der nachfolgenden Beispiele 1 und 2 näher erläutert. Diese Beispiele betreffen die Anzahl an Katalysatorbetten und den Temperaturverlauf des Prozessgasgemisches, wenn dieses nach dem erfindungsgemäßen Verfahren in Reaktionszonen reagiert und in nachgeschalteten Wärmetauschern wieder gekühlt wird. Weiterhin betreffen die Beispiele den erzielten Umsatz an HCl.
Beispiele
Beispiel 1 :
In diesem Beispiel strömte das Prozessgasgemisch über insgesamt 24 Katalysatorstufen, also durch 24 Reaktionszonen. Jeweils nach einer Katalysatorstufe befand sich ein Wärmetauscher, der das Prozessgasgemisch kühlte, bevor es in die nächste Katalysatorstufe eintrat. Das eingangs verwendete Prozessgas war eine Mischung aus HCl (38,5 mol-%), O2 (38,5 mol-%) und Inertgasen (Ar, Cl2, N2, CO2; insgesamt 23 mol-%). Der Eingangsdruck des Prozessgasgemisches betrug 5 bar. Die Länge der Katalysatorstufen, also der Reaktionszonen, betrug einheitlich jeweils 7,5 cm. Die Aktivität des Katalysators war so eingestellt, dass sie in allen Katalysatorstufen gleich war. Das Verfahren wurde so durchgeführt, dass eine Belastung von 1 ,2 kg HCl pro kg Katalysator und Stunde erreicht wurde. Es erfolgte keine Nachdosierung von Prozessgasbestandteilen vor den einzelnen Katalysatorstufen. Die Verweilzeit in der Anlage insgesamt betrug 2,3 Sekunden.
Die Ergebnisse sind in Fig.3 gezeigt. Hierbei sind auf der x-Achse die einzelnen Katalysatorstufen aufgeführt, so dass ein räumlicher Verlauf der Entwicklungen im Verfahren sichtbar wird. Auf der linken y-Achse ist die Temperatur des Prozessgasgemisches angegeben. Der Temperaturverlauf über die einzelnen Katalysatorstufen hinweg ist als durchgezogene Linie dargestellt. Auf der rechten y-Achse ist der Gesamtumsatz an HCl angegeben. Der Verlauf des Umsatzes über die einzelnen Katalysatorstufen hinweg ist als gestrichelte Line dargestellt.
Man erkennt, dass die Eingangstemperatur des Prozessgasgemisches vor der ersten Katalysatorstufe etwa 340 °C beträgt. Durch die exotherme Reaktion zu Chlorgas unter adiabatischen Bedingungen steigt die Temperatur auf etwa 370 °C, bevor das Prozessgasgemisch durch den nachgeschalteten Wärmetauscher wieder gekühlt wird. Die Eingangstemperatur vor der nächsten Katalysatorstufe beträgt etwa 344 °C. Durch exotherme adiabatische Reaktion steigt sie wieder auf etwa 370 0C. Die Abfolge aus Erwärmung und Kühlung setzt sich weiter fort. Die Eingangstemperaturen des Prozessgasgemisches vor den einzelnen Katalysatorstufen steigen mit zunehmender Stufenanzahl. Dieses ist möglich, da bei im Reaktionsverlauf späteren Stufen die Menge der zur Reaktion befähigten Edukte geringer ist und entsprechend die Gefahr eines durch exotherme Reaktion bedingten Verlassens des optimalen Temperaturbereichs des Verfahrens sinkt. Folglich kann die Temperatur des Prozessgasgemisches näher am für die jeweilige Zusammensetzung Optimalen gehalten werden.
Der Umsatz an HCl betrug nach der 24. Stufe insgesamt 88,1%
Beispiel 2:
