EP1699734A1 - Verfahren zur herstellung von chlor durch gasphasenoxidation von chlorwasserstoff - Google Patents
Verfahren zur herstellung von chlor durch gasphasenoxidation von chlorwasserstoffInfo
- Publication number
- EP1699734A1 EP1699734A1 EP04804265A EP04804265A EP1699734A1 EP 1699734 A1 EP1699734 A1 EP 1699734A1 EP 04804265 A EP04804265 A EP 04804265A EP 04804265 A EP04804265 A EP 04804265A EP 1699734 A1 EP1699734 A1 EP 1699734A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- reactor
- thermoplates
- hydrogen chloride
- thermoplate
- chlorine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/0242—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
- B01J8/0257—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical annular shaped bed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/0242—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
- B01J8/025—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical shaped bed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/0285—Heating or cooling the reactor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/04—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
- B01J8/0446—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
- B01J8/0449—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
- B01J8/0453—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds the beds being superimposed one above the other
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/04—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
- B01J8/0496—Heating or cooling the reactor
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B7/00—Halogens; Halogen acids
- C01B7/01—Chlorine; Hydrogen chloride
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B7/00—Halogens; Halogen acids
- C01B7/01—Chlorine; Hydrogen chloride
- C01B7/03—Preparation from chlorides
- C01B7/04—Preparation of chlorine from hydrogen chloride
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0031—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0093—Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00106—Controlling the temperature by indirect heat exchange
- B01J2208/00115—Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
- B01J2208/0015—Plates; Cylinders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00002—Chemical plants
- B01J2219/00018—Construction aspects
- B01J2219/0002—Plants assembled from modules joined together
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2250/00—Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
- F28F2250/10—Particular pattern of flow of the heat exchange media
- F28F2250/102—Particular pattern of flow of the heat exchange media with change of flow direction
Definitions
- the invention relates to a process for the production of chlorine by gas phase oxidation of hydrogen chloride in the presence of a fixed bed catalyst.
- the oxidation of hydrogen chloride to chlorine is an equilibrium reaction.
- the position of the equilibrium shifts with increasing temperature to the detriment of the desired end product.
- catalysts with the highest possible activity, which allow the reaction to proceed at a lower temperature.
- Such catalysts are in particular catalysts based on copper or based on ruthenium, for example, the supported catalysts described in DE-A 197 48 299 with the active material ruthenium oxide or ruthenium mixed oxide, wherein the content of ruthenium oxide 0.1 to 20 wt .-% and the average particle diameter of ruthenium oxide is 1.0 to 10.0 nm.
- ruthenium chloride catalysts containing at least one of the compounds titanium oxide and zirconium oxide, ruthenium-carbonyl complexes, ruthenium salts of inorganic acids, ruthenium-nitrosyl complexes, ruthenium-amine Complexes, ruthenium complexes of organic amines or ruthenium-acetylacetonate complexes.
- gold may also be included in the catalyst active composition.
- the ruthenium-containing catalyst is damaged, in particular by the formation of volatile ruthenium oxides.
- the hot spot problem should be reduced or avoided without or with a smaller gradation of catalyst activity or without dilution of the catalyst and the catalyst damage as a result of the hot spot formation.
- a process for the production of chlorine by gas phase oxidation of hydrogen chloride was found with a molecular oxygen-containing gas stream in the presence of a fixed bed catalyst, which is characterized in that one carries out the process in a reactor with spaced apart, arranged in the longitudinal direction of the reactor thermoplates from a heat transfer medium flows through, with supply and discharge devices for the heat transfer medium to the thermoplates and with gaps between thermoplates which are filled with the fixed bed catalyst and into which the hydrogen chloride and the molecular oxygen-containing gas stream are introduced.
- the reaction temperatures are usually in the range between 150 and 500 ° C and the reaction pressure between 1 and 25 bar. Since it is an equilibrium reaction, it is expedient to work at the lowest possible temperatures at which the catalyst still has sufficient activity. Furthermore, it is expedient to use oxygen in superstoichiometric amounts. For example, a two- to four-fold excess of oxygen is customary. Since no loss of selectivity is to be feared, it may be economically advantageous to work at relatively high pressure and, accordingly, at longer residence times than normal pressure.
- the catalytic hydrogen chloride oxidation may adiabatically or preferably isothermally or approximately isothermally, discontinuously, preferably continuously as a fixed bed process, at reactor temperatures of 180 to 500 ° C, preferably 200 to 400 ° C, more preferably 220 to 350 ° C and a pressure of 1 to 25 bar, preferably 1.2 to 20 bar, more preferably 1, 5 to 17 bar and in particular 2.0 to 15 bar are performed.
- DE-A 102 44 996 catalysts based on gold containing on a support 0.001 to 30 wt .-% gold, 0 to 3 wt .-% of one or more Erdalkalimetal- le, 0 to 3 wt .-% of one or more alkali metals, 0 to 10 wt .-% of one or more rare earth metals and 0 to 10 wt .-% of one or more other metals selected from the group consisting of ruthenium, palladium, Osmiumiridium, silver, copper and rhenium, each based on the total weight of the catalyst.
- a preferred embodiment consists in using a structured catalyst bed in which the catalyst activity increases in the flow direction.
- Such structuring of the catalyst bed can be done by different impregnation of the catalyst support with active material or by different dilution of the catalyst with an inert material.
- an inert material for example, rings, cylinders or balls of titanium dioxide, zirconium dioxide or their Gemi see alumina, steatite, ceramic, glass, graphite or stainless steel.
- the inert material should preferably have similar external dimensions.
- the area of the gaps between the thermoplates facing the supply of the gaseous reaction mixture can firstly, in particular to a length of 5 to 20%, preferably to a length between 5 and 10%, the total length of the gap with an inert material and only then with the catalyst be filled.
- Suitable shaped catalyst bodies are any desired forms, preference being given to tablets, rings, cylinders, stars, carriage wheels or spheres, with particular preference being given to rings, cylinders, star strands or extruded strands.
- suitable carrier materials are silicon dioxide, graphite, rutile or anatase titanium dioxide, zirconium dioxide, aluminum oxide or mixtures thereof, preferably titanium dioxide, zirconium dioxide, aluminum oxide or mixtures thereof, particularly preferably ⁇ - or ⁇ -aluminum oxide or mixtures thereof.
- the copper or ruthenium-supported catalysts can be obtained, for example, by impregnating the support material with aqueous solutions of CuCl 2 or RuCl 3 and optionally a promoter for doping, preferably in the form of their chlorides.
- the shaping of the catalyst can take place after or preferably before the impregnation of the support material.
- alkali metals such as lithium, sodium, potassium, rubidium and cesium, preferably lithium, sodium and potassium, more preferably potassium, alkaline earth metals such as magnesium, calcium, strontium and barium, preferably magnesium and calcium, more preferably magnesium, rare earth metals such Scandium, yttrium, lanthanum, cerium, praseodymium and neodymium, preferably scandium, yttrium, lanthanum and cerium, more preferably lanthanum and cerium, or mixtures thereof.
- alkaline earth metals such as magnesium, calcium, strontium and barium, preferably magnesium and calcium, more preferably magnesium, rare earth metals such Scandium, yttrium, lanthanum, cerium, praseodymium and neodymium, preferably scandium, yttrium, lanthanum and cerium, more preferably lanthanum and cerium, or mixtures thereof.
- the shaped bodies can then be dried at temperatures of 100 to 400 ° C., preferably 100 to 300 ° C., for example under a nitrogen, argon or air atmosphere, and optionally calcined.
- the moldings are first dried at 100 to 150 ° C and then calcined at 200 to 400 ° C.
- the chlorine stream obtained in the process according to the invention after the Deacon process can advantageously be fed to an ethylene direct chlorination to give 1, 2-dichloroethane.
- This so-called direct chlorination of ethene with chlorine is in the DE-A 102 52 859, the disclosure content of which is hereby fully incorporated into the present patent application.
- ethene as an additional starting material directly into the reactor, in which the gas phase oxidation of hydrogen chloride is carried out with the molecular oxygen-containing gas stream, to give 1, 2-dichloroethane.
- the chlorine stream obtained according to the present invention after the Deacon process can also be supplied to a reaction with carbon monoxide to phosgene, provided that the hydrogen chloride used in the Deacon process has a sufficiently low bromine and lodgehalt.
- a method is described, for example, in DE-A 102 35 476, the disclosure content of which is hereby fully incorporated into the present patent application.
- the material used for the reactor is advantageously pure nickel or a nickel-based alloy. Preference is given to using nickel-based alloys Inconell 600 or Inconell 625.
- Inconell 600 contains about 80% nickel and about 15% chromium and iron.
- Inconell 625 contains predominantly nickel, 21% chromium, 9% molybdenum and a few percent niobium.
- HastelloyC-276 can also be used.
- thermoplates made of the above materials pure nickel or nickel-based alloys.
- thermoplates from stainless steel, for example with the material number 1.4541 or 1.4404, 1.4571 or 1.4406, 1.4539 but also 1.4547 or other alloyed steels.
- thermoplates arranged in the reactor.
- Thermoplates are plate-shaped heat exchangers, i. predominantly sheet-like structures which have an inner space with inlet and outlet lines with a small thickness in relation to the surface.
- the supply and discharge devices for the heat transfer medium are usually arranged at opposite ends of the heat exchange plates.
- a heat carrier are often water, but also Diphyl ® (mixture of 70 to 75 wt .-% diphenyl ether and 25 to 30 wt .-% diphenyl) are used, which also partially evaporate in a boiling process; it is also the use of other organic heat transfer medium with low vapor pressure and ionic liquids possible.
- ionic liquids as heat transfer medium is described in DE-A 103 16 418.
- Preferred are ionic liquids containing a sulfate, phosphate, borate or silicate anion.
- ionic liquids which contain a monovalent metal cation, in particular an alkali metal cation, and also a further cation, in particular an imidazolium cation.
- ionic liquids which contain as cation an imidazolium, pyridinium or phosphonium cation.
