CN103409057A - 一种基于氧化石墨烯的紫外光固化的抗电磁屏蔽涂料的制备方法 - Google Patents

一种基于氧化石墨烯的紫外光固化的抗电磁屏蔽涂料的制备方法 Download PDF

Info

Publication number
CN103409057A
CN103409057A CN2013103369371A CN201310336937A CN103409057A CN 103409057 A CN103409057 A CN 103409057A CN 2013103369371 A CN2013103369371 A CN 2013103369371A CN 201310336937 A CN201310336937 A CN 201310336937A CN 103409057 A CN103409057 A CN 103409057A
Authority
CN
China
Prior art keywords
graphene oxide
quality
consumption
polyether glycol
add
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2013103369371A
Other languages
English (en)
Inventor
邱凤仙
戴玉婷
荣新山
杨冬亚
徐吉成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN2013103369371A priority Critical patent/CN103409057A/zh
Publication of CN103409057A publication Critical patent/CN103409057A/zh
Priority to CN201410028524.1A priority patent/CN103805049B/zh
Priority to CN201410028025.2A priority patent/CN103788806B/zh
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

本发明属于高分子材料合成技术领域,涉及抗电磁屏蔽涂料的制备,尤其涉及一种基于氧化石墨烯的紫外光固化的抗电磁屏蔽涂料的制备方法。本发明首先采用Hummers法制备得到氧化石墨烯水溶液,然后将其溶于N,N’-二甲基甲酰胺中,对水性聚(氨酯-丙烯酸酯)乳液进行改性,制得基于氧化石墨烯的紫外光固化的抗电磁屏蔽涂料。本发明对所制得的基于氧化石墨烯的紫外光固化的抗电磁屏蔽涂料的电导率、表观粘度、粒径和表面张力等物理性能做了测试,发现当氧化石墨烯的用量为聚醚多元醇NJ-220质量的3.8%时,电导率接近纯石墨烯电导率,具有较强的电磁屏蔽效能。本发明制备工艺简单,氧化石墨烯均匀分散于水性聚(氨酯-丙烯酸酯)基体当中,表面张力低,稳定性佳。