In diesem Beispiel strömte das Prozessgasgemisch über insgesamt 18 Katalysatorstufen, also durch 18 Reaktionszonen. Jeweils nach einer Katalysatorstufe befand sich ein Wärmetauscher, der das Prozessgasgemisch kühlte, bevor es in die nächste Katalysatorstufe eintrat. Das eingangs verwendete Prozessgas war eine Mischung aus HCl (38,5 mol-%), O2 (38,5 mol-%) und Inertgasen (Ar, Cl2, N2, CO2; insgesamt 23 mol-%) Der Eingangsdruck des Prozessgasgemisches betrug 5 bar. Die Länge der Katalysatorstufen, also der Reaktionszonen, betrug einheitlich jeweils 15 cm. Die Aktivität des Katalysators war so eingestellt, dass sie mit der Anzahl der Katalysatorstufen zunahm. Die relativen Katalysatoraktivitäten waren wie folgt:
Stufen 1 und 2 30%
Stufen 3 und 4 40%
Stufen 5 und 6 50%
Stufen 7 und 8 60%
Stufen 9 und 10 70%
Stufen 11 und 12 80%
Stufen 13 und 14 90%
Stufen 15 und 16 100%
Stufen 17 und 18 100%
Das Verfahren wurde so durchgeführt, dass eine Belastung von 1,12 kg HCl pro kg Katalysator und Stunde erreicht wurde. Es erfolgte keine Nachdosierung von Prozessgasbestandteilen vor den einzelnen Katalysatorsrufen. Die Verweilzeit in der Anlage insgesamt betrug 3,5 Sekunden.
Die Ergebnisse sind in Fig. 4 gezeigt. Hierbei sind auf der x-Achse die einzelnen
Katalysatorstufen aufgeführt, so dass ein räumlicher Verlauf der Entwicklungen im Verfahren sichtbar wird. Auf der linken y-Achse ist die Temperatur des Prozessgasgemisches angegeben. Der Temperaturverlauf über die einzelnen Katalysatorstufen hinweg ist als durchgezogene Linie dargestellt. Auf der rechten y-Achse ist der Gesamtumsatz an HCl angegeben. Der Verlauf des Umsatzes über die einzelnen Katalysatorstufen hinweg ist als gestrichelte Line dargestellt.
Man erkennt, dass die Eingangstemperatur des Prozessgasgemisches vor der ersten Katalysatorstufe etwa 350 °C beträgt. Durch die exotherme Reaktion zu Chlorgas unter adiabatischen Bedingungen steigt die Temperatur auf etwa 370 °C, bevor das Prozessgasgemisch durch den nachgeschalteten Wärmetauscher wieder gekühlt wird. Die Eingangstemperatur vor der nächsten Katalysatorstufe beträgt wieder etwa 350 °C. Durch exotherme adiabatische Reaktion steigt sie wieder auf etwa 370 0C. Die Abfolge aus Erwärmung und Kühlung setzt sich weiter fort. Die Eingangstemperaturen des Prozessgasgemisches vor den einzelnen Katalysatorstufen steigen mit zunehmender Stufenanzahl langsamer als im Falle des Beispiels 1. Insgesamt ist die Schwankungsbreite der Prozessgastemperaturen sogar niedriger. Die gewollte geringere Aktivität des Katalysators in den frühen Stufen ermöglicht es, das Prozessgasgemisch mit einer höheren Eingangstemperatur einzuführen, ohne dass eine ungewünschte Überhitzung befürchtet werden muss. Folglich kann die Temperatur des Prozessgasgemisches näher am für die jeweilige Zusammensetzung Optimalen gehalten werden.
Der Umsatz an HCl betrug nach der 18. Stufe insgesamt 88,1%.
Bezugszeichenliste
1 Chlorwasserstoff (Edukt)
2 Sauerstoff (Edukt)
3 Gemischter Eduktgasstrom
4 Produktgase der Reaktoren
5 Zuführung von Kühlmedium
6 Abführung von Kühlmedium
7 Chlorwasserstoff (aus Produktgas)
8 Sauerstoff (aus Produktgas)
9 Chlor
10 Wasser
16 stellt kein Bezugszeichen dar, sondern symbolisiert 16 Wiederholungseinheiten Reaktorschüttung Wärmetauscher Stoffirennung