- thermoplates For plate-shaped heat exchangers, the terms heat exchanger plates, heat exchanger plates, thermoplates or thermal plates are used synonymously in addition to the term thermoplates.
- thermoplates or thermoplates is used in particular for heat exchanger plates whose individual, usually two, sheets are connected to each other by spot and / or seam welding and are often formed plastically using hydraulic pressure under cushioning.
- thermoplates is used herein in the sense of the above definition.
- thermoplates are arranged in the reactor parallel to each other.
- thermoplates For cylindrical reactors is also a radial arrangement of the thermoplates, leaving a central interior and a peripheral channel on the reactor walls, advantageous.
- the central interior which is suitably connected to supply and discharge means for the reaction medium to or from the interstices between the thermoplates, can basically any geometric shape, for example the shape of a polygon, in particular the shape of a triangle, a square, a preferably regular hexagon or a preferred regular octagon and also have a substantially circular shape.
- thermoplates in the longitudinal direction of the reactor extend substantially over the entire length of the cylindrical reactor with the exception of the reactor ends.
- the reaction medium is preferably conducted radially through the spaces between the thermoplates.
- the peripheral channel is preferably annular. It serves as a collection and / or distribution chamber for the reaction medium.
- the peripheral channel may be separated from the spaces between the thermoplates by a suitable retainer, preferably a cylindrical screen or a perforated plate; Similarly, a corresponding retaining device to separate the spaces between the thermal sheets from the central interior.
- a suitable retainer preferably a cylindrical screen or a perforated plate
- a corresponding retaining device to separate the spaces between the thermal sheets from the central interior.
- This embodiment is particularly suitable because a reaction is carried out using a fixed-bed catalyst, which is introduced into the interstices between the thermoplates and whose discharge is to be prevented with the reaction medium by appropriate choice of the openings in the retainer.
- the radial guidance of the reaction medium can be centrifugal and / or centripetal, wherein in the event that a single direction of the radial current flow is provided, the centrifugal guidance of the reaction medium is particularly advantageous.
- the radial flow of the reaction medium between the radially arranged thermoplates has the advantage of a low pressure loss. Since the hydrogen chloride oxidation proceeds with a decrease in volume, the pressure conditions in the case of centripetal guidance are particularly favorable due to the decreasing distances between the thermoplates inwardly.
- thermoplates The radial extent of all thermoplates is preferably the same; An adaptation of the thermoplates to the inner vessel wall of the reactor is thus not required, it can be used on the contrary plates of a single type of construction.
- the radial extent of the thermoplate plates is preferably in the range of 0.1 to 0.95 of the reactor radius, more preferably in the range of 0.3 to 0.9 of the reactor radius.
- thermoplates are formed substantially straight-sided. This does not mean that they are completely flat structures, on the contrary they can in particular be regularly bent, folded, kinked or wavy.
- the thermoplates are produced by known methods.
- Periodically profiled structural elements in particular corrugated plates, may be arranged in the thermoplates.
- Structural elements of this type are known as mixing elements in static mixers and are described, for example, in DE-A 19623051; in the present case, they serve, in particular, for optimizing the heat exchange.
- additional plates in the outer reactor region with less radial expansion compared to the other thermoplates preferably with a radial extension in the range of 0.1 to 0, 7, more preferably 0.2 to 0.5 of the radial extent of the remaining thermoplates.
- the additional plates can have the same dimensions with one another, but it is also possible to use two or more types of additional plates, the types of construction differing from each other by their radial extent and / or their length.
- thermoplates are preferably arranged symmetrically between the other thermoplates. They allow an improved adaptation to the temperature profile of the gas phase oxidation.
- a reactor which is composed of two or more, in particular removable reactor shots.
- each reactor shot is each equipped with a separate heat transfer circuit.
- the individual reactor shots can be assembled by means of flanges as required.
- the flow of the reaction medium between two successive reactor shots is preferably ensured by suitable baffles, which have a deflection and / or separation function. By a suitable choice of the number of baffles, a multiple deflection of the reaction medium can be achieved.
- thermoplates It is possible to design a multiple reactor reactor with a single heat exchange fluid circuit. Preferably, however, two or more separate heat exchange fluid circuits may be provided by the thermoplates. Thus, an improved adaptation to different heat exchange requirements can be achieved with the progress of the chemical reaction.
- the process may preferably be carried out in a reactor which is equipped with one or more cuboidal thermoplate modules, each of which is formed from two or more rectangular thermoplates arranged parallel to one another leaving one gap each.
- thermoplate modules Reactors with thermoplate modules are known, for example, in DE-A 103 33 866, the disclosure content of which is hereby fully incorporated into the present patent application.
- thermoplate modules are each formed from two or more rectangular, parallel to each other leaving a gap each arranged thermoplates.
- the material thickness of the sheets used for this purpose can be selected between 1 and 4 mm, 1, 5 and 3 mm, but also between 2 and 2.5 mm, or 2.5 mm.
- thermoplate In general, two rectangular sheets are connected at their longitudinal and end sides to form a thermoplate, wherein a seam seam or lateral welding or a combination of both is possible, so that the space in which the heat carrier is later, is tight on all sides.
- edge of the thermoplates on or already separated in the lateral seam of the longitudinal edge, so that the poor or not cooled edge region in which usually also catalyst is introduced, has the lowest possible geometric extent.
- the sheets are connected to each other by spot welding.
- An at least partial connection by straight or curved and circular roll seams is possible.
- the subdivision of the volume flowed through by the heat transfer medium in several separate areas by additional roll seams is possible.
- the width of the thermoplates is essentially limited in terms of manufacturing technology and can be between 100 and 2500 mm, or between 500 and 1500 mm.
- the length of the thermoplates depends on the reaction, in particular on the temperature profile of the reaction, and may be between 1000 and 7000 mm, or between 2000 and 6000 mm.
- thermoplates are parallel and spaced from each other, to form a thermoplate module arranged. This results in bay-like gaps between directly adjacent metal plates, which at the narrowest points of the plate spacing, for example, a width between 10 and 50 mm, preferably between 15 and 40 mm, more preferably between 18 and 30, in particular 20 mm.
- the gaps can be made with different widths, with narrower gap widths being selected in hotspot-endangered areas compared with the other areas.
- thermoplates of a thermoplate module e.g. For large panels, additional spacers are installed to prevent deformation, which can change plate spacing or position.
- portions of the sheets can be separated by, for example, circular roll seams from the flow area of the heat carrier to introduce there, for example, holes for fastening screws of the spacers in the plates can.
- thermoplate module The catalyst particle filled gaps of a thermoplate module can be sealed against each other, e.g. be tightly welded or have process side to each other connection.
- the plates are fixed in their position and at a distance.
- the spot welds of directly adjacent thermoplates may be opposite or offset from one another.
- thermoplate modules it may be necessary for the compactness of the overall apparatus. be advantageous to choose two types of modules with different edge length or different edge length ratio.
- thermoplate modules Preference is given to arrangements of 4, 7, 10 or 14 thermoplate modules, each having the same dimensions.
- the visible in the flow direction of a module can be square, but also rectangular with an aspect ratio of 1, 1 but also 1, 2.
- Particularly advantageous geometrical arrangements can be achieved if, as stated above, a number of 4, 7 or 14 thermoplate modules is selected.
- thermoplate modules should be individually interchangeable, for example in the case of leaks, deformations of the thermoplates or problems that affect the catalyst.
- thermoplate modules are arranged in each case a rectangular stabilization box.
- thermoplate module is advantageously held in position by a suitable guide, for example by the rectangular stabilization boxes, with laterally continuous wall or for example by an angle construction.
- the rectangular stabilization boxes of adjacent thermoplate modules are sealed against each other. This prevents a bypass flow of the reaction mixture between the individual thermoplate modules.
- thermoplate modules in a predominantly cylindrical reactor leaves relatively large free spaces at the edge of the cylindrical jacket wall. In this space between the thermoplate modules and the cylinder jacket of the reactor can be advantageous to introduce an inert gas.
- the block-shaped thermoplate modules can not only in cylindrical reactors, but also advantageous reactors with polygonal cross-sections, in particular with rectangular cross-sections, are installed.
- catalyst particles having equivalent particle diameters in the range from 2 to 8 mm are particularly suitable.
- the term equivalent particle diameter referred to in a known manner six times the ratio between the volume and surface of the particle.
- the process is particularly advantageous with an open-space velocity of the reaction gas mixture of up to 3.0 m / s, preferably in the range of 0.5 to 2.5 m / s, more preferably about 1.5 m / s.
- the process according to the invention is carried out in such a way that, when the reactor is started up at the reaction temperature, and also when the reactor is shut down, after the reaction has ended, the reactor is heated to temperatures above 150 ° C. at temperatures below 150 ° C. in the reactor Condensation point of the hydrochloric acid warmed inert purge gas, preferably nitrogen, passes.
- gases are understood to be inert which do not react with the process-inherent substances under the operating conditions of the process according to the invention. This special procedure when starting and stopping the reactor prevents corrosive damage to the reactor material.
- FIG. 1A shows a preferred embodiment of a reactor for the process according to the invention, cross-section, with a longitudinal section in FIG. 1B and a longitudinal section through a thermoplate in FIG. 1C, FIG.
- FIG. 2A shows a cross-sectional representation through a further preferred embodiment of a reactor for the method according to the invention, with a longitudinal section in FIG. 2B and a variant with a plurality of reaction shots in FIG. 2C,
- FIG. 3A shows a further preferred embodiment in cross section, with a longitudinal section through a thermoplate plate in FIG. 3B,
- FIG. 4A shows another embodiment of a reactor for the process according to the invention, with a longitudinal section in FIG. 4B and a variant with a plurality of reaction shots in FIG. 4C
- FIG. 5 shows an embodiment of a reactor for the method according to the invention, in longitudinal section
- FIG. 6 shows a further embodiment for two reactors connected in series
- FIGS. 7A to 7C show different arrangements of thermoplate modules, in cross section and FIGS.
- FIG. 8 shows a gap between thermoplate modules.