Description

一种基于氧化石墨烯的紫外光固化的抗电磁屏蔽涂料的制备方法
技术领域
本发明属于高分子材料合成技术领域,涉及抗电磁屏蔽涂料的制备,尤其涉及一种基于氧化石墨烯的紫外光固化的抗电磁屏蔽涂料的制备方法。
背景技术
电子电气等产品的电压电流在工作时都可能产生间歇性或连续性变化,有时其变化速率相当快,这样就会导致在不同频率内或一个频带间产生一定的电磁能量,而其相应的电路会将这种能连发射到周围的环境中。由此产生的电磁辐射可造成一定程度的电磁干扰、电磁信息泄露和电磁环境污染。这些电磁辐射会导致人体器官生理障碍或伤害,许多正常工作的电子、电气设备产生的电磁波能使邻近的电子、电气设备性能下降乃至无法工作,甚至造成事故和设备损坏,电磁污染已经成为世界性公害,世界卫生组织已将其列为继水污染、大气污染、噪声污染之后的第四大污染。工程塑料具有比重小、造型设计灵活、易加工成型和成本低等特点,在电子、电气、通讯及信息产业中的应用越来越广泛,但工程塑料在电磁场中极易产生静电和滞电现象,对电磁场几乎无屏蔽作用,尤其是对1GHz以下的电磁波几乎是“透明”的。
紫外(UV)光固化涂料具有固化快、环保、节能等优点,是现代工业化生产涂料的优秀代表之一。但紫外光固化涂料也存在着一些缺点,如光固化材料受到光线穿透能力的限制,只适用于由透明增强材料与透明树脂构成的复合材料。同时光固化涂料中常常加入过量的光引发剂,这些残存的引发剂受到光线照射后,产生的自由基会加速材料的老化,且由于光固化涂层交联收缩,产生收缩应力,对金属表面等光滑底层的附着力不佳。光固化后的漆膜较脆、易裂,漆膜收缩产生的空隙也会使空气和水分较易通过,漆膜的耐腐蚀性能不强。
氧化石墨烯(GO)是一种重要的石墨衍生物,具有较高的比表面能,良好的亲水性及机械性能,同时氧化石墨烯存在大量的亲水性官能团,可以单独分散在水系中形成氧化石墨烯胶体溶液,而且氧化石墨稀具有与石墨烯相似的结构,同样拥有二维纳米结构。氧化石墨烯与石墨烯的性质之间也有一些差异,由于含氧官能团的存在,夺取了同层碳环中可移动的π电子,使得碳原子形成的大π键断裂,从而丧失了传导电子的能力,变为绝缘体。
紫外光固化有机-无机杂化涂料是紫外光固化技术发展中较新的一个方向,采用溶胶-凝胶法制备的有机-无机杂化光固化涂料兼有柔韧性和刚性,它将预分散的无机氧化石墨烯加到光固化涂料中,使得无机与有机相间以共价键结合,有机-无机光固化涂层表面的两相界面更紧密,经均匀分散和紫外光照射固化制备,并可快速固化,从而使涂层更致密,膜的硬度和耐磨性都得到很大的提高,漆膜腐蚀性有所改善,且由于无机纳米粒子的耐热性较高,可提升整体漆膜的耐热性、抗刮性、耐磨性和耐化学性,以及其它的力学和电学性能的同时,保持透明性和光泽度,因此受到了广泛的关注。
复合材料学报,2013,30(1):22-26,采用直流电弧放电法制备结晶性石墨烯,利用乙醇助溶分散法得到石墨烯/聚苯胺电磁屏蔽复合材料,研究不同掺杂比例的石墨烯/聚苯胺复合材料的电磁屏蔽性能。复合物的电导率随石墨烯掺杂量的增加而增大,当掺杂质量分数为25%时,其电导率达到19.4S/cm。频率为2~18GHz时,复合材料的电磁屏蔽效能随着石墨烯掺杂量和频率的增大而增强;当石墨烯掺杂质量分数为25%时,总屏蔽效能在2~18GHz范围内由19.8dB增至34.2dB,增加了约42%,其中吸收部分占总屏蔽效能的比例为66%~81%。但该样品为粉末状,难以成膜。
发明内容
针对上述现有技术中存在的不足,本发明公开了一种基于氧化石墨烯的紫外光固化的抗电磁屏蔽涂料的制备方法,首先采用Hummers法制备得到氧化石墨烯水溶液,然后将其溶于N,N’-二甲基甲酰胺中,对水性聚(氨酯-丙烯酸酯)乳液进行改性,从而制得基于氧化石墨烯的紫外光固化的抗电磁屏蔽涂料。
本发明所述的采用Hummers法制备得氧化石墨烯水溶液是按照下述步骤进行:
在干燥的带有搅拌装置、回流冷凝管和温度计的250mL四口烧瓶中加入23mL浓硫酸,在冰浴条件下放置10min,在搅拌情况下,慢慢将1g石墨粉加入浓硫酸中,再加0.5g硝酸钠,在剧烈搅拌下分次加入3g高锰酸钾,控制温度,不超过20℃,搅拌1h;
撤去冰水浴,将体系放入35℃的水浴中反应2h;
慢慢滴加46mL的去离子水,保持温度不超过98℃,搅拌均匀30min,加水完毕后将其放在90℃~100℃水浴中继续搅拌30min,从热水浴中取出,再加140mL蒸馏水和10mL30%双氧水混匀之后离心,用质量分数5%盐酸对产物离心清洗,用无水乙醇离心清洗,再用去离子水离心清洗2~3次,得到混合液,60℃真空干燥12h,即得氧化石墨;
将所制氧化石墨与水配成1mg/mL的悬浮液,超声剥离5h后即可得到氧化石墨烯,溶液颜色为棕色透明。
本发明所公开的基于氧化石墨烯的紫外光固化的抗电磁屏蔽涂料的制备方法,包括如下步骤:
A、将一定质量的氧化石墨烯溶于N,N’-二甲基甲酰胺中,于70~100Hz频率下超声10min~2h,优选超声频率80Hz,优选时间30min;
B、在干燥的带有搅拌装置、回流冷凝管和温度计的容器中,加入聚醚多元醇NJ-220、氧化石墨烯的N,N’-二甲基甲酰胺(DMF)溶液和二羟甲基丙酸(DMPA),升温至30~70℃,优选40℃,加入异佛尔酮二异氰酸酯(IPDI),再升温至50~90℃,优选60℃,滴加催化剂二丁基二月桂酸锡(T-12),缓慢升温至50~100℃,优选80℃,恒温搅拌1~6h,优选4h后将体系降温至40~70℃,优选60℃,缓慢加入甲基丙烯酸羟乙酯(HEMA),继续反应2~8h,优选5h,降至20~50℃,优选40℃,加入中和剂三乙胺,反应10min~2h,优选30min,在高速搅拌下将去离子水缓慢加入,进行分散10min~2h,优选30min,向体系中加入活性稀释剂丙烯酸丁酯(BA)和三缩丙二醇双丙烯酸酯(TPGDA),反应10min~2h,优选45min;
C、将体系温度降至10~30℃,优选25℃,加入光引发剂2-羟基-2-甲基-1-苯基丙酮(Darocure1173),反应10min~1h,优选30min,即可制得基于氧化石墨烯的紫外光固化的抗电磁屏蔽涂料。
本发明的较优实施例中,所公开的制备步骤中各反应物质的质量分别为:
氧化石墨烯的用量为聚醚多元醇NJ-220质量的0.4~6%,优选3.8%;
N,N’-二甲基甲酰胺的用量为聚醚多元醇NJ-220质量的60%;