Claims

Patentansprüche
1. Verfahren zur Herstellung von Chlor durch katalytische Gasphasenoxidation von Chlorwasserstoff mit Sauerstoff, dadurch gekennzeichnet, dass die Umsetzung von Chlorwasserstoff mit Sauerstoff an 18 bis 60 hintereinander geschalteten
Katalysatorbetten unter adiabatischen Bedingungen durchgeführt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Umsetzung an 20 bis 40, vorzugsweise 22 bis 30 hintereinander geschalteten Katalysatorbetten erfolgt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Temperatur des Katalysators in den Katalysatorbetten insbesondere während der Reaktion 150
°C bis 800 0C, bevorzugt 200 bis 450 °C, beträgt.
4. Verfahren nach wenigstens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das aus mindestens einem Katalysatorbett austretende Prozessgasgemisch anschließend über wenigstens einen dem Katalysatorbett nachgeschalteten Wärmetauscher geleitet wird.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass sich nach jedem Katalysatorbett wenigstens ein Wärmetauscher, bevorzugt ein einzelner Wärmetauscher befindet, über den das austretende Prozessgasgemisch geleitet wird und dass der Wärmetauscher vorzugsweise ausgewählt ist aus der Gruppe umfassend Rohrbündel-, Platten- Ringnut-, Spiral-, Rippenrohr- und/oder
Mikrowärmetauscher.
6. Verfahren nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die in den Wärmetauschern abgeführte Reaktionswärme zur Dampfgewinnung eingesetzt wird.
7. Verfahren nach wenigstens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Umsetzung bei einem Druck von 1 bis 30 bar durchgeführt wird.
8. Verfahren nach wenigstens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Eingangstemperatur des in ein erstes Katalysatorbett eintretenden Gasgemisches von 150 bis 630°C, bevorzugt von 200 bis 480°C, beträgt.
9. Verfahren nach Anspruch 8, worin die Eingangstemperatur des in jedes der Katalysatorbetten eintretenden Gasgemisches von 150 bis 630°C, bevorzugt von 200 bis 480°C, besonders bevorzugt 250 bis 4700C, beträgt.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die nacheinander geschalteten Katalysatorbetten bei von Katalysatorbett zu
Katalysatorbett steigender oder sinkender Durchschnittstemperatur betrieben werden.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das molare Verhältnis von Sauerstoff zu Chlorwasserstoff vor Eintritt in jedes Katalysatorbett 0,25 bis 10 Äquivalente Sauerstoff, bevorzugt 0,5 bis 5 Äquivalente
Sauerstoff, pro Äquivalent Chlorwasserstoff beträgt.
12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass ein oder mehrere einzelne Katalysatorbetten unabhängig voneinander durch jeweils zwei oder mehrere parallel geschaltete Katalysatorbetten ersetzt sein können.
13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass der Chlorwasserstoff und Sauerstoff enthaltende Einsatz-Gasstrom nur dem ersten Katalysatorbetten zugeführt wird.
14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass vor einem oder mehreren dem ersten Katalysatorbett nachgeordneten Katalysatorbetten frischer Chlorwasserstoff und/oder Sauerstoff in den Prozessgasstrom eindosiert werden.
15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass der Katalysator wenigstens ein Element aufweist, das aus der Gruppe ausgewählt ist, die besteht aus: Kupfer, Kalium, Natrium, Chrom, Cer, Gold, Bismut, Uran, Ruthenium, Rhodium, Platin, sowie ein Element der VIII. Nebengruppe des
Periodensystems der Elemente.
16. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass der Katalysator auf Ruthenium und/oder Uran oder einer Ruthenium- und/oder Uranverbindung basiert.
17. Verfahren nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass die Aktivität der Katalysatoren in den einzelnen Katalysatorbetten verschieden und insbesondere von Katalysatorbett zu Katalysatorbett ansteigend ist.
18. Verfahren nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass der Katalysator der Katalysatorbetten auf einem inerten Träger aufgebracht ist.
19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass der Katalysatorträger vollständig oder teilweise aus Titanoxid, Zinnoxid, Aluminiumoxid, Zirkoniumoxid, Vanadiumoxid, Cerdioxid, Chromoxid, Siliziumoxid, Uranoxid, Kieselerde, Kohlenstofrhanoröhren, oder einer Mischung oder Verbindung der genannten Stoffe besteht.
20. Verfahren nach einem der Ansprüche 1 bis 19, wobei ein kontinuierlicher Austausch eines Festbettkatalysators stattfinden.
21. Verfahren nach einem der Ansprüche 1 bis 20, wobei nicht umgesetzte Eduktgase wieder in das Verfahren zurückgeführt werden.
22. Reaktorsystem zur Umsetzung eines Chlorwasserstoff und Sauerstoff enthaltenden Gases, wenigstens enthaltend Zuleitungen für Chlorwasserstoff und Sauerstoff oder für ein Gemisch von Chlorwasserstoff und Sauerstoff und 18 bis 60 hintereinander geschaltete thermisch isolierte Katalysatorbetten.
EP08784551A 2007-07-13 2008-06-26 Verfahren zur herstellung von chlor durch vielstufige adiabatische gasphasenoxidation Withdrawn EP2170495A1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE200710033113 DE102007033113A1 (de) 2007-07-13 2007-07-13 Temperaturstabiler Katalysator für die Chlorwasserstoffgasphasenoxidation
DE102007033114A DE102007033114A1 (de) 2007-07-13 2007-07-13 Verfahren zur Herstellung von Chlor durch Gasphasenoxidation von Chlorwasserstoff
DE200710033107 DE102007033107A1 (de) 2007-07-13 2007-07-13 Verfahren zur Herstellung von Chlor durch vielstufige adiabatische Gasphasenoxidation
PCT/EP2008/005184 WO2009010168A1 (de) 2007-07-13 2008-06-26 Verfahren zur herstellung von chlor durch vielstufige adiabatische gasphasenoxidation