- FIG. 1A shows a section through a reactor 1 with thermoplates 2 arranged parallel to one another which leave gaps 5 between the thermoplates, the gaps 5 being filled with a solid catalyst.
- thermoplates 2 For the circulating through the thermoplates 2 heat transfer inlet and outlet lines 3 and 4 are provided.
- FIG. 1 B illustrates the formation of the thermoplates 2 and the arrangement of the inlet and outlet lines 3 and 4 in the reactor 1.
- a reaction gas guide from bottom to top; the reverse flow, from top to bottom, is equally possible.
- FIG. 1C shows a longitudinal section through a thermoplate plate 2. The representation also illustrates retention devices for the solid catalyst at both ends of the thermoplate plate 2.
- FIG. 2A shows a reactor 1 with radially arranged therein thermoplates 2, with columns 5 between the thermoplates 2, which are filled with the solid catalyst.
- a dummy body is arranged to ensure a substantially longitudinal flow for the reaction mixture through the reactor, as can be seen in particular from the longitudinal sectional view in Figure 2B, indicated by the arrows.
- FIG. 2C shows a variant of the apparatus shown in longitudinal section in FIG. 2B with a plurality of, for example, four reactor shots.
- FIG. 3A shows a cross section through a further embodiment of a reactor for the method according to the invention, without arranging a dummy body in the central interior space 6.
- R denotes the radius of the reactor and r the extent of each thermoplate plate in the direction of the reactor radius R.
- the longitudinal section Position through a thermoplate plate 2 in Figure 3B shows baffles 7 for the heat transfer medium.
- FIG. 4A shows a further embodiment with a peripheral channel 8 for collecting and forwarding the reaction gas mixture.
- the longitudinal section in FIG. 4B illustrates the flow profile for the reaction gas mixture, in particular also through the central inner space 6 and the peripheral channel 8.
- the longitudinal sectional view in FIG. 4C shows a further variant with a plurality of, for example, two successive reactor shots.
- FIG. 5 shows a reactor 1 with, for example, three reactor shots, each with thermoplate plates 2 and with inlet and outlet lines 3 and 4 for the heat carrier.
- the longitudinal section in Figure 6 shows two reactors 1 connected in series, each with thermoplates 2 and inlet and outlet lines 3 and 4 for the heat transfer medium.
- FIGS. 7A to 7C show arrangements of 4, one or 7 thermoplate modules 9 in each case in a cylindrical reactor 1, in cross-section
- thermoplates 2 and the intermediate gap 5 illustrate the formation of the thermoplates 2 and the intermediate gap 5, with fixed bed catalyst contained therein, with equivalent particle diameter d P. From the figure it can be seen that the width s of the gap 5 is the smallest distance between two directly adjacent thermoplates 2 is designated.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Thermal Sciences (AREA)
- Fluid Mechanics (AREA)
- Inorganic Chemistry (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Es wird ein Verfahren zur Herstellung von Chlor durch Gasphasenoxidation von Chlorwasserstoff mit einem molekularen Sauerstoff enthaltenden Gasstrom in Gegenwart eines Festbettkatalysators vorgeschlagen, das dadurch gekennzeichnet ist, dass man das Verfahren in einem Reaktor (1) mit voneinander beabstandet, in Längsrichtung des Reaktors (1) angeordneten Thermoblechplatten (2) durchführt, die von einem Wärmeträger durchströmt sind, mit Zu- und Abführeinrichtungen (3, 4) für den Wärmeträger zu den Thermoblechplatten (2) sowie mit Spalten (5) zwischen den Thermoblechplatten (2), die mit dem Festbettkatalysator befüllt sind und in die der Chlorwasserstoff sowie der molekularen Sauerstoff enthaltende Gasstrom eingeleitet werden.
Description
Verfahren zur Herstellung von Chlor durch Gasphasenoxidation von Chlorwasserstoff
Beschreibung
Die Erfindung betrifft ein Verfahren zur Herstellung von Chlor durch Gasphasenoxidation von Chlorwasserstoff in Gegenwart eines Festbettkatalysators.
Das von Deacon 1868 entwickelte Verfahren der katalytischen Chlorwasserstoffoxida- tion mit Sauerstoff in einer exothermen Gleichgewichtsreaktion steht am Anfang der technischen Chlorchemie. Durch die Chloralkalielektrolyse wurde das Deacon- Verfahren stark in den Hintergrund gedrängt, die nahezu gesamte Produktion von Chlor erfolgte durch Elektrolyse wässriger Kochsalzlösungen.
Die Attraktivität des Deacon-Verfahrens nimmt jedoch in jüngerer Zeit wieder zu, da der weltweite Chlorbedarf stärker als die Nachfrage nach Natronlauge wächst. Dieser Entwicklung kommt das Verfahren zur Herstellung von Chlor durch Oxidation von Chlorwasserstoff entgegen, das von der Natronlaugeherstellung entkoppelt ist. Darüber hinaus fällt Chlorwasserstoff in großen Mengen beispielsweise bei Phosgenierungs- reaktionen, etwa bei der Isocyanat-Herstellung, als Koppelprodukt an. Der bei der Iso- cyanat-Herstellung gebildete Chlorwasserstoff wird überwiegend in der Oxichlorierung von Ethylen zu 1 ,2-Dichlorethan eingesetzt, das zu Vinylchlorid und weiter zu PVC verarbeitet wird. Beispiele für weitere Verfahren, bei denen Chlorwasserstoff anfällt, sind die Vinylchlorid-Herstellung, die Polycarbonat-Herstellung oder das PVC- Recycling.
Die Oxidation von Chlorwasserstoff zu Chlor ist eine Gleichgewichtsreaktion. Die Lage des Gleichgewichts verschiebt sich mit zunehmender Temperatur zu Ungunsten des gewünschten Endproduktes. Es ist daher vorteilhaft, Katalysatoren mit möglichst hoher Aktivität einzusetzen, die die Reaktion bei niedrigerer Temperatur ablaufen lassen. Derartige Katalysatoren sind insbesondere Katalysatoren auf Basis von Kupfer oder auf der Basis von Ruthenium, beispielsweise die in DE-A 197 48 299 beschriebenen geträgerten Katalysatoren mit der Aktivmasse Rutheniumoxid oder Rutheniummischoxid, wobei der Gehalt an Rutheniumoxid 0,1 bis 20 Gew.-% und der mittlere Teilchendurchmesser von Rutheniumoxid 1 ,0 bis 10,0 nm beträgt. Weitere geträgerte Katalysa- toren auf Basis von Ruthenium sind aus DE-A 197 34 412 bekannt: Rutheniumchloridkatalysatoren, die mindestens eine der Verbindungen Titanoxid und Zirkoniumoxid enthalten, Ruthenium-Carbonyl-Komplexe, Rutheniumsalze anorganischer Säuren, Ruthenium-Nitrosyl-Komplexe, Ruthenium-Amin-Komplexe, Rutheniumkomplexe organischer Amine oder Ruthenium-Acetylacetonat-Komplexe. Zusätzlich zu Ruthenium kann auch Gold in der Katalysator-Aktivmasse enthalten sein.
Ein bekanntes technisches Problem bei Gasphasenoxidationen, vorliegend der Oxidation von Chlorwasserstoff zu Chlor, ist die Bildung von Hot-Spots, das heißt von lokalen Überhitzungen, die zur Zerstörung des Katalysator- und Kontaktrohrmateriais führen können. Um die Bildung von Hot-Spots zu reduzieren bzw. zu verhindern, wurde daher in WO 01/60743 vorgeschlagen, Katalysatorfüllungen einzusetzen, die in unterschiedlichen Bereichen der Kontaktrohre jeweils unterschiedliche Aktivität aufweisen, das heißt Katalysatoren mit an das Temperaturprofil der Reaktion angepasster Aktivität. Ein ähnliches Ergebnis soll durch gezielte Verdünnung der Katalysatorschüttung mit Inertmaterial erreicht werden.
In den Hot-Spot-Bereichen, insbesondere bei Temperaturen ab 400°C, wird der Ruthenium-haltige Katalysator geschädigt, insbesondere durch Bildung flüchtiger Rutheniumoxide.
Demgegenüber war es Aufgabe der Erfindung, ein Verfahren zur Herstellung von Chlor durch Gasphasenoxidation von Chlorwasserstoff mit einem molekularen Sauerstoff enthaltenden Gasstrom in Gegenwart eines Festbettreaktors in großtechnischem Maßstab zur Verfügung zu stellen, das eine effektive Wärmeabführung gewährleistet und trotz des hochkorrosiven Reaktionsgemisches eine ausreichende Standzeit aufweist. Darüber hinaus soll die Hot-Spot-Problematik ohne bzw. mit einer geringeren Abstufung der Katalysatoraktivität bzw. ohne Verdünnung des Katalysators sowie die Katalysator-Schädigung als Folge der Hot-Spot-Bildung gemindert oder vermieden werden.
In einer Ausgestaltung war es Aufgabe der Erfindung, ein Verfahren zum An- und/oder Abfahren des Reaktors zur Herstellung von Chlor durch Gasphasenoxidation von Chlorwasserstoff zur Verfügung zu stellen, dass die Korrosionsproblematik entschärft.
Entsprechend wurde ein Verfahren zur Herstellung von Chlor durch Gasphasenoxidation von Chlorwasserstoff mit einem molekularen Sauerstoff enthaltenden Gasstrom in Gegenwart eines Festbettkatalysators gefunden, das dadurch gekennzeichnet ist, dass man das Verfahren in einem Reaktor mit voneinander beabstandet, in Längsrichtung des Reaktors angeordneten Thermoblechplatten durchführt, die von einem Wärmeträger durchströmt sind, mit Zu- und Abführeinrichtungen für den Wärmeträger zu den Thermoblechplatten sowie mit Spalten zwischen Thermoblechplatten, die mit dem Festbettkatalysator befüllt sind und in die der Chlorwasserstoff sowie der molekularen Sauerstoff enthaltende Gasstrom eingeleitet werden.