二羟甲基丙酸的用量为聚醚多元醇NJ-220质量的5.85~9.9%,优选9.5%;
异佛尔酮二异氰酸酯的用量为聚醚多元醇NJ-220质量的41.5~55%,优选48.2%;
催化剂二丁基二月桂酸锡(T-12)的用量为聚醚多元醇NJ-220质量的0.4~0.6%,优选0.5%;
甲基丙烯酸羟乙酯的用量为聚醚多元醇NJ-220质量的24.4~32.2%,优选25%;
三乙胺的用量为聚醚多元醇NJ-220质量的4.4~7.5%,优选7%;
丙烯酸丁酯的用量为聚醚多元醇NJ-220质量的295~354%,优选328%;
三缩丙二醇双丙烯酸酯的用量为聚醚多元醇NJ-220质量的295~354%,优选328%;
去离子水的用量为聚醚多元醇NJ-220质量的450~554%,优选500%;
光引发剂2-羟基-2-甲基-1-苯基丙酮(Darocure1173)用量为聚醚多元醇NJ-220质量的39.3~47.2%,优选43.8%。
本发明对所制得的基于氧化石墨烯的紫外光固化的抗电磁屏蔽涂料的电导率、表观粘度、粒径和表面张力等物理性能做了测试,电磁屏蔽导电涂料的屏蔽效能决定于涂料的导电性能,导电性能越好(电导率越高),则屏蔽效能越好。本发明中,测得没有氧化石墨烯加入时,制得的纯水性聚(氨酯-丙烯酸酯)的电导率仅为3.52S/cm;当氧化石墨烯的用量为聚醚多元醇NJ-220质量的3.8%时,涂料的电导率达到19.20S/cm,接近纯氧化石墨烯电导率(20.1S/cm)。
本发明所用的石墨粉、浓硫酸、硝酸钠、二丁基二月桂酸锡(T-12)、N,N’-二甲基甲酰胺(DMF)、丙烯酸丁酯(BA)和三乙胺(TEA),国药集团化学试剂有限公司;高锰酸钾,金山县光塔化工厂;30%过氧化氢,上海凌峰化学试剂有限公司;聚醚多元醇NJ-220,句容市宁武化工有限公司;二羟甲基丙酸(DMPA),上海溶溶化工有限公司;异佛二酮二异氰酸酯(IPDI),瑞士PERSTOP公司;甲基丙烯酸羟乙酯(HEMA),江苏省无锡市银联化工有限公司;三缩丙二醇双丙烯酸酯(TPGDA)、光引发剂2-羟基-2-甲基-1-苯基丙酮(Darocure1173),苏州市明大高分子科技材料有限公司。
有益效果
本发明利用氧化石墨烯的DMF溶液对水性聚(氨酯-丙烯酸酯)乳液进行改性,制得基于氧化石墨烯的紫外光固化的抗电磁屏蔽涂料。本发明产品制备工艺简单,氧化石墨烯均匀分散于水性聚(氨酯-丙烯酸酯)基体当中,表面张力低,稳定性佳,发现当氧化石墨烯的用量为聚醚多元醇NJ-220质量的3.8%时,涂料的电导率接近纯氧化石墨烯电导率,具有较强的电磁屏蔽效能。
具体实施方式:
下面结合实例对本发明进行详细说明,以使本领域技术人员更好地理解本发明,但本发明并不局限于以下实例。
Hummers法制备得氧化石墨烯水溶液
按照下述步骤进行:
在干燥的带有搅拌装置、回流冷凝管和温度计的250mL四口烧瓶中加入23mL浓硫酸,在冰浴条件下放置10min,在搅拌情况下,慢慢将1g石墨粉加入浓硫酸中,再加0.5g硝酸钠,在剧烈搅拌下分次加入3g高锰酸钾,控制温度,不超过20℃,搅拌1h;
撤去冰水浴,将体系放入35℃的水浴中反应2h;
慢慢滴加46mL的去离子水,保持温度不超过98℃,搅拌均匀30min,加水完毕后将其放在90℃~100℃水浴中继续搅拌30min,从热水浴中取出,再加140mL蒸馏水和10mL30%双氧水混匀之后离心,用质量分数5%盐酸对产物离心清洗,用无水乙醇离心清洗,再用去离子水离心清洗2~3次,得到混合液,60℃真空干燥12h,即得氧化石墨;
将所制氧化石墨与水配成1mg/mL的悬浮液,超声剥离5h后即可得到氧化石墨烯,溶液颜色为棕色透明。
实施例1
Hummers法制备得氧化石墨烯水溶液。
将0.04g氧化石墨烯溶于6g N,N’-二甲基甲酰胺中,放入70Hz频率超声波清洗机中超声2h。在干燥的带有搅拌装置、回流冷凝管和温度计的250mL四口烧瓶中,加入10g聚醚多元醇NJ-220、氧化石墨烯的DMF溶液和0.585g二羟甲基丙酸(DMPA),升温至70℃,加入4.15g异佛尔酮二异氰酸酯(IPDI),再升温至60℃,滴加0.04g催化剂二丁基二月桂酸锡(T-12),缓慢升温至50℃,恒温搅拌1h后将体系降温至40℃,缓慢加入2.44g甲基丙烯酸羟乙酯(HEMA),继续反应2h,降至20℃,加入0.44g中和剂三乙胺,反应2h,在高速搅拌下将45g去离子水缓慢加入,进行分散1.5h,向体系中加入活性稀释剂29.5g丙烯酸丁酯(BA)和29.5g三缩丙二醇双丙烯酸酯(TPGDA),反应1h。将温度降至20℃,加入3.93g光引发剂2-羟基-2-甲基-1-苯基丙酮(Darocure1173),反应10min,即可制得基于氧化石墨烯的紫外光固化的抗电磁屏蔽涂料(UV-GO-WPUA-1)。
实施例2
Hummers法制备得氧化石墨烯水溶液。
将0.08g氧化石墨烯溶于6g N,N’-二甲基甲酰胺中,80Hz频率超声波清洗机中超声50min。在干燥的带有搅拌装置、回流冷凝管和温度计的250mL四口烧瓶中,加入10g聚醚多元醇NJ-220、氧化石墨烯的DMF溶液和0.585g二羟甲基丙酸(DMPA),升温至30℃,加入4.15g异佛尔酮二异氰酸酯(IPDI),再升温至50℃,滴加0.04g催化剂二丁基二月桂酸锡(T-12),缓慢升温至100℃,恒温搅拌1.5h后将体系降温至45℃,缓慢加入2.44g甲基丙烯酸羟乙酯(HEMA),继续反应4h,降至30℃,加入0.44g中和剂三乙胺,反应1.5h,在高速搅拌下将45g去离子水缓慢加入,进行分散2h,向体系中加入活性稀释剂29.5g丙烯酸丁酯(BA)和29.5g三缩丙二醇双丙烯酸酯(TPGDA),反应1.5h。将温度降至30℃,加入3.93g光引发剂2-羟基-2-甲基-1-苯基丙酮(Darocure1173),反应20min,即可制得基于氧化石墨烯的紫外光固化的抗电磁屏蔽涂料(UV-GO-WPUA-2)。
实施例3
Hummers法制备得氧化石墨烯水溶液。