Publications (1)

Publication Number Publication Date
EP2170495A1 true EP2170495A1 (de) 2010-04-07

Family

ID=39809172

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08784551A Withdrawn EP2170495A1 (de) 2007-07-13 2008-06-26 Verfahren zur herstellung von chlor durch vielstufige adiabatische gasphasenoxidation

Country Status (5)

Country Link
US (1) US20100260660A1 (de)
EP (1) EP2170495A1 (de)
JP (1) JP2010533113A (de)
CN (1) CN101687160A (de)
WO (1) WO2009010168A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008050975A1 (de) * 2008-10-09 2010-04-15 Bayer Technology Services Gmbh Mehrstufiges Verfahren zur Herstellung von Chlor
DE102009021675A1 (de) * 2009-05-16 2010-11-18 Bayer Technology Services Gmbh Verfahren zur Herstellung von Chlor durch Gasphasenoxidation von Chlorwasserstoff in Gegenwart eines Ceroxid-Katalysators
DE102009033640A1 (de) * 2009-07-17 2011-03-03 Bayer Technology Services Gmbh Verfahren zur Herstellung von Chlor durch Gasphasenoxidation von Chlorwasserstoff in Anwesenheit von Schwefeloxiden
JP5636601B2 (ja) * 2010-03-11 2014-12-10 住友化学株式会社 固定床反応器による塩素の製造方法
JP2014520742A (ja) * 2011-07-05 2014-08-25 バイエル インテレクチュアル プロパティー ゲゼルシャフト ミット ベシュレンクテル ハフツング 断熱反応カスケードにおける酸化セリウム触媒を使用する塩素の製造方法
DE102011081074A1 (de) * 2011-08-17 2013-02-21 Areva Np Gmbh Verfahren zur Herstellung eines Uranoxid als aktive Komponente enthaltenden Katalysators
CN104437268B (zh) * 2014-11-06 2017-07-14 南京大学 多级并联强化固定床反应器及其使用方法
CN104591090B (zh) 2014-12-22 2016-09-07 上海方纶新材料科技有限公司 一种氯化氢催化氧化制备氯气的方法
CN105776141B (zh) * 2016-01-27 2018-03-09 烟台大学 一种氯化氢催化氧化制氯气新型固定床反应器
JP2020019687A (ja) * 2018-08-02 2020-02-06 住友化学株式会社 臭素の製造方法
KR102709295B1 (ko) 2019-12-31 2024-09-23 한화솔루션 주식회사 염화수소 산화반응용 성형촉매 및 이의 제조방법
WO2023094364A1 (en) * 2021-11-23 2023-06-01 Basf Se Process for preparing a gas stream comprising chlorine