Im Deacon-Verfahren liegen die Reaktionstemperaturen üblicherweise im Bereich zwischen 150 und 500°C und der Reaktionsdruck zwischen 1 und 25 bar.
Da es sich um eine Gleichgewichtsreaktion handelt, ist es zweckmäßig, bei möglichst niedrigen Temperaturen zu arbeiten, bei denen der Katalysator noch eine ausreichende Aktivität aufweist. Ferner ist es zweckmäßig, Sauerstoff in überstöchiometrischen Mengen einzusetzen. Üblich ist beispielsweise ein zwei- bis vierfacher Sauerstoff- Überschuss. Da keine Selektivitätsverluste zu befürchten sind, kann es wirtschaftlich vorteilhaft sein, bei relativ hohem Druck und dementsprechend bei gegenüber Normaldruck längeren Verweilzeiten zu arbeiten.
Die katalytische Chlorwasserstoff-Oxidation kann adiabat oder bevorzugt isotherm oder annähernd isotherm, diskontinuierlich, bevorzugt kontinuierlich als Festbettverfahren, bei Reaktortemperaturen von 180 bis 500°C, bevorzugt 200 bis 400°C, besonders bevorzugt 220 bis 350°C und einem Druck von 1 bis 25 bar, bevorzugt 1,2 bis 20 bar, besonders bevorzugt 1 ,5 bis 17 bar und insbesondere 2,0 bis 15 bar durchgeführt werden.
Bei der isothermen oder annähernd isothermen Fahrweise können auch mehrere, also 2 bis 10, bevorzugt 2 bis 6, besonders bevorzugt 2 bis 5, insbesondere 2 bis 3 in Reihe geschaltete Reaktoren mit zusätzlicher Zwischenkühlung eingesetzt werden. Der Sauerstoff kann entweder vollständig zusammen mit dem Chlorwasserstoff vor dem ersten Reaktor oder über die verschiedenen Reaktoren verteilt zugegeben werden. Diese Reihenschaltung einzelner Reaktoren kann auch in einem Apparat zusammengeführt werden.
Für das erfindungsgemäße Verfahren können grundsätzlich alle bekannten Katalysato- ren für die Oxidation von Chlorwasserstoff zu Chlor eingesetzt werden, beispielsweise die eingangs beschriebenen, aus DE-A 197 48 299 oder DE-A 197 34 412 bekannten Katalysatoren auf Basis von Ruthenium. Besonders geeignet sind auch die in DE-A 102 44 996 beschriebenen Katalysatoren auf Basis von Gold, enthaltend auf einem Träger 0,001 bis 30 Gew.-% Gold, 0 bis 3 Gew.-% eines oder mehrerer Erdalkalimetal- le, 0 bis 3 Gew.-% eines oder mehrerer Alkalimetalle, 0 bis 10 Gew.-% eines oder mehrerer Seltenerden-Metalle und 0 bis 10 Gew.-% eines oder mehrerer weiterer Metalle, ausgewählt aus der Gruppe bestehend aus Ruthenium, Palladium, Osmiumiridium, Silber, Kupfer und Rhenium, jeweils bezogen auf das Gesamtgewicht des Katalysators.
Eine bevorzugte Ausführungsform besteht darin, dass man eine strukturierte Katalysa- torschüttung einsetzt, bei der die Katalysatoraktivität in Strömungsrichtung ansteigt. Eine solche Strukturierung der Katalysatorschüttung kann durch unterschiedliche Tränkung der Katalysatorträger mit Aktivmasse oder durch unterschiedliche Verdünnung des Katalysators mit einem Inertmaterial erfolgen. Als Inertmaterial können beispielsweise Ringe, Zylinder oder Kugeln aus Titandioxid, Zirkondioxid oder deren Gemi-
sehen, Aluminiumoxid, Steatit, Keramik, Glas, Graphit oder Edelstahl eingesetzt werden. Beim bevorzugten Einsatz von Katalysatorformkörpern sollte das Inertmaterial bevorzugt ähnliche äußere Abmessungen haben.
Vorteilhaft kann der der Zuführung des gasförmigen Reaktionsgemisches zugewandte Bereich der Spalte zwischen den Thermoblechplatten zunächst, insbesondere auf eine Länge von 5 bis 20 %, bevorzugt auf eine Länge zwischen 5 und 10 %, der Gesamtlänge des Spaltes mit einem Inertmaterial und erst anschließend mit dem Katalysator befüllt werden.
Als Katalysatorformkörper eignen sich beliebige Formen, bevorzugt sind Tabletten, Ringe, Zylinder, Sterne, Wagenräder oder Kugeln, besonders bevorzugt sind Ringe, Zylinder, Sternstränge oder extrudierte Stränglinge.
Als Trägermaterialen eignen sich beispielsweise Siliciumdioxid, Graphit, Titandioxid mit Rutil- oder Anatas-Struktur, Zirkondioxid, Aluminiumoxid oder deren Gemische, bevorzugt Titandioxid, Zirkondioxid, Aluminiumoxid oder deren Gemische, besonders bevorzugt γ- oder δ-Aluminiumoxid oder deren Gemische.
Die Kupfer- bzw. die Rutheniumträgerkatalysatoren können beispielsweise durch Tränkung des Trägermaterials mit wässrigen Lösungen von CuCI2 bzw. RuCI3 und gegebenenfalls eines Promotors zur Dotierung, bevorzugt in Form ihrer Chloride, erhalten werden. Die Formgebung des Katalysators kann nach oder bevorzugt vor der Tränkung des Trägermaterials erfolgen.
Zur Dotierung eignen sich als Promotoren Alkalimetalle wie Lithium, Natrium, Kalium, Rubidium und Cäsium, bevorzugt Lithium, Natrium und Kalium, besonders bevorzugt Kalium, Erdalkalimetalle wie Magnesium, Calcium, Strontium und Barium, bevorzugt Magnesium und Calcium, besonders bevorzugt Magnesium, Seltenerdmetalle wie Scandium, Yttrium, Lanthan, Cer, Praseodym und Neodym, bevorzugt Scandium, Yttrium, Lanthan und Cer, besonders bevorzugt Lanthan und Cer, oder deren Gemische.
Die Formkörper können anschließend bei Temperaturen von 100 bis 400°C, bevorzugt 100 bis 300°C beispielsweise unter einer Stickstoff-, Argon- oder Luftatmosphäre ge- trocknet und gegebenenfalls calciniert werden. Bevorzugt werden die Formkörper zunächst bei 100 bis 150°C getrocknet und anschließend bei 200 bis 400°C calciniert.
Der im erfindungsgemäßen Verfahren nach dem Deacon-Prozess erhaltene Chlorstrom kann vorteilhaft eine Ethylen-Direktchlorierung, unter Erhalt von 1 ,2-Dichlorethan zugeführt werden. Diese so genannte Direktchlorierung von Ethen mit Chlor ist in der
DE-A 102 52 859 beschrieben, deren Offenbarungsgehalt hiermit voll umfänglich in die vorliegende Patentanmeldung einbezogen wird.
Alternativ ist es auch möglich, Ethen als zusätzliches Edukt unmittelbar in den Reaktor einzuleiten, in dem die Gasphasenoxidation von Chlorwasserstoff mit dem molekularen Sauerstoff enthaltenden Gasstrom durchgeführt wird, unter Erhalt von 1 ,2- Dichlorethan.
Darüber hinaus kann der entsprechend der vorliegenden Erfindung nach dem Deacon- Prozess erhaltene Chlorstrom auch eine Umsetzung mit Kohlenmonoxid zu Phosgen zugeführt werden, sofern der im Deacon-Prozess eingesetzte Chlorwasserstoff einen ausreichend niedrigen Brom- und lodgehalt aufweist. Ein derartiges Verfahren ist beispielsweise in der DE-A 102 35 476 beschrieben, deren Offenbarungsgehalt hiermit voll umfänglich in die vorliegende Patentanmeldung einbezogen wird.
Als Werkstoff für den Reaktor wird vorteilhaft Reinnickel oder eine Nickelbasislegierung gewählt. Bevorzugt werden als Nickelbasislegierungen Inconell 600 oder Inconell 625 eingesetzt. Inconell 600 enthält neben ca. 80 % Nickel noch rund 15 % Chrom sowie Eisen. Inconell 625 enthält überwiegend Nickel, 21 % Chrom, 9 % Molybdän sowie einige Prozent Niob. Vorteilhaft kann auch HastelloyC-276 eingesetzt werden.
Bevorzugt werden alle Bauteile des Reaktors, mit denen das Reaktionsgasgemisch in Kontakt kommt, insbesondere auch Verteiler, Sammler, Halteroste für den Katalysator sowie die Thermoblechplatten aus den oben genannten Werkstoffen Reinnickel oder Nickelbasislegierungen gefertigt.
Es ist jedoch auch möglich, die Thermoblechplatten aus Edelstahl, beispielsweise mit der Werkstoffnummer 1.4541 bzw. 1.4404, 1.4571 bzw. 1.4406, 1.4539 aber auch 1.4547 oder aus anderen legierten Stählen, herzustellen.
Auf das Temperaturprofil im Reaktionsverlauf kann besonders gut eingegangen werden, indem man das Verfahren in einem Reaktor durchführt, der zwei oder mehrere der Reaktionszonen aufweist. Es ist gleichermaßen möglich, anstelle eines einzigen Reaktors mit zwei oder mehreren Reaktionszonen das Verfahren in zwei oder mehreren getrennten Reaktoren durchzuführen.
Zusätzlich oder alternativ ist es auch möglich, im Hot-Spot gefährdeten Reaktionsteilabschnitt zwei oder mehrere Reaktoren parallel zueinander anzuordnen, mit anschließender Zusammenführung des Reaktionsgemisches über einen Reaktor.
Erfindungsgemäß wird der für die indirekte Abführung der Reaktionswärme eingesetzte Wärmeträger durch im Reaktor angeordnete Thermoblechplatten geleitet.