将0.17g氧化石墨烯溶于6g N,N’-二甲基甲酰胺中,90Hz频率超声波清洗机中超声10min。在干燥的带有搅拌装置、回流冷凝管和温度计的250mL四口烧瓶中,加入10g聚醚多元醇NJ-220、氧化石墨烯的DMF溶液和0.585g二羟甲基丙酸(DMPA),升温至40℃,加入4.15g异佛尔酮二异氰酸酯(IPDI),再升温至70℃,滴加0.04g催化剂二丁基二月桂酸锡(T-12),缓慢升温至60℃,恒温搅拌2h后将体系降温至50℃,缓慢加入2.44g甲基丙烯酸羟乙酯(HEMA),继续反应3h,降至40℃,加入0.44g中和剂三乙胺,反应1h,在高速搅拌下将45g去离子水缓慢加入,进行分散50min,向体系中加入活性稀释剂29.5g丙烯酸丁酯(BA)和29.5g三缩丙二醇双丙烯酸酯(TPGDA),反应2h。将温度降至10℃,加入3.93g光引发剂2-羟基-2-甲基-1-苯基丙酮(Darocure1173),反应30min,即可制得基于氧化石墨烯的紫外光固化的抗电磁屏蔽涂料(UV-GO-WPUA-3)。
实施例4
Hummers法制备得氧化石墨烯水溶液。
将0.34g的氧化石墨烯溶于6g N,N’-二甲基甲酰胺中,100Hz频率超声波清洗机中超声20min。在干燥的带有搅拌装置、回流冷凝管和温度计的250mL四口烧瓶中,加入10g聚醚多元醇NJ-220、氧化石墨烯的DMF溶液和0.585g二羟甲基丙酸(DMPA),升温至50℃,加入4.15g异佛尔酮二异氰酸酯(IPDI),再升温至60℃,滴加0.04g催化剂二丁基二月桂酸锡(T-12),缓慢升温至70℃,恒温搅拌3.5h后将体系降温至60℃,缓慢加入2.44g甲基丙烯酸羟乙酯(HEMA),继续反应5h,降至50℃,加入0.44g中和剂三乙胺,反应50min,在高速搅拌下将45g去离子水缓慢加入,进行分散1h,向体系中加入活性稀释剂29.5g丙烯酸丁酯(BA)和29.5g三缩丙二醇双丙烯酸酯(TPGDA),反应50min。将温度降至15℃,加入3.93g光引发剂2-羟基-2-甲基-1-苯基丙酮(Darocure1173),反应40min,即可制得基于氧化石墨烯的紫外光固化的抗电磁屏蔽涂料(UV-GO-WPUA-4)。
实施例5
Hummers法制备得氧化石墨烯水溶液。
将0.04g的氧化石墨烯溶于6g N,N’-二甲基甲酰胺中,70Hz频率超声波清洗机中超声1.5h。在干燥的带有搅拌装置、回流冷凝管和温度计的250mL四口烧瓶中,加入10g聚醚多元醇NJ-220、氧化石墨烯的DMF溶液和0.95g二羟甲基丙酸(DMPA),升温至30℃,加入4.82g异佛尔酮二异氰酸酯(IPDI),再升温至50℃,滴加0.05g催化剂二丁基二月桂酸锡(T-12),缓慢升温至80℃,恒温搅拌4h后将体系降温至65℃,缓慢加入2.5g甲基丙烯酸羟乙酯(HEMA),继续反应6h,降至45℃,加入0.7g中和剂三乙胺,反应45min,在高速搅拌下将50g去离子水缓慢加入,进行分散45min,向体系中加入活性稀释剂32.8g丙烯酸丁酯(BA)和32.8g三缩丙二醇双丙烯酸酯(TPGDA),反应40min。将温度降至25℃,加入4.38g光引发剂2-羟基-2-甲基-1-苯基丙酮(Darocure1173),反应50min,即可制得基于氧化石墨烯的紫外光固化的抗电磁屏蔽涂料(UV-GO-WPUA-5)。
实施例6
Hummers法制备得氧化石墨烯水溶液。
将0.09g的氧化石墨烯溶于6g N,N’-二甲基甲酰胺中,80Hz频率超声波清洗机中超声100min。在干燥的带有搅拌装置、回流冷凝管和温度计的250mL四口烧瓶中,加入10g聚醚多元醇NJ-220、氧化石墨烯的DMF溶液和0.95g二羟甲基丙酸(DMPA),升温至60℃,加入4.82g异佛尔酮二异氰酸酯(IPDI),再升温至40℃,滴加0.05g催化剂二丁基二月桂酸锡(T-12),缓慢升温至90℃,恒温搅拌5.5h后将体系降温至70℃,缓慢加入2.5g甲基丙烯酸羟乙酯(HEMA),继续反应7h,降至35℃,加入0.7g中和剂三乙胺,反应35min,在高速搅拌下将50g去离子水缓慢加入,进行分散25min,向体系中加入活性稀释剂32.8g丙烯酸丁酯(BA)和32.8g三缩丙二醇双丙烯酸酯(TPGDA),反应40min。将温度降至30℃,加入4.38g光引发剂2-羟基-2-甲基-1-苯基丙酮(Darocure1173),反应1h,即可制得基于氧化石墨烯的紫外光固化的抗电磁屏蔽涂料(UV-GO-WPUA-6)。
实施例7
Hummers法制备得氧化石墨烯水溶液。
将0.19g的氧化石墨烯溶于6g N,N’-二甲基甲酰胺中,90Hz频率超声波清洗机中超声30min。在干燥的带有搅拌装置、回流冷凝管和温度计的250mL四口烧瓶中,加入10g聚醚多元醇NJ-220、氧化石墨烯的DMF溶液和0.95g二羟甲基丙酸(DMPA),升温至60℃,加入4.82g异佛尔酮二异氰酸酯(IPDI),再升温至30℃,滴加0.05g催化剂二丁基二月桂酸锡(T-12),缓慢升温至100℃,恒温搅拌6h后将体系降温至60℃,缓慢加入2.5g甲基丙烯酸羟乙酯(HEMA),继续反应8h,降至25℃,加入0.7g中和剂三乙胺,反应25min,在高速搅拌下将50g去离子水缓慢加入,进行分散35min,向体系中加入活性稀释剂32.8g丙烯酸丁酯(BA)和32.8g三缩丙二醇双丙烯酸酯(TPGDA),反应30min。将温度降至10℃,加入4.38g光引发剂2-羟基-2-甲基-1-苯基丙酮(Darocure1173),反应10min,即可制得基于氧化石墨烯的紫外光固化的抗电磁屏蔽涂料(UV-GO-WPUA-7)。
实施例8
Hummers法制备得氧化石墨烯水溶液。
将0.38g的氧化石墨烯溶于6g N,N’-二甲基甲酰胺中,80Hz频率超声波清洗机中超声30min。在干燥的带有搅拌装置、回流冷凝管和温度计的250mL四口烧瓶中,加入10g聚醚多元醇NJ-220、氧化石墨烯的DMF溶液和0.95g二羟甲基丙酸(DMPA),升温至40℃,加入4.82g异佛尔酮二异氰酸酯(IPDI),再升温至60℃,滴加0.05g催化剂二丁基二月桂酸锡(T-12),缓慢升温至80℃,恒温搅拌4h后将体系降温至60℃,缓慢加入2.5g甲基丙烯酸羟乙酯(HEMA),继续反应5h,降至40℃,加入0.7g中和剂三乙胺,反应30min,在高速搅拌下将50g去离子水缓慢加入,进行分散30min,向体系中加入活性稀释剂32.8g丙烯酸丁酯(BA)和32.8g三缩丙二醇双丙烯酸酯(TPGDA),反应45min。将温度降至25℃,加入4.38g光引发剂2-羟基-2-甲基-1-苯基丙酮(Darocure1173),反应30min,即可制得基于氧化石墨烯的紫外光固化的抗电磁屏蔽涂料(UV-GO-WPUA-8)。