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1260229A (en) * 1986-06-30 1989-09-26 Mitsui Chemicals, Inc. Production process of chlorine
US5908607A (en) * 1996-08-08 1999-06-01 Sumitomo Chemical Co., Ltd. Process for producing chlorine
DE19748299A1 (de) * 1996-10-31 1998-05-07 Sumitomo Chemical Co Verfahren zur Herstellung von Chlor
US6977066B1 (en) * 1999-01-22 2005-12-20 Sumitomo Chemical Company, Limited Method for producing chlorine
WO2001054806A1 (en) * 2000-01-25 2001-08-02 Meggitt (Uk) Ltd Chemical reactor with heat exchanger
US7033553B2 (en) * 2000-01-25 2006-04-25 Meggitt (Uk) Limited Chemical reactor
DE10235476A1 (de) * 2002-08-02 2004-02-12 Basf Ag Integriertes Verfahren zur Herstellung von Isocyanaten
DE10250131A1 (de) * 2002-10-28 2004-05-06 Basf Ag Verfahren zur Herstellung von Chlor aus Salzsäure
DE10258153A1 (de) * 2002-12-12 2004-06-24 Basf Ag Verfahren zur Herstellung von Chlor durch Gasphasenoxidation von Chlorwasserstoff
DE10361519A1 (de) * 2003-12-23 2005-07-28 Basf Ag Verfahren zur Herstellung von Chlor durch Gasphasenoxidation von Chlorwasserstoff
DE102004006610A1 (de) * 2004-02-11 2005-09-01 Basf Ag Reaktor und Verfahren zur Herstellung von Chlor aus HCI
US7772447B2 (en) * 2004-12-22 2010-08-10 Exxonmobil Chemical Patents Inc. Production of liquid hydrocarbons from methane
DE102007020140A1 (de) * 2006-05-23 2007-11-29 Bayer Materialscience Ag Verfahren zur Herstellung von Chlor durch Gasphasenoxidation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009010168A1 *

Also Published As

Publication number Publication date
CN101687160A (zh) 2010-03-31
JP2010533113A (ja) 2010-10-21
WO2009010168A1 (de) 2009-01-22
US20100260660A1 (en) 2010-10-14

Similar Documents

Publication Publication Date Title
EP2027063B1 (de) Verfahren zur herstellung von chlor durch gasphasenoxidation
EP2170495A1 (de) Verfahren zur herstellung von chlor durch vielstufige adiabatische gasphasenoxidation
EP1882681B1 (de) Verfahren zur Herstellung von aromatischen Aminen
WO2009010181A1 (de) Verfahren zur herstellung von chlor durch gasphasenoxidation
EP1699734A1 (de) Verfahren zur herstellung von chlor durch gasphasenoxidation von chlorwasserstoff
WO2013060628A1 (de) Katalysator und verfahren zur herstellung von chlor durch gasphasenoxidation
WO2009010167A1 (de) Temperaturstabiler katalysator für die chlorwasserstoffgasphasenoxidation
EP2459312A2 (de) Verfahren zur herstellung von chlor durch gasphasenoxidation an nanostrukturierten rutheniumträgerkatalysatoren
WO2007134775A1 (de) Verfahren zur oxidation eines chlorwasserstoff enthaltenden gases
EP1542923A1 (de) Festbettverfahren zur herstellung von chlor durch katalytische gasphasen-oxidation von chlorwasserstoff
EP1656322A1 (de) Verfahren zur herstellung von chlor
EP2334593A1 (de) Mehrstufiges verfahren zur herstellung von chlor
EP2177476A1 (de) Verfahren zur Abtrennung von Kohlenmonoxid aus einem HCI-Rohgas
EP2246320A1 (de) Verfahren zur Herstellung von aromatischen Aminen
DE102007033107A1 (de) Verfahren zur Herstellung von Chlor durch vielstufige adiabatische Gasphasenoxidation
WO2009143971A1 (de) Verfahren zur herstellung von phosgen
WO2017134230A1 (de) Katalysator und verfahren zur herstellung von chlor durch gasphasenoxidation
WO2009149809A1 (de) Verfahren zur herstellung von formaldehyd
DE102007033106A1 (de) Verfahren zur Herstellung von Chlor durch Gasphasenoxidation
EP2142469B1 (de) Prozess zur herstellung von chlor aus hcl
WO2007104436A1 (de) Verfahren und vorrichtung zur herstellung von chlor durch gasphasenoxidation in einem gekühlten wandreaktor
WO2009039947A1 (de) Verfahren zur herstellung von aromatischen aminen
DE102011005897A1 (de) Verfahren zur Bereitstellung von Chlor für chemische Umsetzungen
WO2009143970A1 (de) Verfahren zur herstellung von ethylenoxid
WO2010069482A1 (de) Verfahren zur herstellung von schwefeltrioxid

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100215

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER INTELLECTUAL PROPERTY GMBH

17Q First examination report despatched

Effective date: 20140924

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150106