Thermoblechplatten sind plattenförmige Wärmeübertrager, d.h. überwiegend flächen- förmige Gebilde, die einen mit Zu- und Abführleitungen versehenen Innenraum mit geringer Dicke im Verhältnis zur Fläche aufweisen.
Die Zu- bzw. Abführeinrichtungen für die Wärmeträger sind in der Regel an einander entgegengesetzten Enden der Wärmetauschplatten angeordnet. Als Wärmeträger kommen häufig Wasser, aber auch Diphyl® (Gemisch aus 70 bis 75 Gew.-% Diphenyl- ether und 25 bis 30 Gew.-% Diphenyl) zum Einsatz, welche auch teilweise in einem Siedevorgang verdampfen; es ist auch der Einsatz anderer organischer Wärmeträger mit niedrigem Dampfdruck und auch ionischer Flüssigkeiten möglich.
Die Verwendung ionischer Flüssigkeiten als Wärmeträger ist in der DE-A 103 16 418 beschrieben. Bevorzugt sind ionische Flüssigkeiten, die ein Sulfat-, Phosphat-, Boratoder Silikatanion enthalten. Besonders geeignet sind auch ionische Flüssigkeiten, die ein einwertiges Metall-Kation, insbesondere ein Alkalimetall-Kation, sowie ein weiteres Kation, insbesondere ein Imidazolium-Kation, enthalten. Vorteilhaft sind auch ionische Flüssigkeiten, die als Kation ein Imidazolium-, Pyridinium- oder Phosphonium-Kation enthalten.
Für plattenförmige Wärmeübertrager werden neben der Bezeichnung Thermoblechplatten die Begriffe Wärmetauscherplatten, Wärmeübertragerplatten, Thermobleche oder Thermoplatten weitgehend synonym verwendet.
Der Begriff Thermobleche oder Thermoblechplatten wird insbesondere für Wärmeübertragerplatten verwendet, deren einzelne, meistens zwei, Bleche durch Punkt- und/oder Rollnahtschweißungen miteinander verbunden und häufig unter Verwendung hydraulischen Drucks plastisch unter Kissenbildung ausgeformt sind.
Der Begriff Thermoblechplatten wird vorliegend im Sinne der obigen Definition verwendet.
In einer bevorzugten Ausführungsform sind die Thermoblechplatten im Reaktor parallel zueinander angeordnet.
Für zylindrische Reaktoren ist auch eine radiale Anordnung der Thermoblechplatten, unter Freilassung eines zentralen Innenraumes sowie eines peripheren Kanals an den Reaktorwänden, vorteilhaft.
Der zentrale Innenraum, der in geeigneter Weise mit Zu- bzw. Abführeinrichtungen für das Reaktionsmedium zu beziehungsweise von den Zwischenräumen zwischen den Thermoblechplatten verbunden ist, kann grundsätzlich jede geometrische Form, beispielsweise die Form eines Vielecks, insbesondere die Form eines Dreiecks, eines Quadrats, eines bevorzugt regelmäßigen Sechsecks oder eines bevorzugten regelmäßigen Achtecks sowie auch eine im wesentlichen kreisförmige Gestalt aufweisen.
Bevorzugt erstrecken sich die Thermoblechplatten in Längsrichtung des Reaktors im Wesentlichen über die gesamte Länge des zylindrischen Reaktors mit Ausnahme der Reaktorenden.
Das Reaktionsmedium wird bevorzugt radial durch die Zwischenräume zwischen den Thermoblechplatten geführt.
Der periphere Kanal ist bevorzugt ringförmig. Er dient als Sammel- und/oder Verteilkammer für das Reaktionsmedium. Der periphere Kanal kann durch eine geeignete Rückhalteeinrichtung, bevorzugt ein zylindrisches Sieb oder ein Lochblech von den Zwischenräumen zwischen den Thermoblechplatten getrennt sein; analog kann eine entsprechende Rückhalteeinrichtung die Zwischenräume zwischen den Thermoblech- platten vom zentralen Innenraum trennen. Diese Ausgestaltung ist besonders geeignet, da eine Reaktion unter Verwendung eines Festbett-Katalysators durchgeführt wird, der in die Zwischenräume zwischen den Thermoblechplatten eingebracht ist und dessen Austragung mit dem Reaktionsmedium durch entsprechende Wahl der Öffnungen in der Rückhalteeinrichtung verhindert werden soll.
Die Radialführung des Reaktionsmediums kann zentrifugal und/oder zentripetal erfolgen, wobei für den Fall, dass ein einziger Richtungssinn der radialen Stromführung vorgesehen ist, die zentrifugale Führung des Reaktionsmediums besonders vorteilhaft ist.
Die radiale Stromführung des Reaktionsmediums zwischen den radial angeordneten Thermoblechplatten hat den Vorteil eines niedrigen Druckverlustes. Da die Chlorwas- serstoff-Oxidation unter Volumenabnahme abläuft, sind die Druckverhältnisse bei zentripetaler Führung aufgrund der nach innen abnehmenden Abstände zwischen den Thermoblechplatten besonders günstig.
Die radiale Ausdehnung aller Thermoblechplatten ist bevorzugt gleich; eine Anpassung der Thermoblechplatten an die Behälterinnenwand des Reaktors ist somit nicht erforderlich, es können im Gegenteil Platten eines einzigen Bautyps eingesetzt werden.
Die radiale Ausdehnung der Thermoblechplatten liegt bevorzugt im Bereich von 0,1 bis 0,95 des Reaktorradius, besonders bevorzugt im Bereich von 0,3 bis 0,9 des Reaktorradius.
Die Thermoblechplatten sind im Wesentlichen geradflächig ausgebildet. Dies bedeutet nicht, dass es sich um völlig ebene Gebilde handelt, sie können im Gegenteil insbesondere regelmäßig gebogen, gefaltet, geknickt oder gewellt sein. Die Thermoblechplatten werden nach bekannten Verfahren hergestellt.
Bevorzugt können in den Thermoblechplatten periodisch profilierte Strukturelemente, insbesondere gewellte Platten, angeordnet sein. Derartige Strukturelemente sind als Mischelemente in statischen Mischern bekannt, und beispielsweise in DE-A 19623051 beschrieben, sie dienen vorliegend insbesondere zur Optimierung des Wärmeaus- tauschs. Zur Anpassung an das geforderte Wärmeprofil ist es möglich, eine höhere Plattendichte im äußeren Reaktorbereich gegenüber dem inneren Reaktorbereich vorzusehen, insbesondere zusätzliche Platten im äußeren Reaktorbereich mit geringerer radialer Ausdehnung gegenüber den übrigen Thermoblechplatten bevorzugt mit einer radialen Ausdehnung im Bereich von 0,1 bis 0,7, besonders bevorzugt 0,2 bis 0,5 der radialen Ausdehnung der übrigen Thermoblechplatten. Die zusätzlichen Platten kön- nen dabei untereinander die gleichen Abmessungen aufweisen, es ist jedoch auch möglich, zwei oder mehrere Bautypen von zusätzlichen Platten einzusetzen, wobei sich die Bautypen untereinander durch ihre radiale Ausdehnung und/oder ihre Länge unterscheiden.
Die zusätzlichen Thermoblechplatten sind bevorzugt symmetrisch zwischen den übrigen Thermoblechplatten angeordnet. Sie ermöglichen eine verbesserte Anpassung an das Temperaturprofil der Gasphasenoxidation.
Gemäß einer bevorzugten Ausführungsform wird ein Reaktor zur Verfügung gestellt, der aus zwei oder mehreren insbesondere abnehmbaren Reaktorschüssen aufgebaut ist. Insbesondere ist jeder Reaktorschuss mit jeweils einem getrennten Wärmeträgerkreislauf ausgestattet.
Die einzelnen Reaktorschüsse sind mittels Flanschen nach Bedarf zusammensetzbar. Die Strömung des Reaktionsmediums zwischen zwei aufeinander folgenden Reaktorschüssen wird bevorzugt durch geeignete Umlenkbleche gewährleistet, die eine Umlenk- und/oder Trennfunktion haben. Durch geeignete Wahl der Anzahl von Umlenkblechen kann eine mehrfache Umlenkung des Reaktionsmediums erreicht werden.
Es ist möglich, an einem oder mehreren der Reaktorschüsse Zwischen- einspeisungsstellen für das Reaktionsmedium, insbesondere über den peripheren Ka-
nal, vorzusehen. Dadurch können in vorteilhafter Weise die Reaktionsführung und der
Temperaturverlauf optimiert werden.
Es ist möglich, einen Reaktor mit mehreren Reaktorschüssen mit einem einzigen Wärmetauschmittelkreislauf auszugestalten. In bevorzugter Weise können jedoch auch zwei oder mehrere getrennte Wärmetauschmittelkreisläufe durch die Thermoblechplatten vorgesehen sein. Damit kann eine verbesserte Anpassung an unterschiedliche Wärmeaustauschanforderungen mit fortschreitender chemischer Reaktion erreicht werden.
Bevorzugt kann man das Verfahren in einem Reaktor durchführen, der mit einem oder mehreren quaderförmigen Thermoblechplattenmodulen ausgestattet ist, die jeweils aus zwei oder mehreren rechteckigen, parallel zueinander unter Freilassung jeweils eines Spaltes angeordneten Thermoblechplatten, gebildet sind.
Reaktoren mit Thermoblechplattenmodulen sind beispielsweise in DE-A 103 33 866 bekannt, deren Offenbarungsgehalt hiermit voll umfänglich in die vorliegende Patentanmeldung einbezogen wird.
Die Thermoblechplattenmodule sind aus jeweils zwei oder mehreren rechteckigen, parallel zueinander unter Freilassung jeweils eines Spaltes angeordneten Thermoblechplatten gebildet.
Die Materialstärke der hierfür eingesetzten Bleche kann zwischen 1 und 4 mm, 1 ,5 und 3 mm, aber auch zwischen 2 und 2,5 mm, oder zu 2,5 mm gewählt werden.