实施例9
Hummers法制备得氧化石墨烯水溶液。
将0.1g的氧化石墨烯溶于6g N,N’-二甲基甲酰胺中,80Hz频率超声波清洗机中超声30min。在干燥的带有搅拌装置、回流冷凝管和温度计的250mL四口烧瓶中,加入10g聚醚多元醇NJ-220、氧化石墨烯的DMF溶液和1g二羟甲基丙酸(DMPA),升温至45℃,加入5.5g异佛尔酮二异氰酸酯(IPDI),再升温至55℃,滴加0.06g催化剂二丁基二月桂酸锡(T-12),缓慢升温至70℃,恒温搅拌3h后将体系降温至55℃,缓慢加入3.2g甲基丙烯酸羟乙酯(HEMA),继续反应5.5h,降至25℃,加入0.75g中和剂三乙胺,反应30min,在高速搅拌下将55g去离子水缓慢加入,进行分散30min,向体系中加入活性稀释剂35g丙烯酸丁酯(BA)和35g三缩丙二醇双丙烯酸酯(TPGDA),反应45min。将温度降至25℃,加入4.7g光引发剂2-羟基-2-甲基-1-苯基丙酮(Darocure1173),反应30min,即可制得基于氧化石墨烯的紫外光固化的抗电磁屏蔽涂料(UV-GO-WPUA-9)。
实施例10
Hummers法制备得氧化石墨烯水溶液。
将0.2g的氧化石墨烯溶于6g N,N’-二甲基甲酰胺中,80Hz频率超声波清洗机中超声1h。在干燥的带有搅拌装置、回流冷凝管和温度计的250mL四口烧瓶中,加入10g聚醚多元醇NJ-220、氧化石墨烯的DMF溶液和1g二羟甲基丙酸(DMPA),升温至50℃,加入5.5g异佛尔酮二异氰酸酯(IPDI),再升温至70℃,滴加0.06g催化剂二丁基二月桂酸锡(T-12),缓慢升温至60℃,恒温搅拌3h后将体系降温至50℃,缓慢加入3.2g甲基丙烯酸羟乙酯(HEMA),继续反应4h,降至40℃,加入0.75g中和剂三乙胺,反应10min,在高速搅拌下将55g去离子水缓慢加入,进行分散10min,向体系中加入活性稀释剂35g丙烯酸丁酯(BA)和35g三缩丙二醇双丙烯酸酯(TPGDA),反应10min。将温度降至15℃,加入4.7g光引发剂2-羟基-2-甲基-1-苯基丙酮(Darocure1173),反应30min,即可制得基于氧化石墨烯的紫外光固化的抗电磁屏蔽涂料(UV-GO-WPUA-10)。
实施例11
Hummers法制备得氧化石墨烯水溶液。
将0.4g的氧化石墨烯溶于6g N,N’-二甲基甲酰胺中,80Hz频率超声波清洗机中超声45min。在干燥的带有搅拌装置、回流冷凝管和温度计的250mL四口烧瓶中,加入10g聚醚多元醇NJ-220、氧化石墨烯的DMF溶液和1g二羟甲基丙酸(DMPA),升温至40℃,加入5.5g异佛尔酮二异氰酸酯(IPDI),再升温至30℃,滴加0.06g催化剂二丁基二月桂酸锡(T-12),缓慢升温至70℃,恒温搅拌5h后将体系降温至60℃,缓慢加入3.2g甲基丙烯酸羟乙酯(HEMA),继续反应5h,降至40℃,加入0.75g中和剂三乙胺,反应30min,在高速搅拌下将55g去离子水缓慢加入,进行分散30min,向体系中加入活性稀释剂35g丙烯酸丁酯(BA)和35g三缩丙二醇双丙烯酸酯(TPGDA),反应45min。将温度降至25℃,加入4.7g光引发剂2-羟基-2-甲基-1-苯基丙酮(Darocure1173),反应30min,即可制得基于氧化石墨烯的紫外光固化的抗电磁屏蔽涂料(UV-GO-WPUA-11)。
实施例12
Hummers法制备得氧化石墨烯水溶液。
将0.6g的氧化石墨烯溶于6g N,N’-二甲基甲酰胺中,70Hz频率超声波清洗机中超声1h。在干燥的带有搅拌装置、回流冷凝管和温度计的250mL四口烧瓶中,加入10g聚醚多元醇NJ-220、氧化石墨烯的DMF溶液和1g二羟甲基丙酸(DMPA),升温至45℃,加入5.5g异佛尔酮二异氰酸酯(IPDI),再升温至55℃,滴加0.06g催化剂二丁基二月桂酸锡(T-12),缓慢升温至70℃,恒温搅拌3h后将体系降温至55℃,缓慢加入3.2g甲基丙烯酸羟乙酯(HEMA),继续反应4.5h,降至35℃,加入0.75g中和剂三乙胺,反应30min,在高速搅拌下将55g去离子水缓慢加入,进行分散30min,向体系中加入活性稀释剂35g丙烯酸丁酯(BA)和35g三缩丙二醇双丙烯酸酯(TPGDA),反应45min。将温度降至25℃,加入4.7g光引发剂2-羟基-2-甲基-1-苯基丙酮(Darocure1173),反应30min,即可制得基于氧化石墨烯的紫外光固化的抗电磁屏蔽涂料(UV-GO-WPUA-12)。
实验方法
测定基于氧化石墨烯的紫外光固化的抗电磁屏蔽涂料样品的电导率、表观粘度、粒径和表面张力,结果如下表所示:
样品 电导率(S/cm) 表观粘度(Pa·s) 粒径(nm) 表面张力(mN.m-1)
UV-GO-WPUA-1 12.04 0.026 68.4 34.49
UV-GO-WPUA-2 13.74 0.027 102.4 34.87
UV-GO-WPUA-3 17.98 0.026 165.3 34.32
UV-GO-WPUA-4 19.09 0.028 67.5 34.84
UV-GO-WPUA-5 12.03 0.033 39.9 34.62
UV-GO-WPUA-6 14.75 0.028 51 34.48
UV-GO-WPUA-7 18.82 0.027 60.3 34.55
UV-GO-WPUA-8 19.20 0.028 218 34.5
UV-GO-WPUA-9 18.88 0.031 81 35.35
UV-GO-WPUA-10 19.08 0.032 34.9 35.09
UV-GO-WPUA-11 19.16 0.031 37.5 34.78
UV-GO-WPUA-12 19.18 0.035 41.5 34.4
电磁屏蔽导电涂料的屏蔽效能决定于涂料的导电性能,导电性能越好(电导率越高),则屏蔽效能越好。本发明中,测得没有石墨烯加入时,制得的纯水性聚(氨酯-丙烯酸酯)的电导率仅为3.52S/cm;当氧化石墨烯的用量为聚醚多元醇NJ-220质量的3.8%时,涂料的电导率达到19.20S/cm,接近纯石墨烯电导率(20.1S/cm),而且本发明产品制备工艺简单,氧化石墨烯均匀分散于水性聚(氨酯-丙烯酸酯)基体当中,表面张力低,稳定性佳。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (6)

1.一种基于氧化石墨烯的紫外光固化的抗电磁屏蔽涂料的制备方法,其特征在于,首先采用Hummers法制备得到氧化石墨烯水溶液,然后将其溶于N,N’-二甲基甲酰胺中,对水性聚(氨酯-丙烯酸酯)乳液进行改性,从而制得基于氧化石墨烯的紫外光固化的抗电磁屏蔽涂料。
2.根据权利要求1所述的基于氧化石墨烯的紫外光固化的抗电磁屏蔽涂料的制备方法,其特征在于,包括如下步骤:
A、将一定质量的氧化石墨烯溶于N,N’-二甲基甲酰胺中,于70~100Hz频率下超声10min~2h;
B、在干燥的带有搅拌装置、回流冷凝管和温度计的容器中,加入聚醚多元醇NJ-220、氧化石墨烯的N,N’-二甲基甲酰胺溶液和二羟甲基丙酸,升温至30~70℃,加入异佛尔酮二异氰酸酯,再升温至50~90℃,滴加催化剂二丁基二月桂酸锡,缓慢升温至50~100℃,恒温搅拌1~6h后将体系降温至40~70℃,缓慢加入甲基丙烯酸羟乙酯,继续反应2~8h,降至20~50℃,加入中和剂三乙胺,反应10min~2h,在高速搅拌下将去离子水缓慢加入,进行分散10min~2h,向体系中加入活性稀释剂丙烯酸丁酯和三缩丙二醇双丙烯酸酯,反应10min~2h;
C、将体系温度降至10~30℃,加入光引发剂2-羟基-2-甲基-1-苯基丙酮,反应10min~1h。
3.根据权利要求1或2所述的基于氧化石墨烯的紫外光固化的抗电磁屏蔽涂料的制备方法,其特征在于,
所述步骤A中,将一定质量的氧化石墨烯溶于N,N’-二甲基甲酰胺中,于80Hz频率下超声30min;
所述步骤B中,在干燥的带有搅拌装置、回流冷凝管和温度计的容器中,加入聚醚多元醇NJ-220、氧化石墨烯的N,N’-二甲基甲酰胺溶液和二羟甲基丙酸,升温至40℃,加入异佛尔酮二异氰酸酯,再升温至60℃,滴加催化剂二丁基二月桂酸锡,缓慢升温至80℃,恒温搅拌4h后将体系降温至60℃,缓慢加入甲基丙烯酸羟乙酯,继续反应5h,降至40℃,加入中和剂三乙胺,反应30min,在高速搅拌下将去离子水缓慢加入,进行分散30min, 向体系中加入活性稀释剂丙烯酸丁酯和三缩丙二醇双丙烯酸酯,反应45min;
所述步骤C中,将体系温度降至25℃,加入光引发剂2-羟基-2-甲基-1-苯基丙酮,反应30min。
4.根据权利要求1~3任一所述的基于氧化石墨烯的紫外光固化的抗电磁屏蔽涂料的制备方法,其特征在于,制备步骤中各反应物质的质量分别为:
氧化石墨烯的用量为聚醚多元醇NJ-220质量的0.4~6%;
N,N’-二甲基甲酰胺的用量为聚醚多元醇NJ-220质量的60%;
二羟甲基丙酸的用量为聚醚多元醇NJ-220质量的5.85~9.9%;
异佛尔酮二异氰酸酯的用量为聚醚多元醇NJ-220质量的41.5~55%;
催化剂二丁基二月桂酸锡的用量为聚醚多元醇NJ-220质量的0.4~0.6%;
甲基丙烯酸羟乙酯的用量为聚醚多元醇NJ-220质量的24.4~32.2%;
三乙胺的用量为聚醚多元醇NJ-220质量的4.4~7.5%;
丙烯酸丁酯的用量为聚醚多元醇NJ-220质量的295~354%;
三缩丙二醇双丙烯酸酯的用量为聚醚多元醇NJ-220质量的295~354%;
去离子水的用量为聚醚多元醇NJ-220质量的450~554%;
光引发剂2-羟基-2-甲基-1-苯基丙酮用量为聚醚多元醇NJ-220质量的39.3~47.2%。
5.根据权利要求4所述的基于氧化石墨烯的紫外光固化的抗电磁屏蔽涂料的制备方法,其特征在于,制备步骤中各反应物质的质量分别为:
氧化石墨烯的用量为聚醚多元醇NJ-220质量的3.8%;
N,N’-二甲基甲酰胺的用量为聚醚多元醇NJ-220质量的60%;
二羟甲基丙酸的用量为聚醚多元醇NJ-220质量的9.5%;
异佛尔酮二异氰酸酯的用量为聚醚多元醇NJ-220质量的48.2%;
催化剂二丁基二月桂酸锡的用量为聚醚多元醇NJ-220质量的0.5%;
甲基丙烯酸羟乙酯的用量为聚醚多元醇NJ-220质量的25%;
三乙胺的用量为聚醚多元醇NJ-220质量的7%;
丙烯酸丁酯的用量为聚醚多元醇NJ-220质量的328%;
三缩丙二醇双丙烯酸酯的用量为聚醚多元醇NJ-220质量的328%;
去离子水的用量为聚醚多元醇NJ-220质量的500%;
光引发剂2-羟基-2-甲基-1-苯基丙酮用量为聚醚多元醇NJ-220质量的43.8%。
6.根据前述任一权利要求所述方法制备得到的基于氧化石墨烯的紫外光固化的抗电磁屏蔽涂料。
CN2013103369371A 2013-08-05 2013-08-05 一种基于氧化石墨烯的紫外光固化的抗电磁屏蔽涂料的制备方法 Pending CN103409057A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2013103369371A CN103409057A (zh) 2013-08-05 2013-08-05 一种基于氧化石墨烯的紫外光固化的抗电磁屏蔽涂料的制备方法
CN201410028524.1A CN103805049B (zh) 2013-08-05 2014-01-22 基于氧化石墨烯的紫外光固化水性聚氨酯抗电磁屏蔽涂料的制备方法
CN201410028025.2A CN103788806B (zh) 2013-08-05 2014-01-22 基于氧化石墨烯的uv固化抗电磁屏蔽涂料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2013103369371A CN103409057A (zh) 2013-08-05 2013-08-05 一种基于氧化石墨烯的紫外光固化的抗电磁屏蔽涂料的制备方法