In der Regel werden zwei rechteckige Bleche an ihren Längs- und Stirnseiten zu einer Thermoblechplatte verbunden, wobei eine Rollnaht oder seitliches Zuschweißen oder eine Kombination von beidem möglich ist, so dass der Raum, in dem sich später der Wärmeträger befindet, allseitig dicht ist. Vorteilhaft wird der Rand der Thermoblechplatten an oder schon in der seitlichen Rollnaht der Längskante abgetrennt, damit der schlecht oder nicht gekühlte Randbereich, in dem meist auch Katalysator eingebracht ist, eine möglichst geringe geometrische Ausdehnung hat.
Über die Rechteckfläche verteilt werden die Bleche miteinander durch Punktschwei- ßung verbunden. Auch eine zumindest teilweise Verbindung durch gerade oder auch gebogene und auch kreisförmige Rollnähte ist möglich. Auch die Unterteilung des vom Wärmeträger durchströmten Volumens in mehrere getrennte Bereiche durch zusätzliche Rollnähte ist möglich.
Die Breite der Thermoblechplatten ist im Wesentlichen fertigungstechnisch begrenzt und kann zwischen 100 und 2500 mm, oder auch zwischen 500 und 1500 mm, liegen. Die Länge der Thermoblechplatten ist abhängig von der Reaktion, insbesondere vom Temperaturprofil der Reaktion, und kann zwischen 1000 und 7000 mm, oder auch zwi- sehen 2000 und 6000 mm liegen.
Jeweils zwei oder mehrere Thermoblechplatten sind parallel und beabstandet zueinander, unter Bildung eines Thermoblechplattenmoduls, angeordnet. Dadurch entstehen zwischen unmittelbar benachbarten Blechplatten schachtartige Spalte, die an den engsten Stellen des Plattenabstandes beispielsweise eine Breite zwischen 10 und 50 mm, bevorzugt zwischen 15 und 40 mm, weiter bevorzugt zwischen 18 und 30, insbesondere von 20 mm, aufweisen.
Vorteilhaft können die Spalte mit unterschiedlicher Breite ausgeführt werden, wobei in Hot-Spot-gefährdeten Bereichen engere Spaltbreiten gegenüber den übrigen Bereichen gewählt werden.
Zwischen den einzelnen Thermoblechplatten eines Thermoblechplattenmodules können, z.B. bei großflächigen Platten, zusätzlich Distanzhalter eingebaut werden, um Verformungen vorzubeugen, welche Plattenabstand oder -position verändern können. Zum Einbau dieser Distanzhalter können Teilbereiche der Bleche durch zum Beispiel kreisförmige Rollnähte vom Durchflussbereich des Wärmeträgers abgetrennt werden, um dort beispielsweise Löcher für Befestigungsschrauben der Distanzhalter in die Platten einbringen zu können.
Die mit Katalysatorpartikeln gefüllten Spalte eines Thermoblechplattenmodules können gegeneinander gedichtet, z.B. dichtgeschweißt sein oder auch prozessseitig zueinander Verbindung besitzen.
Zur Einstellung des gewünschten Spaltabstandes beim Zusammenfügen der einzelnen Thermoblechplatten zu einem Modul werden die Platten in ihrer Position und im Abstand fixiert.
Die Schweißpunkte unmittelbar benachbarter Thermoblechplatten können sich gegen- überliegen oder versetzt zueinander sein.
In der Regel wird es aus fertigungstechnischen Gründen bevorzugt sein, bei der Anordnung mit zwei oder mehreren quaderförmigen Thermoblechplattenmodulen, dieselben mit jeweils gleichen Abmessungen auszubilden. Bei Anordnungen von 10 oder 14 Thermoblechplattenmodulen kann es für die Kompaktheit des Gesamtapparates vor-
teilhaft sein, zwei Modultypen mit unterschiedlicher Kantenlänge bzw. unterschiedlichem Kantenlängenverhältnis zu wählen.
Bevorzugt sind Anordnungen von 4, 7, 10 oder 14 Thermoblechplattenmodulen mit jeweils gleichen Abmessungen. Die in Strömungsrichtung sichtbare Projektionsfläche eines Moduls kann quadratisch sein, aber auch rechteckig mit einem Seitenverhältnis von 1 ,1 aber auch 1 ,2. Vorteilhaft sind Kombinationen von 7, 10 oder 14 Modulen mit rechteckigen Modulprojektionen, so dass der Durchmesser der äußeren zylindrischen Hülle minimiert wird. Besonders vorteilhafte geometrische Anordnungen sind erzielbar, wenn, wie oben aufgeführt, eine Anzahl von 4, 7 oder 14 Thermoblechplattenmodulen gewählt wird.
Vorteilhaft sollen hierbei die Thermoblechplattenmodule einzeln auswechselbar sein, beispielsweise bei Leckagen, Verformungen der Thermobleche oder bei Problemen, die den Katalysator betreffen.
Vorteilhaft sind die Thermoblechplattenmodule in jeweils einem rechteckigen Stabilisierungskasten angeordnet.
Jedes Thermoblechplattenmodul wird vorteilhaft durch eine geeignete Führung, beispielsweise durch die rechteckigen Stabilisierungskästen, mit seitlich durchgehender Wandung oder beispielsweise durch eine Winkelkonstruktion in Position gehalten.
In einer Ausführungsform sind die rechteckigen Stabilisierungskästen benachbarter Thermoblechplattenmodule gegeneinander abgedichtet. Dadurch wird eine Bypass- Strömung des Reaktionsgemisches zwischen den einzelnen Thermoblechplattenmodulen verhindert.
Durch den Einbau von quaderförmigen Thermoblechplattenmodulen in einen überwie- gend zylindrischen Reaktor verbleiben am Rand zur zylindrischen Mantelwand relativ große freie Zwischenräume. In diesen Zwischenraum zwischen den Thermoblechplattenmodulen und dem Zylindermantel des Reaktors kann man vorteilhaft ein Inertgas einleiten.
Die quaderförmigen Thermoblechplattenmodule können nicht nur in zylindrische Reaktoren, sondern vorteilhaft auch Reaktoren mit polygonalen Querschnitten, insbesondere mit rechteckigen Querschnitten, eingebaut werden.
Bevorzugt kann man den Festbettkatalysator in den Spalten zwischen den Thermo- blechplatten in Zonen mit unterschiedlicher katalytischer Aktivität in Strömungsrichtung
des Reaktionsgemisches auszubilden, bevorzugt mit zunehmender katalytischer Aktivität in Strömungsrichtung des Reaktionsgasgemisches.
Für das erfindungsgemäße Verfahren sind Katalysatorpartikel mit äquivalenten Parti- keldurchmessern im Bereich von 2 bis 8 mm besonders geeignet. Der Begriff äquivalenter Partikeldurchmesser bezeichnet dabei in bekannter Weise das Sechsfache des Verhältnisses zwischen Volumen und Oberfläche des Partikels.
Besonders vorteilhaft wird das Verfahren mit einer Leerspaltgeschwindigkeit des Reak- tionsgasgemisches bis 3,0 m/s, bevorzugt im Bereich von 0,5 bis 2,5 m/s, besonders bevorzugt etwa 1 ,5 m/s.
Vorteilhaft führt man das erfindungsgemäße Verfahren in der Weise durch, dass man beim Anfahren des Reaktors auf Reaktionstemperatur, wie auch beim Abfahren des Reaktors, nach beendeter Reaktion, durch den Reaktor bei Temperaturen im Reaktor unterhalb von 150°C ausschließlich ein auf eine Temperatur oberhalb des Kondensationspunktes der Salzsäure aufgewärmtes inertes Spülgas, bevorzugt Stickstoff, leitet. Als inert werden dabei Gase verstanden, die mit den verfahrenseigenen Stoffen unter den Betriebsbedingungen des erfindungsgemäßen Verfahrens nicht reagieren. Durch diese besondere Verfahrensführung beim An- und Abfahren des Reaktors wird eine korrosive Schädigung des Reaktorwerkstoffes vermieden.
Die Erfindung wird im Folgenden anhand einer Zeichnung näher erläutert.
Es zeigen im Einzelnen:
Figur 1A eine bevorzugte Ausführungsform eines Reaktors für das erfindungsgemäße Verfahren, Querschnitt, mit Längsschnittdarstellung in Figur 1 B und Längsschnitt durch eine Thermoblechplatte in Figur 1C,
Figur 2A eine Querschnittsdarstellung durch eine weitere bevorzugte Ausführungsform eines Reaktors für das erfindungsgemäße Verfahren, mit Längsschnittdarstellung in Figur 2B sowie einer Variante mit mehreren Reaktionsschüssen in Figur 2C,
Figur 3A eine weitere bevorzugte Ausführungsform im Querschnitt, mit Längsschnittdarstellung durch eine Thermoblechplatte in Figur 3B,
Figur 4A eine andere Ausführungsform eines Reaktors für das erfindungsgemäße Verfahren, mit Längsschnittdarstellung in Figur 4B sowie einer Variante mit mehreren Reaktionsschüssen in Figur 4C,
Figur 5 eine Ausführungsform eines Reaktors für das erfindungsgemäße Verfahren, im Längsschnitt,
Figur 6 eine weitere Ausführungsform für zwei hintereinander geschaltete Reaktoren,
Figuren 7A bis 7C unterschiedliche Anordnungen von Thermoblechplattenmodulen, im Quer- schnitt und
Figur 8 einen Spalt zwischen Thermoblechplattenmodulen.
Die Querschnittsdarstellung in Figur 1A zeigt einen Schnitt durch einen Reaktor 1 mit darin, parallel zueinander angeordneten Thermoblechplatten 2, die Spalte 5 zwischen den Thermoblechplatten freilassen, wobei die Spalte 5 mit einem Feststoffkatalysator befüllt sind. Für den durch die Thermoblechplatten 2 zirkulierenden Wärmeträger sind Zu- und Abführleitungen 3 beziehungsweise 4 vorgesehen.