Publications (1)

Publication Number Publication Date
CN103409057A true CN103409057A (zh) 2013-11-27

Family

ID=49602102

Family Applications (3)

Application Number Title Priority Date Filing Date
CN2013103369371A Pending CN103409057A (zh) 2013-08-05 2013-08-05 一种基于氧化石墨烯的紫外光固化的抗电磁屏蔽涂料的制备方法
CN201410028025.2A Expired - Fee Related CN103788806B (zh) 2013-08-05 2014-01-22 基于氧化石墨烯的uv固化抗电磁屏蔽涂料的制备方法
CN201410028524.1A Expired - Fee Related CN103805049B (zh) 2013-08-05 2014-01-22 基于氧化石墨烯的紫外光固化水性聚氨酯抗电磁屏蔽涂料的制备方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN201410028025.2A Expired - Fee Related CN103788806B (zh) 2013-08-05 2014-01-22 基于氧化石墨烯的uv固化抗电磁屏蔽涂料的制备方法
CN201410028524.1A Expired - Fee Related CN103805049B (zh) 2013-08-05 2014-01-22 基于氧化石墨烯的紫外光固化水性聚氨酯抗电磁屏蔽涂料的制备方法

Country Status (1)

Country Link
CN (3) CN103409057A (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103788323A (zh) * 2014-01-07 2014-05-14 浙江伟星新型建材股份有限公司 一种氧化石墨烯/水性聚氨酯纳米复合材料的制备方法
CN103811895A (zh) * 2014-02-26 2014-05-21 陆腾蛟 一种消除电火花的插头及涂覆生产工艺
CN104263183A (zh) * 2014-09-30 2015-01-07 广西大学 石墨烯聚丙烯酸酯丙烯腈减摩复合涂层的制备方法
CN104449337A (zh) * 2014-12-19 2015-03-25 江南大学 一种高导热光固化功能涂料的制备方法
CN105399091A (zh) * 2016-01-05 2016-03-16 江南大学 一种高分散性光敏石墨烯及其制备方法
CN106752739A (zh) * 2016-11-29 2017-05-31 燕园众欣纳米科技(北京)有限公司 一种氧化石墨烯型uv涂料及其制备方法
CN106867354A (zh) * 2017-01-17 2017-06-20 合众(佛山)化工有限公司 一种石墨烯‑氟改性聚氨酯树脂水性功能涂料
CN107974125A (zh) * 2017-12-13 2018-05-01 厦门中凯新材石墨烯科技有限公司 一种用于涂料的石墨烯中间体及其制备方法
CN108795107A (zh) * 2018-03-24 2018-11-13 成都迪泰化工有限公司 一种石墨烯的改性方法及其产物和uv光固化涂料
CN109926039A (zh) * 2017-12-18 2019-06-25 湖北臻润环境科技股份有限公司 制备氧化锌-还原氧化石墨烯的复合材料的方法
CN112694770A (zh) * 2019-10-07 2021-04-23 三星显示有限公司 涂覆组合物和用于制造显示装置的方法
CN112876934A (zh) * 2021-02-05 2021-06-01 陈广洪 一种新型水性石墨烯聚氨酯涂料及其制备方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104927626A (zh) * 2015-06-09 2015-09-23 成都纳硕科技有限公司 一种外墙紫外固化涂料
CN104910333B (zh) * 2015-06-24 2018-02-27 深圳职业技术学院 一种改性氧化石墨烯聚合物复合材料及其制备方法
CN105384890A (zh) * 2015-12-16 2016-03-09 江南大学 一种功能化石墨烯及其改性水性光固化聚氨酯的制备方法
CN105602434B (zh) * 2015-12-30 2018-04-17 贾学明 紫外光固化导电涂料及其制备方法
CN107619616A (zh) * 2017-09-26 2018-01-23 成都优品化工有限公司 一种石墨烯紫外线uv光固化白色涂料及其制备方法
CN108485501B (zh) * 2018-03-30 2020-02-18 四川理工学院 一种石墨烯基水性涂料及其制备方法
CN109161271A (zh) * 2018-09-03 2019-01-08 合肥久新不锈钢厨具有限公司 一种家电用涂料及其制备方法
CN110408342B (zh) * 2019-06-10 2020-12-08 江西蓝海芯科技集团有限公司 一种碳纳米球填充的双固化导电胶带的制备方法及其在电磁屏蔽胶带中的应用
CN112158831A (zh) * 2020-09-28 2021-01-01 胥彩虹 一种具有光活性改性石墨烯及其制备方法和应用
CN112920637A (zh) * 2021-01-12 2021-06-08 中山市大自然木业有限公司 数字喷墨3d打印仿瓷砖木质地板的制备方法及木质地板
CN112778896A (zh) * 2021-01-12 2021-05-11 广东大自然家居科技研究有限公司 一种仿瓷砖的木质地板及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1996465A2 (en) * 2006-03-10 2008-12-03 Goodrich Corporation Low density lightning strike protection for use in airplanes
EP2228414A1 (en) * 2009-03-13 2010-09-15 Bayer MaterialScience AG UV-curable, wear resistant and antistatic coating filled with carbon nanotubes
KR20110069201A (ko) * 2009-12-17 2011-06-23 거림테크 주식회사 탄소나노판 분산 방법
CN102745672B (zh) * 2012-05-25 2014-05-21 深圳职业技术学院 一种有机链段修饰改性氧化石墨烯的制备方法
CN102827386B (zh) * 2012-08-21 2015-02-04 江苏大学 一种聚醚醚酮/氧化石墨烯纳米复合薄膜的制备方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103788323A (zh) * 2014-01-07 2014-05-14 浙江伟星新型建材股份有限公司 一种氧化石墨烯/水性聚氨酯纳米复合材料的制备方法
CN103788323B (zh) * 2014-01-07 2016-02-24 浙江伟星新型建材股份有限公司 一种氧化石墨烯/水性聚氨酯纳米复合材料的制备方法
CN103811895A (zh) * 2014-02-26 2014-05-21 陆腾蛟 一种消除电火花的插头及涂覆生产工艺
CN104263183A (zh) * 2014-09-30 2015-01-07 广西大学 石墨烯聚丙烯酸酯丙烯腈减摩复合涂层的制备方法
CN104449337A (zh) * 2014-12-19 2015-03-25 江南大学 一种高导热光固化功能涂料的制备方法
CN105399091A (zh) * 2016-01-05 2016-03-16 江南大学 一种高分散性光敏石墨烯及其制备方法
CN105399091B (zh) * 2016-01-05 2017-05-10 江南大学 一种高分散性光敏石墨烯及其制备方法
CN106752739A (zh) * 2016-11-29 2017-05-31 燕园众欣纳米科技(北京)有限公司 一种氧化石墨烯型uv涂料及其制备方法
CN106867354A (zh) * 2017-01-17 2017-06-20 合众(佛山)化工有限公司 一种石墨烯‑氟改性聚氨酯树脂水性功能涂料
CN106867354B (zh) * 2017-01-17 2019-09-24 合众(佛山)化工有限公司 一种石墨烯-氟改性聚氨酯树脂水性功能涂料
CN107974125A (zh) * 2017-12-13 2018-05-01 厦门中凯新材石墨烯科技有限公司 一种用于涂料的石墨烯中间体及其制备方法
CN109926039A (zh) * 2017-12-18 2019-06-25 湖北臻润环境科技股份有限公司 制备氧化锌-还原氧化石墨烯的复合材料的方法
CN108795107A (zh) * 2018-03-24 2018-11-13 成都迪泰化工有限公司 一种石墨烯的改性方法及其产物和uv光固化涂料
CN112694770A (zh) * 2019-10-07 2021-04-23 三星显示有限公司 涂覆组合物和用于制造显示装置的方法
CN112694770B (zh) * 2019-10-07 2024-04-05 三星显示有限公司 涂覆组合物和用于制造显示装置的方法
CN112876934A (zh) * 2021-02-05 2021-06-01 陈广洪 一种新型水性石墨烯聚氨酯涂料及其制备方法