Die Längsschnittdarstellung in Figur 1 B verdeutlicht die Ausbildung der Thermoblechplatten 2 und die Anordnung der Zu- beziehungsweise Abführleitungen 3 beziehungsweise 4 im Reaktor 1. Beispielhaft dargestellt ist eine Reaktionsgasführung von unten nach oben; die umgekehrte Durchströmung, von oben nach unten, ist gleichermaßen möglich.
Figur 1C zeigt einen Längsschnitt durch eine Thermoblechplatte 2. Die Darstellung verdeutlicht auch Rückhalteeinrichtungen für den Feststoffkatalysator an beiden Enden der Thermoblechplatte 2.
Die Schnittdarstellung in Figur 2A zeigt einen Reaktor 1 mit radial darin angeordneten Thermoblechplatten 2, mit Spalten 5 zwischen den Thermoblechplatten 2, die mit dem Feststoffkatalysator befüllt sind.
Im zentralen Innenraum 6 ist ein Dummy-Körper angeordnet, um eine im Wesentlichen Längsströmung für das Reaktionsgemisch durch den Reaktor zu gewährleisten, wie dies insbesondere aus der Längsschnittdarstellung in Figur 2B, durch die Pfeile angedeutet, erkennbar ist.
Die Längsschnittdarstellung in Figur 2C zeigt eine Variante des im Längsschnitt in Fi- gur 2B dargestellten Apparates mit mehreren, beispielhaft vier Reaktorschüssen.
In Figur 3A ist ein Querschnitt durch eine weitere Ausführungsform eines Reaktors für das erfindungsgemäße Verfahren dargestellt, ohne Anordnung eines Dummy-Körpers im zentralen Innenraum 6. R bezeichnet den Radius des Reaktors und r die Ausdehnung jeder Thermoblechplatte in Richtung des Reaktorradius R. Die Längsschnittdar- Stellung durch eine Thermoblechplatte 2 in Figur 3B zeigt Umlenkbleche 7 für den Wärmeträger.
Die Querschnittdarstellung in Figur 4A zeigt eine weitere Ausführungsform mit einem peripheren Kanal 8 zum Sammeln und Weiterleiten des Reaktionsgasgemisches. Die Längsschnittdarstellung in Figur 4B verdeutlicht das Strömungsprofil für das Reaktionsgasgemisch, insbesondere auch durch den zentralen Innenraum 6 und den peripheren Kanal 8.
Die Längsschnittdarstellung in Figur 4C zeigt eine weitere Variante mit mehreren, bei- spielhaft zwei hintereinander angeordneten Reaktorschüssen.
Die Längsschnittdarstellung in Figur 5 zeigt einen Reaktor 1 mit beispielhaft drei Reaktorschüssen jeweils mit Thermoblechplatten 2 und mit Zu- bzw. Abführleitungen 3 beziehungsweise 4 für den Wärmeträger.
Die Längsschnittdarstellung in Figur 6 zeigt zwei hintereinander geschaltete Reaktoren 1 , jeweils mit Thermoblechplatten 2 und Zu- bzw. Abführleitungen 3 bzw. 4 für den Wärmeträger.
Die Figuren 7A bis 7C zeigen Anordnungen von 4, einem bzw. 7 Thermoblechplattenmodulen 9 in jeweils einem zylindrischen Reaktor 1 , im Querschnitt
Die Darstellung in Figur 8 verdeutlicht die Ausbildung der Thermoblechplatten 2 und des dazwischen liegenden Spaltes 5, mit darin enthaltenem Festbettkatalysator, mit äquivalentem Partikeldurchmesser dP. Aus der Figur ist zu erkennen, dass als Breite s des Spaltes 5 der kleinste Abstand zwischen zwei unmittelbar benachbarten Thermoblechplatten 2 bezeichnet wird.
Claims
1. Verfahren zur Herstellung von Chlor durch Gasphasenoxidation von Chlorwas- serstoff mit einem molekularen Sauerstoff enthaltenden Gasstrom in Gegenwart eines Festbettkatalysators, dadurch gekennzeichnet, dass man das Verfahren in einem Reaktor (1) mit voneinander beabstandet, in Längsrichtung des Reaktors (1) angeordneten Thermoblechplatten (2) durchführt, die von einem Wärmeträger durchströmt sind, mit Zu- und Abführeinrichtungen (3, 4) für den Wärme- träger zu den Thermoblechplatten (2) sowie mit Spalten (5) zwischen den Thermoblechplatten (2), die mit dem Festbettkatalysator befüllt sind und in die der Chlorwasserstoff sowie der molekularen Sauerstoff enthaltende Gasstrom eingeleitet werden.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass man den aus dem Reaktor (1) gezogenen Produktgasstrom einer Direktchlorierung von Ethylen zu 1 ,2-Dichlorethan zuführt.
3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass man dem Reaktor (1) als weiteres Edukt Ethylen zuführt, wobei im Reaktor (1 ) als Wertprodukt 1 ,2-
Dichlorethan gewonnen wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Thermoblechplatten (2) im Reaktor (1) parallel zueinander angeordnet sind.
5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Reaktor (1 ) zylindrisch ist und dass die Thermoblechplatten (2) unter Freilassung eines zentralen Innenraums (6) sowie eines peripheren Kanals (8) im zylindrischen Reaktor (1) radial angeordnet sind, und dass der Chlorwasserstoff sowie molekularen Sauerstoff enthaltende Gasstrom bevorzugt radial in die Spalte (5) zwischen den Thermoblechplatten (2) zugeführt wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet dass die radiale Ausdehnung (r) der Thermoblechplatten (2) 0,1 bis 0,95 des Reaktorradius (R) , bevor- zugt 0,3 bis 0,9 des Reaktorradius (R) beträgt.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Reaktor (1) aus zwei oder mehreren, insbesondere abnehmbaren Reaktorschüssen aufgebaut ist und dass bevorzugt jeder Reaktorschuss mit getrenntem War- meträgerkreislauf ausgestattet ist.
8. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Reaktor (1 ) mit einem oder mehreren quaderförmigen Thermoblechplattenmodulen (9) ausgestattet ist, die jeweils aus zwei oder mehreren rechteckigen, parallel zueinander unter Freilassung jeweils eines Spaltes (5) angeordneten Thermoblechplatten (2), gebildet sind.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass der Reaktor (1) zwei oder mehrere quaderförmige Thermoblechplattenmodule (9) mit jeweils gleichen Abmessungen aufweist.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass der Reaktor (1) 4, 7, 10 oder 14 Thermoblechplattenmodule (9) umfasst.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Thermoblechplatten (2) aus jeweils zwei rechteckigen Blechen gebildet sind, die an ihren Längs- und Stirnseiten durch Rollnahtschweißung verbunden sind, wobei der über die Rollnaht nach außen abstehende Rand der Bleche am Außenrand der Rollnaht oder in der Rollnaht selbst abgetrennt wird.
12. Verfahren nach einem der Ansprüche 8 bis 11 , dadurch gekennzeichnet, dass der Reaktor (1) zylindrisch ist und dass in den Zwischenraum zwischen den Thermoblechplattenmodulen (9) und dem Zylindermantel des Reaktors (1) ein Inertgas eingeleitet wird.
13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass man den Festbettkatalysator in den Spalten (5) in Zonen mit unterschiedlicher katalytischer Aktivität ausbildet, insbesondere mit zunehmender katalytischer Aktivität in Strömungsrichtung des Reaktionsgasgemisches.
14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass man einen Festbettkatalysator einsetzt, der aus Partikeln mit einem äquivalenten Partikeldurchmesser (dP) im Bereich von 2 bis 8 mm gebildet ist.
15. Verfahren nach einem der Ansprüche 1 , 2 oder 6 bis 14, gekennzeichnet durch eine Breite (s) der Spalte (5) im Bereich zwischen 10 und 50 mm, bevorzugt im
Bereich zwischen 15 und 40 mm, weiter bevorzugt zwischen 18 und 30, insbesondere von 20 mm und durch ein Verhältnis der Breite der Spalte (5) zu den äquivalenten Partikeldurchmessern (s/dP) zwischen 2 und 10, bevorzugt zwischen 3 und 8, besonders bevorzugt zwischen 3 und 5.
16. Verfahren nach einem der Ansprüche 1 bis 15, gekennzeichnet durch eine Leerspaltgeschwindigkeit des Reaktionsgasgemisches in den Spalten (5) bis 3,0 m/s, bevorzugt im Bereich zwischen 0,5 und 2,5 m/s, besonders bevorzugt von etwa 1 ,5 m/s.
17. Verfahren nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass man das Reaktionsgasgemisch und den Wärmeträger im Gleichstrom durch den Reaktor (1) leitet.
18. Verfahren nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass man das An- und Abfahren des Reaktors (1) dergestalt durchführt, dass bei Temperaturen unterhalb von 150°C ausschließlich ein aufgewärmtes inertes Spülgas, insbesondere Stickstoff, durch den Reaktor leitet.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10361519A DE10361519A1 (de) | 2003-12-23 | 2003-12-23 | Verfahren zur Herstellung von Chlor durch Gasphasenoxidation von Chlorwasserstoff |
PCT/EP2004/014671 WO2005063616A1 (de) | 2003-12-23 | 2004-12-23 | Verfahren zur herstellung von chlor durch gasphasenoxidation von chlorwasserstoff |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1699734A1 true EP1699734A1 (de) | 2006-09-13 |
Family
ID=34706654
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04804265A Withdrawn EP1699734A1 (de) | 2003-12-23 | 2004-12-23 | Verfahren zur herstellung von chlor durch gasphasenoxidation von chlorwasserstoff |
Country Status (7)
Country | Link |
---|---|
US (1) | US20080233043A1 (de) |
EP (1) | EP1699734A1 (de) |
JP (1) | JP4805165B2 (de) |
KR (1) | KR20060126736A (de) |
CN (2) | CN103420340A (de) |
DE (1) | DE10361519A1 (de) |
WO (1) | WO2005063616A1 (de) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004036695A1 (de) * | 2004-07-29 | 2006-03-23 | Deg Intense Technologies & Services Gmbh | Reaktor zur Durchführung von Reaktionen mit starker Wärmetönung und Druckaufkommen |
DE102006024515A1 (de) * | 2006-05-23 | 2007-11-29 | Bayer Materialscience Ag | Verfahren zur Chlorwasserstoff-Oxidation mit Sauerstoff |
DE102007020140A1 (de) * | 2006-05-23 | 2007-11-29 | Bayer Materialscience Ag | Verfahren zur Herstellung von Chlor durch Gasphasenoxidation |
PT2066583E (pt) * | 2006-09-19 | 2010-12-07 | Basf Se | Processo para a produção de cloro num reactor de leito fluidizado |
EP2117999A1 (de) * | 2007-02-28 | 2009-11-18 | Albemarle Corporation | Verfahren zur oxidation von wasserstoffbrom zur herstellung von elementarem brom |
US20100189633A1 (en) * | 2007-07-13 | 2010-07-29 | Bayer Technology Services Gmbh | Method for producing chlorine by gas phase oxidation |
CN101687160A (zh) * | 2007-07-13 | 2010-03-31 | 拜尔技术服务有限责任公司 | 通过多阶段绝热气相氧化制备氯的方法 |
US9528772B2 (en) | 2008-01-28 | 2016-12-27 | Freimut Joachim Marold | Multi-passage thermal sheet and heat exchanger equipped therewith |
JP5563744B2 (ja) * | 2008-03-31 | 2014-07-30 | 三菱化学株式会社 | プレート式反応器に温度測定装置を設置する方法、及びプレート式反応器 |
JP5593600B2 (ja) * | 2008-03-31 | 2014-09-24 | 三菱化学株式会社 | プレート式触媒層反応器、該プレート式触媒層反応器に触媒を充填する方法及び該プレート式触媒層反応器を用いた反応生成物の製造方法 |
DE102008050975A1 (de) * | 2008-10-09 | 2010-04-15 | Bayer Technology Services Gmbh | Mehrstufiges Verfahren zur Herstellung von Chlor |
JP2010155188A (ja) * | 2008-12-26 | 2010-07-15 | Mitsubishi Chemicals Corp | プレート式反応器、それを用いる反応生成物の製造方法、及び触媒の充填方法 |
CN102458615B (zh) * | 2009-05-08 | 2015-01-28 | 南方研究院 | 用于减少汞排放的系统和方法 |
CN102803130B (zh) * | 2009-06-10 | 2015-07-15 | 巴斯夫欧洲公司 | 在具有低表面粗糙度的催化剂上氧化氯化氢的方法 |
DE202011050657U1 (de) * | 2011-07-07 | 2012-10-09 | Deg Engineering Gmbh | Reaktor für die katalytische Umsetzung von Reaktionsmedien |
JP6559394B2 (ja) * | 2012-12-05 | 2019-08-14 | ミヨシ油脂株式会社 | 親水性室温イオン液体とその用途 |
JP6378475B2 (ja) * | 2012-12-05 | 2018-08-22 | ミヨシ油脂株式会社 | 親水性室温イオン液体とその用途 |
EP3212319A1 (de) * | 2014-10-30 | 2017-09-06 | SABIC Global Technologies B.V. | Reaktor mit radial angeordneten kühlplatten und verfahren zur verwendung davon |
CN106922132A (zh) | 2014-10-31 | 2017-07-04 | 赛贝克环球科技公司 | 用于使反应的蜡产物与轻质气体产物分离的反应器 |
US10737236B2 (en) | 2015-11-23 | 2020-08-11 | Sabic Global Technologies B.V. | Structural catalyst with internal heat transfer system for exothermic and endothermic reactions |
DE102015122129A1 (de) * | 2015-12-17 | 2017-06-22 | L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Reaktor zur Durchführung von exo- oder endothermen Reaktionen |
CN105776141B (zh) * | 2016-01-27 | 2018-03-09 | 烟台大学 | 一种氯化氢催化氧化制氯气新型固定床反应器 |
CN105967146A (zh) * | 2016-07-11 | 2016-09-28 | 南通星球石墨设备有限公司 | 一种盐酸合成炉气体分布石墨组件 |
CN106517095A (zh) * | 2016-09-27 | 2017-03-22 | 上海氯碱化工股份有限公司 | 制备氯气的方法 |
CN108096872A (zh) * | 2018-01-05 | 2018-06-01 | 浙江万享科技股份有限公司 | 一种板式结晶器 |
CN109806864B (zh) * | 2019-03-15 | 2022-03-15 | 西安近代化学研究所 | 一种氯化氢氧化制氯气的高稳定性催化剂 |
KR102562811B1 (ko) * | 2020-12-04 | 2023-08-02 | 이상국 | 방사 흐름형 반응기 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3807963A (en) * | 1972-03-09 | 1974-04-30 | J Smith | Reaction apparatus |
US3911843A (en) * | 1972-10-16 | 1975-10-14 | Tranter Mfg Inc | Method of making a plate-type heat exchange unit |
DE2949530A1 (de) * | 1979-12-08 | 1981-06-11 | Hoechst Ag, 6000 Frankfurt | Verfahren zur herstellung von 1,2-dichlorethan |
DE3024610A1 (de) * | 1980-06-28 | 1982-01-28 | Basf Ag, 6700 Ludwigshafen | Verfahren zur herstellung von 1,2-dichloraethan |
GB8330714D0 (en) * | 1982-12-24 | 1983-12-29 | Ici Plc | 1 2-dichloroethane |
ZA838830B (en) * | 1982-12-24 | 1984-08-29 | Ici Plc | Production of 1,2-dichloroethane |
ES2106387T3 (es) * | 1993-04-08 | 1997-11-01 | Elpatronic Ag | Procedimiento para soldar con rodillos costuras de depositos y maquina soldadora de costuras con rodillos y por resistencia para la puesta en practica del procedimiento. |
DE19533659A1 (de) * | 1995-09-12 | 1997-03-13 | Basf Ag | Verfahren zur Herstellung von Chlor aus Chlorwasserstoff |
KR101513298B1 (ko) * | 1999-01-22 | 2015-04-17 | 스미또모 가가꾸 가부시끼가이샤 | 염소의 제조 방법 |
EP1153653A1 (de) * | 2000-05-11 | 2001-11-14 | Methanol Casale S.A. | Reaktor für exotherme oder endotherme Reaktionen |
EP1221339A1 (de) * | 2001-01-05 | 2002-07-10 | Methanol Casale S.A. | Katalytischer Reaktor mit Wärmetauscher für endothermischer und exothermischer chemischer Reaktionen |
-
2003
- 2003-12-23 DE DE10361519A patent/DE10361519A1/de not_active Withdrawn
-
2004
- 2004-12-23 KR KR1020067014777A patent/KR20060126736A/ko not_active Application Discontinuation
- 2004-12-23 CN CN2013103209122A patent/CN103420340A/zh active Pending
- 2004-12-23 US US10/584,055 patent/US20080233043A1/en not_active Abandoned
- 2004-12-23 WO PCT/EP2004/014671 patent/WO2005063616A1/de active Application Filing
- 2004-12-23 EP EP04804265A patent/EP1699734A1/de not_active Withdrawn
- 2004-12-23 JP JP2006546076A patent/JP4805165B2/ja not_active Expired - Fee Related
- 2004-12-23 CN CNA2004800389103A patent/CN1898152A/zh active Pending
Non-Patent Citations (1)
Title |
---|
See references of WO2005063616A1 * |
Also Published As
Publication number | Publication date |
---|---|
CN103420340A (zh) | 2013-12-04 |
JP4805165B2 (ja) | 2011-11-02 |
WO2005063616A1 (de) | 2005-07-14 |
JP2007515372A (ja) | 2007-06-14 |
US20080233043A1 (en) | 2008-09-25 |
KR20060126736A (ko) | 2006-12-08 |
DE10361519A1 (de) | 2005-07-28 |
CN1898152A (zh) | 2007-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1699734A1 (de) | Verfahren zur herstellung von chlor durch gasphasenoxidation von chlorwasserstoff | |
EP2027063B1 (de) | Verfahren zur herstellung von chlor durch gasphasenoxidation | |
EP1572582B1 (de) | Verfahren zur herstellung von chlor durch gasphasenoxidation von chlorwasserstoff | |
EP1581457B1 (de) | Verfahren zur herstellung von chlor durch gasphasenoxidation von chlorwasserstoff | |
EP2170496A1 (de) | Verfahren zur herstellung von chlor durch gasphasenoxidation | |
EP2170495A1 (de) | Verfahren zur herstellung von chlor durch vielstufige adiabatische gasphasenoxidation | |
WO2005077520A1 (de) | Reaktor und verfahren zur herstellung von chlor aus hcl | |
WO2006069694A1 (de) | Verfahren zur herstellung von phthalsäureanhydrid | |
WO2003072237A1 (de) | Reaktor und verfahren zur herstellung von phosgen | |
EP1699551A1 (de) | Verfahren zur herstellung von formaldehyd | |
EP2192975A1 (de) | Reaktor und verfahren zu dessen herstellung | |
EP1656322A1 (de) | Verfahren zur herstellung von chlor | |
EP2334593A1 (de) | Mehrstufiges verfahren zur herstellung von chlor | |
WO2009143971A1 (de) | Verfahren zur herstellung von phosgen | |
EP3862317A1 (de) | Verfahren und reaktor zur herstellung von phosgen | |
WO2007104436A1 (de) | Verfahren und vorrichtung zur herstellung von chlor durch gasphasenoxidation in einem gekühlten wandreaktor | |
DE102007033106A1 (de) | Verfahren zur Herstellung von Chlor durch Gasphasenoxidation | |
DE102007033107A1 (de) | Verfahren zur Herstellung von Chlor durch vielstufige adiabatische Gasphasenoxidation | |
EP1801088A1 (de) | Oxychlorierungsverfahren |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060724 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BASF SE |
|
17Q | First examination report despatched |
Effective date: 20120627 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20150701 |