Also Published As

Publication number Publication date
CN103788806B (zh) 2015-10-28
CN103805049B (zh) 2016-03-02
CN103788806A (zh) 2014-05-14
CN103805049A (zh) 2014-05-21

Similar Documents

Publication Publication Date Title
CN103409057A (zh) 一种基于氧化石墨烯的紫外光固化的抗电磁屏蔽涂料的制备方法
CN103113786B (zh) 一种石墨烯导电油墨及其制备方法
KR101003156B1 (ko) 수계 그라핀 용액 및 수계 전도성 고분자 용액의 제조방법
Song et al. Conductive channel formation for enhanced electrical conductivity of PEDOT: PSS with high work-function
US20100090171A1 (en) High conductive paste composite and method of producting the same
CN103467676A (zh) 一种水性氧化石墨烯改性聚(氨酯-丙烯酸酯)复合材料的制备方法
KR20120021807A (ko) 표면 처리된 탄소나노튜브를 사용한 고농도 탄소나노튜브 분산액의 제조
Yue et al. Electrosynthesis of a novel polyindole derivative from 5-aminoindole and its use as catalyst support for formic acid electrooxidation
Hong et al. Rational design and evaluation of UV curable nano-silver ink applied in highly conductive textile-based electrodes and flexible silver-zinc batteries
Jia et al. Remote and efficient infrared induced self-healable stretchable substrate for wearable electronics
Hong et al. Formulation of UV curable nano-silver conductive ink for direct screen-printing on common fabric substrates for wearable electronic applications
Wu et al. Mechanical and electrochemical properties of UV-curable nanocellulose/urushiol epoxy acrylate anti-corrosive composite coatings
KR20140056045A (ko) 인쇄전자용 구리 페이스트 조성물
Zhang et al. Preparation and characterization of novel polypyrrole-nanotube/polyaniline free-standing composite films via facile solvent-evaporation method
Sangermano et al. UV-cured functional coatings
JP5082281B2 (ja) カチオン硬化型導電性インキ
TWI629337B (zh) 高附著性導電銅膠體及其網版印刷應用方法
CN108148469A (zh) 一种水性uv导电油墨的制备方法
CN107189711A (zh) 一种非金属体系的导电胶黏剂及其制备和应用方法
Li et al. Redox-initiated polymerization of N-vinylcarbazole based on carbon dots for modification and beyond
Zhou et al. Electrochemical polymerization of phenanthrene in mixed electrolytes of boron trifluoride diethyl etherate and concentrated sulfuric acid
CN105925065A (zh) 一种uv固化石墨烯导电油墨的制备方法
Siva et al. Synthesis and characterization of poly (aniline-co-p-nitroaniline)(PANA) and its corrosion-resistant properties against corrosive media
Rawat et al. Microwave synthesized conducting polymer-based green nanocomposites as smart promising materials
CN103666045B (zh) 一种粒度小附着力强的uv固化油墨及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20131127